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SARS-CoV-2 infection is effectively controlled by humoral and cellular immune responses.
However, the durability of immunity in children as well as the ability to neutralize variants of
concern are unclear. Here, we assessed T cell and antibody responses in a longitudinal
cohort of children after asymptomatic or mild COVID-19 over a 12-month period. Antigen-
specific CD4 T cells remained stable over time, while CD8 T cells declined. SARS-CoV-2
infection induced long-lived neutralizing antibodies against ancestral SARS-CoV-2
(D614G isolate), but with poor cross-neutralization of omicron. Importantly, recall
responses to vaccination in children with pre-existing immunity yielded neutralizing
antibody activities against D614G and omicron BA.1 and BA.2 variants that were 3.9-
fold, 9.9-fold and 14-fold higher than primary vaccine responses in seronegative children.
Together, our findings demonstrate that SARS-CoV-2 infection in children induces robust
memory T cells and antibodies that persist for more than 12 months, but lack neutralizing
activity against omicron. Vaccination of pre-immune children, however, substantially
improves the omicron-neutralizing capacity.

Keywords: COVID-19, neutralization, omicron, immune memory, SARS-CoV-2-specific T cells, vaccine, children
INTRODUCTION

Children exhibit mostly asymptomatic or mild COVID-19 and are less likely to experience severe
respiratory disease than adults, but can develop MIS-C (multi-inflammatory syndromes) and long-
term complications, such as long COVID (1–7). The mechanisms for the age-related differences in
the clinical outcome are still under investigation, but hypotheses include differential expression of
the virus entry receptor as well as differences in the functioning and strength of immune responses
in children compared to adults (8–15). Previous studies indicated that children are capable of
mounting a robust T cell and antibody response to SARS-CoV-2 infection (8, 10, 13, 14). Antibodies
specific for the spike protein, which binds to the receptor and mediates virus entry, can exhibit
potent neutralizing activity, and are a correlate of protection against COVID-19 (16–18). However,
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data about the durability of these antibody responses in children
are limited (8, 10, 13), reporting reduced antibody breadth and
neutralizing activity (10) as well as similar neutralizing capacity
(8) in comparison to adults. An increasing rate of reinfections
associated with the emergence of the omicron variant (sublineage
BA.1) has also raised concerns about evasion of immunity
induced by prior infection (19–21). More recently, there has
been an upsurge of BA.2 sublineage, which has been spreading
rapidly in Europe and Asia, accounting for 34.2% of omicron
variant sequences detected at the beginning of March, 2022 (22).
In comparison to previous variants of concern (VOCs), omicron
variant sequences have a greater number of mutations in the
spike protein, affecting critical epitopes in the receptor-binding
domain (RBD) as well as in the N-terminal domain, that have
been associated with resistance to neutralizing antibodies
generated by prior infection or vaccination (23) and reviewed
in (24). It is therefore important to improve our understanding
of the durability of immune memory and how this immunity
confers protection against symptomatic VOC infections.

Furthermore, the United States and many European countries
have started their vaccination program for children (25, 26). The
effect of vaccination in children with pre-existing immunity,
however, remains poorly understood. Specifically, it is unclear
how the immune response in recovered children may benefit
from vaccination and whether vaccination has any effect on the
quality of infection-induced responses, in particular with respect
to the omicron variant.

Here, we addressed these questions by evaluating SARS-CoV-
2-specific T cell and antibody responses in a longitudinal cohort
of recovered children, including a comparison of neutralization
of the omicron variant relative to an ancestral SARS-CoV-2
strain (D614G virus isolate from the early phase of the
pandemic). Additionally, we evaluated recall responses of
preexisting immunity with BNT162b2 (BioNTech-Pfizer) or
Ad26.COV2-S (Johnson and Johnson) in a subgroup of SARS-
CoV-2-recovered children compared with seronegative children
generating a primary response to BNT162b2 vaccination. These
studies provide insights into the durability of immune memory
after SARS-CoV-2 infection in children and the benefits of
boosting infection-induced immunity by vaccination.
MATERIALS AND METHODS

