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Pulmonary Arterial Hypertension and Sex in the Right Ventricle: It Is an
Interesting Picture!

Right ventricle (RV) function determines clinical course and long-
term prognosis in patients with pulmonary arterial hypertension
(PAH) (1). Though PAH is common in females, it has been
established that RV function is inferior in male patients with PAH
when compared with female patients with PAH. On cardiac
magnetic resonance imaging, despite having a similar degree of
pulmonary vascular disease, male patients with PAH have lower RV
ejection fraction than age-matched female patients with PAH (2, 3).
In addition, the improvement in RV function after pulmonary
vasodilator therapies is less in male versus female patients with PAH
(3). The difference in RV function response to pulmonary
vasodilator therapies partially explains the survival disadvantage in
male PAH patients (3). In fact, similar sex differences in RV function
have also been documented in healthy individuals (4), patients with
pulmonary hypertension because of left heart disease (5), and
patients with pulmonary hypertension secondary to chronic lung
disease (6). However, all prior studies assessing sex differences in
RV function are based on load-dependent measures, which are
not a true measure of RV contractility (i.e., when the RV
afterload is high, the load-dependent measures can be lower
despite normal RV contractile function) (7).

There is growing recognition of the importance of the
interaction between the RV and the pulmonary arterial system
in PAH, which is referred to as RV–pulmonary artery (RV-PA)
coupling (8). RV-PA coupling represents efficient delivery of
the power generated by the RV contractility into the pulmonary
arterial system. In other words, it is a measure of RV adaptation to
the increased afterload. During the early stages of PAH, the RV
undergoes concentric hypertrophy and increases its contractile

function to match the increase in afterload. This RV adaptation
maintains a normal RV-PA coupling (9). However, with progression
of PAH, the RV can no longer undergo hypertrophy or increase
its contractile function to match the afterload. This leads to
RV-PA uncoupling, RV failure, and eventually death (9).

The best measure of RV-PA coupling is the relationship between
end-systolic elastance (Ees), a load-independent measure of intrinsic
RV contractility, and effective arterial elastance (Ea), a measure of RV
afterload (9). These measures are calculated from invasive RV
pressure–volume loop analysis obtained using high-fidelity
micromanometer catheters. An ideal RV-PA coupling (Ees/Ea) is
1.5–2, and an Ees/Ea ratio ,0.8 defines RV-PA uncoupling (10). In
addition to RV-PA coupling, pressure–volume loop analysis can assess
RV diastolic function by measuring Tau and RV end-diastolic
elastance (Eed) (9). Eed is a load-independent measure of RV diastolic
function. It is calculated from the relationship of change in pressure
and volume at end-diastole (9). Tau is a load-dependent measure of
RV diastolic function. It is calculated from the reciprocal of the natural
logarithm of the early maximal fall in ventricular pressure during the
isovolumetric phase of diastole (9). Though load-dependent measures
of RV systolic function are lower in male patients with PAH, it is
unknown whether there are similar sex differences in load-
independent measures of intrinsic RV contractility, RV-PA coupling,
and RV diastolic function in patients with PAH.

In this issue of the Journal, Tello and colleagues (pp.
1042–1046) dig deeper to better understand sex differences in RV
function in patients with PAH using pressure–volume loop analysis
(11). They prospectively studied 57 patients with PAH, of whom 33
(58%) were females. The pressure–volume relationships were
assessed using the single-beat method (12) in all 57 patients and the
multibeat technique (8) with inferior vena cava occlusion in 37
patients. All patients except two also had a cardiac magnetic
resonance imaging. Despite similar RV afterload (Ea), female
patients had higher RV contractile function (Ees) and better RV-
PA coupling (Ees/Ea) than male patients. Tau was lower in females
than in males, indicating better RV diastolic function; however,
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there was no difference in Eed. The authors noted similar findings
when they restricted their analysis to idiopathic PAH patients only.
There were no differences between males and females in the
traditional clinical, echocardiographic, cardiac magnetic resonance
imaging, and hemodynamic measures of RV function.

Tello and colleagues should be commended for their extensive
work and novel finding. RV pressure–volume loop measurements
are cumbersome and difficult to perform. To our knowledge, this
is the largest series of PAH patients with RV pressure–volume
loop assessments. The male and female patients were matched
for age. The authors used the gold-standard multibeat method
in the majority of the patients (63%), which is an additional
strength. Unlike the single-beat method, there are no assumptions
in the calculation of Ees in the multibeat method (13). Furthermore,
the current study demonstrates the increased sensitivity of
pressure–volume loop analysis to uncover RV dysfunction
compared with the traditional hemodynamic or imaging measures.
This study clearly establishes that female patients with PAH adapt
better to the increased afterload by increasing RV contractility than
male patients with PAH. The Ees/Ea ratio in female patients was
above the RV-PA uncoupling threshold of 0.8.

However, it still remains unclear whether RV diastolic
adaptation is also better in female patients compared with male
patients with PAH. Though Tau was lower (i.e., better relaxation) in
females, there was no difference in RV Eed, which is a better measure
of RV diastolic function (9, 13). This is unexpected, as RV diastolic
dysfunction, in general, occurs before RV systolic dysfunction (14).
It is possible that the authors were not able to elucidate a sex
difference in RV diastolic function because of the small number of
patients in this study, but this needs to be assessed in the future.
Similarly, it is unclear whether the sex difference in RV-PA
coupling by itself can explain the better survival in female patients
with PAH compared with male patients with PAH. Finally, when
the authors restricted their analysis to patients with idiopathic PAH
only, the difference in Ees between females and males narrowed.
This was mainly driven by a reduction in Ees in females with no
change in Ees in males. This raises a question of whether the female
versus male difference in Ees is more marked in patients with
associated PAH.

Now having established that females have better RV systolic
adaptation in PAH, we need to better understand the mechanisms
underpinning this sex difference. Solving this enigma can help us
develop novel therapies targeted to improve RV function in patients
with PAH. Preclinical and clinical data, to date, link sex hormones
to the difference in RV function (15–17). Based on this, in fact,
there are two ongoing clinical trials that are altering sex hormones
as a treatment option for PAH (ClinicalTrials.gov identifiers:
NCT03229499 and NCT03648385). In the interim, we need to
monitor RV function more closely in our male patients with PAH
and treat them aggressively. n
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