
1Scientific Reports | 7: 11825  | DOI:10.1038/s41598-017-12140-w

www.nature.com/scientificreports

Decline of long-range temporal 
correlations in the human brain 
during sustained wakefulness
Christian Meisel1,2, Kimberlyn Bailey1, Peter Achermann3 & Dietmar Plenz1

Sleep is crucial for daytime functioning, cognitive performance and general well-being. These aspects 
of daily life are known to be impaired after extended wake, yet, the underlying neuronal correlates 
have been difficult to identify. Accumulating evidence suggests that normal functioning of the brain is 
characterized by long-range temporal correlations (LRTCs) in cortex, which are supportive for decision-
making and working memory tasks. Here we assess LRTCs in resting state human EEG data during a 40-
hour sleep deprivation experiment by evaluating the decay in autocorrelation and the scaling exponent 
of the detrended fluctuation analysis from EEG amplitude fluctuations. We find with both measures that 
LRTCs decline as sleep deprivation progresses. This decline becomes evident when taking changes in 
signal power into appropriate consideration. In contrast, the presence of strong signal power increases 
in some frequency bands over the course of sleep deprivation may falsely indicate LRTC changes that 
do not reflect the underlying long-range temporal correlation structure. Our results demonstrate the 
importance of sleep to maintain LRTCs in the human brain. In complex networks, LRTCs naturally 
emerge in the vicinity of a critical state. The observation of declining LRTCs during wake thus provides 
additional support for our hypothesis that sleep reorganizes cortical networks towards critical dynamics 
for optimal functioning.

Sleep is essential for daytime functioning and well-being. Without sleep optimal brain functioning such as 
responsiveness to stimuli, information processing, or learning is impaired1–4. The neuronal correlates and mech-
anisms by which sleep improves, or, conversely, by which the lack of sleep impairs cognitive function and infor-
mation processing in cortical networks, are largely still not understood.

An essential ingredient for information processing is thought to be the ability of neural circuits to integrate 
information over extended periods of time. For example, in decision-making and working memory tasks5–8, this 
ability may increase the signal-to-noise ratio and afford to maintain some memory of past activity. The network 
dynamics typically observed with this ability are characterized by slowly decaying autocorrelation functions, or, in 
general, long-range temporal correlations (LRTCs). Accordingly, slow autocorrelation decays have been observed 
using different experimental modalities, including studies on non-human primates9,10, human electrocorticog-
raphy11 as well as fMRI12. In a large body of EEG research, slow timescales associated with long-range temporal 
correlations have been observed and studied in the amplitude fluctuations of ongoing neuronal oscillations13–21. 
Together, these studies provide strong support for the existence of slow timescales associated with LRTCs in cor-
tical activity and their important role for the integration of information in brain networks.

The link between LRTCs and information processing is further supported by the insight that LRTCs are generic 
features of a critical state22. A critical state is a state at a higher-(second-) order phase transition where the long-term 
qualitative behavior of a system changes rapidly from one dynamical phase to another. In networks, for example, 
a critical state can be observed at the onset of persistent network activity or at the transition from asynchronous 
to synchronous activity. Being at or close to such a critical state (i.e. close to criticality) has been shown to provide 
advantageous features for network computation and information processing23–26. Numerous computational and 
experimental studies24,26–31 have provided support for the hypothesis that also brain networks operate at or near a 
critical state and thereby take advantage of the computational capabilities provided by criticality. In this context, 
the observation of LRTCs in EEG dynamics has been taken as supporting evidence for the criticality hypothesis13.
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In a previous study, we found various signatures of critical dynamics to fade over the course of sleep deprivation32. 
These observations led to the hypothesis32 that deviations or disruptions of critical dynamics and its advantageous 
features for network computation might underlie the impaired cognitive functioning observed during sleep depriva-
tion2. The question whether LRTCs are similarly affected in a wake-time dependent manner, however, is still open.

Here, we systematically characterize the LRTCs governing cortical dynamics during extended wake. We find 
that the initially slow timescales characterizing the autocorrelation function hours of sustained wakefulness. 
Details are progressively shortened as sleep deprivation progresses. This decline becomes evident when taking 
changes in EEG signal power into appropriate consideration. The results support a hypothesis on the network 
function of sleep, to re-organize cortical networks towards critical dynamics with long-range temporal correla-
tions for optimal function during wake.