Study Population
The study cohort was followed from the early phase of the
pandemic (May-July 2020), before the emergence of SARS-CoV-
2 VOCs alpha, beta, gamma, delta and omicron. All seropositive
children had participated in a population-based SARS-CoV-2
seroprevalence study (27). These children and their families were
followed up for 15 months. Serology and personal interviews
with parents and children allowed classification of asymptomatic
or mild infection. In the present study, 50 children were included
to investigate whether asymptomatic or mild SARS-CoV-2
infection confers specific antibody and T cell responses lasting
Frontiers in Immunology | www.frontiersin.org 2
for 15 months. Of the 50 children, 26 were seropositive by SARS-
CoV-2 RBD antibody testing and 24 were consistently
seronegative throughout the follow up.

Ethics Statement
All work was conducted in accordance with the Declaration of
Helsinki in terms of informed consent and approval by an
appropriate institutional board. Blood samples were obtained
after donors and their parents consented to participate in this
study. The ethics committee of the Medical University of Vienna,
Austria, approved the study protocol (approval no. 2104/2020).

Preparation of Blood Samples
PBMCs were isolated from blood samples using Ficoll-Paque
Plus™ (GE Healthcare) and cryopreserved in liquid nitrogen.
Serum samples were stored at −20°C.

Detection of SARS‐CoV‐2‐Specific IgG
SARS‐CoV‐2‐specific antibodies were quantified using the
Wantai SARS-CoV-2 IgG ELISA (Quantitative) kit (Beijing
Wantai Biological Pharmacy Enterprise) as described
previously (27). The assay is calibrated according to the WHO
International standard for SARS-CoV-2 immunoglobulin,
enabling the quantification of antibody concentrations in
BAU/ml. Results were interpreted using a cut-off of 5.4
BAU/ml, as recommended by the manufacturer. The SARS-
CoV-2 antibody profile against spike RBD, S1, S2 and
nucleocapsid was assessed using the SARS-CoV-2 ViraChip
assay (Viramed, Viramed Biotech Ag, Germany) as described
previously (28). The SARS-CoV-2 ViraChip assay is calibrated
according to the WHO International standard for SARS-CoV-2
immunoglobulin, enabling the quantification of antibody
concentrations in BAU/ml. Results were interpreted using the
following cut-offs, as recommended by the manufacturer:
RBD≥15 BAU/ml; S1≥25 BAU/ml; S2≥72 BAU/ml; N≥16
BAU/ml.

Viruses and Neutralization Test
The preparation of the D614G virus stock (GISAID accession
number: EPI_ISL_438123) has been described previously (29).
Following the same protocol, omicron BA.1 (GISAID accession
number: EPI_ISL_9110894) and BA.2 (GISAID accession
number: EPI_ISL_11110193) were isolated from nasopharyngeal
swabs from COVID-19 patients, passaged on Vero E6-TMPRSS2
cells (kindly provided by Anna Repic), and subjected to next-
generation sequencing. The isolates were controlled to be free of
other respiratory viruses by PCR as described in Koblischke et al,
2020 (29) and were tested negative for mycoplasma with the
MycoAlertTM Mycoplasma Detection Kit (Lonza Group Ltd,
Basel, Switzerland).

The neutralization assay was carried out essentially as
described previously (29). Briefly, serial dilutions of serum
samples were incubated with 50-100 TCID50 SARS-CoV-2 for
1 hour at 37°C. The mixtures were then transferred to Vero E6
cells (ECACC 85020206) and incubation was continued for three
(D614G) or five (omicron) days. NT titers were expressed as the
May 2022 | Volume 13 | Article 882456
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reciprocal of the serum dilution required for protection against
virus-induced cytopathic effects. NT titers ≥10 were
considered positive.

Peptides
For T cell stimulation, PepMixTM SARS-CoV-2 peptide pools
(product codes: PM-WCPV-VEMP, PM-WCPV-VME, PM-
WCPV-S, PM-WCPV-NCAP, and PM-SARS2-SMUT08-1)
were purchased from JPT (Berlin, Germany). The pools
comprise 15mer peptides overlapping by 11 amino acids and
cover the entire sequences of the SARS-CoV-2 wildtype
structural proteins: envelope (E), membrane (M), spike (S)
composed of two sub-pools S1 (aa 1-643) and S2 (aa 633-
1273), and nucleoprotein (N), and S from the omicron variant
B.1.1.529. Peptides were dissolved in dimethyl sulfoxide and
diluted in AIM-V medium for use in PBMC expansion and
intracellular cytokine staining (ICS) assays.

Flow Cytometry Staining Following 10 Day
In Vitro Stimulation
In vitro expansion of PBMCs was performed as described
previously (30). In brief, cryopreserved PBMCs were thawed in
pre-warmed StableCell RPMI-1640 medium (Sigma) containing
10% FBS (FBS 12-A, Capricorn), 10 mM Hepes (Sigma), 50
IU/ml Pen-Strep (Sigma) and 50 IU IL-2 (Peprotech) at a
concentration of 1×106 cells/ml. PBMCs were pulsed with
peptides (1 mg/ml) and cultured for 10 days adding 100 IU IL-
2 on day 5. In vitro expanded cells were analyzed by intracellular
cytokine and cell surface marker staining. PBMCs were
incubated with 2 mg/ml of peptide and 1 mg/ml anti-CD28/49d
antibodies (L293 and L25, Becton Dickinson) or with anti-CD28/
49d antibodies alone (negative control) for 6h. After 2h, 0.01 mg/
ml brefeldin A (Sigma) was added. Staining was performed using
APC/H7 anti-human CD3 (SK7, Becton Dickinson), Pacific Blue
anti-human CD4 (RPA-T4, Becton Dickinson), PE anti-human
CD8 (HIT8a, Becton Dickinson), FITC anti-human IFN-g
(25723.11, Becton Dickinson), and Fix/Perm kit (Invitrogen).
Viable cells were determined using Live/Dead Fixable Aqua
Dead (Invitrogen). The gates for detection of cytokines in
peptide-stimulated cell samples were set in the samples with
no antigen stimulation. Antigen-specific responses were
determined as the frequency of IFN-g positive T cells in
stimulated samples with background subtraction from paired
unstimulated controls (30). The cut-off was determined by
background staining (no peptide) of all negative controls (31).
For all experiments combined, the mean background was 0.44%,
0.16% and 0.26% for samples expanded with spike (composed of
subpools S1 and S2), membrane or nucleocapsid peptide pools,
respectively. To exclude non-specific or background responses,
responses >3-fold above the background of the respective peptide
pools were considered positive.

Statistical Analysis
Subject characteristics were described by medians and
interquartile ranges (IQR) for continuous variables and
frequencies and percentages for categorical variables. Statistical
Frontiers in Immunology | www.frontiersin.org 3
analysis was performed with GraphPad Prism Version 9.2.0.
Significance between paired groups was assessed using the two-
sided Wilcoxon signed rank test, or paired t test. Groups were
compared with Kruskal-Wallis test and Dunn´s multiple
comparison test, or Mann-Whitney U test. For neutralizing
antibody titers < 10, a value of 5 was used for the analyses as
well as the fold changes shown in Figures 3A, B. Ratios of
neutralizing antibodies to SARS-CoV-2 IgG were calculated for
samples which were positive in both assays. P values <0.05 were
considered significant; significance values are indicated as *P <
0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.
RESULTS

Cohort
The cohort consisted of 26 children diagnosed with SARS-CoV-2
infection who had participated in a population-based SARS-
CoV-2 seroprevalence study (27), conducted in the early phase of
the pandemic (May-July 2020) before the emergence of VOCs,
and 24 SARS-CoV-2 age-matched seronegative children. Age
(median [IQR], 13.5 [1.6] vs 12.2 [5.4] years) and sex (13m/13f vs
13m/11f) were similar in both groups (Table 1). In the
seropositive group, 23% (6/26) had no symptoms, while 77%
(20/26) experienced COVID-19 symptoms (Supplementary
Table 1). The first serum sample was collected at a median
interval of 3.6 [IQR 0.7] months after symptom onset. Further
samples were collected 6, 9, and 12 months after serodiagnosis
(visits 1-3). Furthermore, we were able to study the effects of
vaccination in infection-naïve children (n=10) compared to
those with pre-existing immunity (n=10).

SARS-CoV-2-Specific Antibody Responses
Quantification of SARS-CoV-2 spike-specific IgG antibodies was
performed with an enzyme-linked immunosorbent assay (ELISA)
based on the SARS-CoV-2 RBD. In seropositive children, antibody
concentrations declined over 6 months post serodiagnosis, but
after this decrease, remained relatively stable between 6 and 12
months (Figure 1A). The stratification of children for
symptomatic or asymptomatic infection revealed no significant
differences in antibody concentrations (labeled in Figure 1). To
evaluate the kinetics of SARS-CoV-2 spike- and nucleocapsid-
specific antibodies, we used a commercial microarray assay based
on spike RBD, S1, S2 and nucleocapsid. In line with the ELISA
results, antibodies against the RBD were present in all
convalescent children and were retained at 12 months after
serodiagnosis (Supplementary Figure 1). In contrast, we
observed a decline of nucleocapsid-specific antibodies to
undetectable levels in 6 of 26 children (Supplementary Figure 1).

To analyze the neutralizing activity of antibodies, we
performed live-virus neutralization assays using either an
isolate from the early pandemic with the D614G mutation
(wildtype) or the omicron variant (B.1.1.529) (see Materials
and Methods). In seropositive children, neutralizing antibody
titers for wildtype were relatively stable over time. As illustrated
in Figure 1B, neutralizing antibodies decreased to undetectable
May 2022 | Volume 13 | Article 882456
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levels at V1 in two children, one of whom remained undetectable
neutralizing antibodies at V2 and V3, and one was lost for
follow-up. However, 95% (19 of 20) still having neutralizing
antibodies 12 months after serodiagnosis. In agreement with the
ELISA results, neutralizing antibodies were not detected in any of
the 24 seronegative children (data not shown).

To determine the specific neutralizing activity, we calculated
the ratios of neutralizing antibodies to SARS-CoV-2 IgG for the
different time points. Notably, the ratios continued to increase
over 9 months (V2) and revealed no further change until 12
Frontiers in Immunology | www.frontiersin.org 4
months (V3) after serodiagnosis, indicating that antibodies
improved their neutralizing activity to the original D614G over
9 months (Figure 1C). In contrast, there was largely no
neutralization of the omicron variant (Figure 1D).
SARS-CoV-2-Specific T Cell Responses
In addition to antibodies, T cells may contribute to protection by
limiting viral dissemination in the host (17). Moreover, CD4 and
CD8 T cell responses were recently reported to be less affected by
TABLE 1 | Characteristics of study cohorts.

n Age (yrs)a Sex (%) Follow-up visits (months post serodiagnosis)a

m f Visit 1 Visit 2 Visit 3

Total 50 12.8
[3.5]

26
(52)

24
(48)

5
[0.4]

8
[0]

11
[0.9]

Seropositive 26 13.5
[1.6]

13 (50) 13 (50) 5
[0.8]

8
[0]

11
[1]

Seronegative 24 12.2
[5.4]

13
(54.2)

11
(45.8)

5
[0]

8
[0]

11
[0.75]
May 2022 | Volume 13
aValues are medians, with IQR in square brackets.
A B

DC

FIGURE 1 | Dynamics and levels of SARS-CoV-2-specific antibodies after infection in children. (A) RBD-specific IgG antibodies in BAU/ml. (B) Neutralizing antibody
titers against an early pandemic virus strain (wildtype, wt). (C) Ratios of wt-neutralizing antibody titers and RBD-specific IgG levels. Data for ratios include only
samples with a positive result in neutralization assays. Time point V0 represents samples obtained at serodiagnosis; V1, V2, and V3 are follow-up samples obtained
6, 9 and 12 months after serodiagnosis, respectively. (D) NT titers against wt and omicron obtained 6 (V1) and 12 months (V3) after serodiagnosis. Bars represent
median ± IQR. Blue symbols, symptomatic infection; white symbols, asymptomatic infection. The dashed line indicates the cut-off of the assays. Groups were
compared with Kruskal-Wallis test and Dunn´s multiple comparison test (*P < 0.05; **P < 0.01; ***P < 0.001).
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omicron than antibody responses (32–34). We therefore assessed
CD4 and CD8 T cell responses in 26 recovered children at 6 and
12 months after serodiagnosis. For sensitive detection of SARS-
CoV-2 T cells, antigen-specific T cells were expanded by
stimulating PBMCs with peptide pools derived from SARS-
CoV-2 wildtype spike, membrane and nucleocapsid for ten
days, followed by restimulation with the same antigens and
analysis of IFN-g using flow cytometry intracellular cytokine
staining (30) (Supplementary Figure 2). Among seropositive
children, T cell responses to one or more SARS-CoV-2 peptide
pools were present in 81% (21 of 26) for CD4 T cells and 85% (22
of 26) for CD8 T cells. CD4 T cells were most frequently directed
against spike, followed by membrane and nucleocapsid, while
CD8 T cells were mostly directed against nucleocapsid, followed
by spike and membrane proteins (Supplementary Figure 3). In
line with these results, CD8 T cell responses directed against
nucleocapsid and/or membrane proteins, but not against the
spike were observed in 8 children, while only two children
mounted nucleocapsid- and/or membrane-specific CD4 T cell
responses, but lacked a spike-specific reactivity. There were no
significant differences in T cell levels between children with
symptomatic or asymptomatic infection (labeled in Figure 2).
Comparison of responses between 6 and 12 months revealed no
significant difference in CD4 T cell levels, while CD8 T cell
responses at 12 months were substantially reduced (spike = 10-
fold, membrane = 8-fold, nucleocapsid = 7-fold) (Figure 2). The
specificity of responses at 12 months displayed a similar
distribution as at 6 months, with CD4 T cells recognizing spike
in 60%, and membrane or nucleocapsid in 30%, respectively,
whereas CD8 T cells were directed against nucleocapsid in 30%,
followed by spike (20%) and membrane (5%) (Figure 2 and
Supplementary Figure 3).

We analyzed CD4 and CD8 T cell responses in PBMC samples
from 12 of the 24 seronegative children (Supplementary Figure 4).
In line with previous studies from SARS-CoV-2 unexposed
populations (8, 35–40), we observed SARS-CoV-2 reactivity in
17% (2/12) of CD4 and 42% (5/12) of CD8 T cell responses.
Consistent with recent data (35), responses in seronegative
individuals were focused on spike but lacked reactivity to
membrane and nucleocapsid antigens, and are most likely pre-
existing cross-reactive T cells induced by endemic common cold
coronaviruses or otherhumanviruses (35, 37–43).Together, thedata
indicate strong CD4 and CD8 T cell responses in recovered
individualswith durableCD4T cell immunity for at least 12months.

Moreover, we analyzed T cell responses to omicron versus
wildtype peptides in PBMCs from 10 of the 26 children at V3. A
CD4 T cell response to wildtype versus omicron spike was
present in 60% (6/10) versus 50% (5/10), while a CD8 T cell
response was detected in 40% (4/10) versus 40% (4/10),
respectively (Supplementary Figures 5A, B), indicating that
there were no significant differences in CD4 or CD8 T cell
responses to omicron versus wildtype spike. When comparing
the neutralizing activity of antibodies against wildtype and
omicron from these children, we found that neutralizing
activity to omicron was consistently and significantly lower
than to the wildtype strain (Supplementary Figure 5C).
Overall, the data showed that, unlike neutralizing antibodies,
Frontiers in Immunology | www.frontiersin.org 5
CD4 and CD8 T cell recognition of the omicron spike protein
was largely preserved.

Previous Infection Increases Neutralization
Activity Upon BNT162b2 or Ad26.COV2-S
Vaccination
To investigate the effect of preexisting immune memory on
vaccine responses, we measured antibody titers generated with
BNT162b2 or Ad26.COV2-S vaccines in a subgroup of recovered
(n=10) and seronegative children (n=10). The samples were
collected 1.1 [IQR 0.9] and 1.3 months [IQR 0.6] after receipt
of the second dose of BNT162b2 (n=8 recovered; n=10
seronegative) or one dose of Ad26.COV2-S (n=2 recovered).
For the comparison of neutralizing activity, we tested pre- and
post-vaccination serum samples using live-virus neutralization
assays with wildtype and omicron BA.1 and BA.2 variants.
Vaccination yielded increased neutralizing antibody titers in
both groups (Figures 3A, B). However, median titers to SARS-
CoV-2 wildtype, omicron BA.1 or BA.2 were 3.4-fold, 6.7-fold or
7-fold higher in recovered than in seronegative children,
A

B

FIGURE 2 | Durability of SARS-CoV-2 specific CD4 and CD8 T cell
responses. (A) CD4 T cell responses and (B) CD8 T cell responses from
SARS-CoV-2-seropositive children (n = 26) measured 6 (V1; n = 26) and 12
months (V3; n = 20) after serodiagnosis. Plots show IFN-g expression levels in
response to peptide pools covering the entire sequences of wildtype SARS-
CoV-2 spike (S), membrane (M) and nucleocapsid (N) proteins. PBMCs were
cultured with spike, membrane and nucleocapsid peptides for 10 days
followed by restimulation with the same antigens and analysis of IFN-g using
flow cytometry intracellular cytokine staining. Bars represent median ± IQR.
Blue symbols, symptomatic infection; white symbols, asymptomatic infection.
The dashed line represents the cut-off for assay positivity. Paired groups were
compared with the two sided Wilcoxon signed rank tests (*P < 0.05; ***P <
0.001; ****P < 0.0001).
May 2022 | Volume 13 | Article 882456
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respectively (Figure 3C). Notably, this difference was even more
pronounced when we compared specific neutralizing activities,
i.e. the ratios of neutralizing antibodies to SARS-CoV-2 IgG. Sera
from vaccinated children with pre-existing immunity yielded
3.9-fold, 9.9-fold and 14-fold higher neutralization activities
against wildtype, omicron BA.1 and BA.2 than those from
Frontiers in Immunology | www.frontiersin.org 6
seronegative children, respectively (Figure 3D). The
comparison of individual neutralization profiles between the
two groups showed that post-vaccination sera from children
with pre-existing immunity efficiently neutralized BA.1 and
BA.2, exhibiting 2.7-fold and 3.4-fold differences to the
wildtype strain. In contrast, the differences between wildtype
A

B

D

E F

C

FIGURE 3 | Neutralizing antibodies after vaccination of SARS-CoV-2-recovered and seronegative children. (A) Neutralizing antibody titers against an early pandemic
virus strain (wildtype, wt), omicron BA.1 or BA.2 variants before and 1.1 [IQR 0.9] months after vaccination (n = 8, BNT162b2; n = 2, Ad26.COV2-S) of children with
a confirmed SARS-CoV-2 infection. (B) Neutralizing antibody titers against wt strain, omicron BA.1 or BA.2 variants before and 1.3 [IQR 0.6] months after vaccination
of seronegative children (n = 10) BNT162b2. (C) Post-vaccination neutralizing antibody titers of the two groups against wt strain, or omicron BA.1 or BA.2 variants.
(D) Ratios of neutralizing antibody titers and RBD-specific IgG values against wt, omicron BA.1 or BA.2 variants (E) Postvaccination neutralizing antibody titers
against wt, omicron BA.1 or BA.2 from seropositive children (n = 10) and (F) seronegative children (n = 10). Samples from the same person are connected by lines.
Pre-vac, pre-vaccination; post-vac, post-vaccination; seropos, seropositive; seroneg, seronegative. In panels A and B, the numbers above the plots indicate the
proportion of samples that were positive for neutralizing antibodies against the respective variant. Bars represent median ± IQR. Ad26.COV2-S indicated by cross
symbol. The dashed line indicates the cut-off of the assays. Groups were compared with the Mann-Whitney U test (panels C, D) and Dunn´s multiple comparison
test (panels E, F) (**P < 0.01; ***P < 0.001; ****P < 0.0001). Fold-differences in panels (C–F) are indicated.
May 2022 | Volume 13 | Article 882456
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and BA.1 or BA.2 were 5.6-fold and 9.3-fold in sera from
seronegative children, respectively (Figures 3E, F). These
results indicate that vaccination of children with preexisting
immunity resulted not only in higher neutralizing antibody
titers, but also in broader neutralization of VOCs compared to
seronegative vaccinees. Analysis of neutralizing antibody titers in
non-vaccinated children revealed no differences between samples
obtained at V3 (12 months [IQR 0.8]) or 15 months [IQR 1.3]
after serodiagnosis (Supplementary Figures 6A, B).
DISCUSSION

In this study, we provide a prospective analysis of the SARS-
CoV-2-specific immune response in children after asymptomatic
or mild SARS-CoV-2 infection. The data demonstrate that
SARS-CoV-2 infection induced long-lived neutralizing
antibody responses that substantially improved with
subsequent vaccination. Specifically, our data demonstrate that
antibodies from recovered vaccinated children exhibited higher
neutralizing activity with enhanced cross-neutralization breadth
than those induced in infection-naïve vaccinees.

Our finding that infection-induced antibodies against the spike
exhibited stabile dynamics over 12 months adds to recent studies
exploring long-term immunity in children (8–11, 13). However, in
two children, neutralizing antibodies decreased to undetectable
levels at 6 months after serodiagnosis. In contrast, nucleocapsid-
specific antibodies decreased to undetectable levels in around one-
fourth of the children, which confirms previous findings (10, 13)
and is consistent with the longer half-life of spike-specific
compared with nucleocapsid-specific IgG responses (44).

In addition to durable spike-specific antibody responses, we
detected robust CD4 and CD8 T cell responses in recovered
children, with persistent CD4 T cell immunity for at least 12
months. Furthermore, our data showed that while antibodies
generated after infection did not effectively cross-neutralize the
omicron variant, the SARS-CoV-2 spike-specific T cell response
was largely preserved against omicron. It is important to note
that the sample size in the present study was small, however the
findings are consistent with results obtained from a number of
studies with adults, indicating that SARS-CoV-2 T cell responses
are less affected by viral immune escape (32–34).

Finally, when comparing vaccine-induced responses from
recovered and infection-naïve children, we found that those with
preexisting immunity had higher neutralizing antibody titers. It
was also remarkable that vaccination of recovered children further
enhanced the specific neutralizing activity to omicron BA.1 and
BA.2 variants relative to an ancestral D614G strain (Figure 3). Our
data are thus in line with recent studies in adults that showed
efficient neutralization of VOCs, including omicron, after
encountering the spike during infection followed by vaccination
or vice versa (45, 46). A further aspect that has to be considered is
the long interval between infection and vaccination (12-15
months) in our cohort during which the neutralizing activity
may have improved and contributed to the observed high
neutralization titers. This is consistent with recent studies
showing that antibodies evolve in convalescent patients due to
Frontiers in Immunology | www.frontiersin.org 7
affinity maturation, which results in an increase in the breadth and
neutralizing potency of antibodies against SARS-CoV-2 (47–50).
It will be of importance to elucidate whether sustained immunity
evolves in a similar manner in naïve children who received
vaccination, and whether efficient neutralization of VOCs occurs
upon additional boosting. Overall, our data provide new insights
into the durability and breadth of immune memory induced by
SARS-CoV-2 infection in children. By demonstrating the
immunological benefits of boosting infection-induced immunity,
these findings may serve as guides for the ongoing development of
vaccine strategies for children.
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