Materials and Methods
EEG recordings during prolonged wakefulness.  We analyzed wake electroencephalogram (EEG) 
recordings of eight healthy young right-handed males (23.0 ± 0.46 years; mean ± s.e.m.) over the course of 
40 hours of sustained wakefulness. Details on the conduction of the experiment are provided in the original 
publications33,34. Participants spent the sleep deprivation period in the sleep laboratory and its surroundings and 
were under constant surveillance by a member of the experimental team. Lab temperature was approx. 20 °C, 
with normal indoor light. Participants were engaged in studying, playing games, watching films and occasionally 
taking a walk outside the laboratory. Meals were scheduled at 07:30, 12:00 and 18:00, and they took a shower at 
08:00. Caloric content was not controlled. Three days prior and during the entire experiment participants had to 
abstain from caffeine consumption. All participants were low to moderate coffee consumers. At the time when 
the wake EEG recordings were performed, it was the sixth day without caffeine consumption. As they were low 
to moderate consumers we do not expect withdrawal symptoms at this point in time. Participants were recruited 
among university students. They underwent a screening night with polysomnograpic recordings in the sleep lab-
oratory. Exclusion criteria were the presence of sleep disturbances such as sleep apnea and nocturnal myoclonus, 
prolonged sleep latency and low sleep efficiency. Use of any medication was an exclusion criterion. For the three 
days prior to the experimental session, as well as during the whole experiment, the subjects were instructed to 
maintain a regular sleep-wake cycle with sleep scheduled from 23.00 to 07.00. Compliance with the latter instruc-
tion was verified by ambulatory activity monitoring.

Waking EEG over the course of sleep deprivation was recorded every three hours over 14 sessions, starting at 
07:00. Another waking EEG was recorded after a recovery night of sleep, totaling 15 EEG sessions in all. Sessions 
consisted of a 5 min eyes-open period, followed by a 4–5 min eyes-closed period and a final 5 min eyes-open 
period. Twenty-seven EEG derivations (extended 10–20 system; reference electrode 5% rostral to Cz) were sam-
pled at 256 Hz (high-pass filter at 0.16 Hz; anti-aliasing low-pass filter at 70 Hz). During the eyes open condition, 
they had to fixate on a black dot at the wall. For both conditions, they were instructed to try to avoid eye blinks. 
Light was on during the wake EEG recordings. Participants were continuously monitored during EEG record-
ings. When signs of drowsiness were detected (e.g. closure of the eyelids, slow, pendular eye movements and eye 
blinks), the subject was addressed by the experimenter and asked to respond. Apart from EEG, only subjective 
alertness was additionally assessed, which is reported in refs 32,33.

Preprocessing of EEG signals.  Artifacts including eye blinks were marked by visual inspection. All 
analyses were performed on artifact-free signal segments during the eyes open condition. Electrodes were 
re-referenced to average reference. Segments for further analysis were chosen to be 20 seconds long (5120 sam-
ples) as a balance between, on one hand, including many segments in the analysis and, on the other hand, having 
long enough, continuous segments to assess timescales related to long-range temporal correlations (LRTCs). An 
average of 18 20-s segments corresponding to a total of 6 min of EEG data from both eyes open conditions was 
analyzed in each subject and EEG session.

Signal power.  Power analyses were done on the same artifact-free 20-s segments used in the timescales anal-
yses to assess LRTCs. For each frequency band of interest (4–8 Hz, 8–12 Hz, 12–30 Hz), EEG power density spec-
tra were computed (FFT routine; 4 s, non-overlapping Hanning window). The power value for each 20-s interval 
and channel was then obtained as the sum across the frequency band of interest. Local slopes of the power spec-
tral density (Fig. 1) were computed across lower frequencies in double-logarithmic coordinates.

Estimation of long-range temporal correlations in EEG.  We here investigate the structure of EEG 
temporal correlations by means of autocorrelation and detrended fluctuation analysis (DFA). There exists a direct 
relationship between autocorrelation, the scaling exponent derived from detrended fluctuation analysis and the 
power spectrum of a signal35–37. Intuitively, the autocorrelation function measures how similar the signal is with 
itself at a later time. A signal is said to exhibit long-range temporal correlations, if the autocorrelation decays 
according to a power-law (with an exponent between −1 and 0) as a function of time. This slow decay guaran-
tees a positive autocorrelation (or more intuitively: some memory about the past) even for large time lags. In 
practice, however, the estimation of the autocorrelation functional form and its exponent may be complicated 
since the autocorrelation function can be affected by trends and often becomes very noisy in its tail for large time 
lags. Detrended flucuation analysis overcomes these problems and allows a more robust estimation of LRTCs36. 
Nevertheless, the intimate relationship between autocorrelation and DFA posits that both must change accord-
ingly when the underlying temporal correlation structure of a signal changes. We therefore always analyze both 
the autocorrelation and DFA in EEG throughout this study to conclusively assess changes in LRTCs over the 
course of sleep deprivation.
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Autocorrelation.  Autocorrelation functions were derived from the envelope of ongoing oscillations in EEG 
signals in confined frequency bands. Specifically, artifact-free EEG signals of 20-s duration were filtered in the 
respective frequency band (theta: 4–8 Hz; alpha: 8–12 Hz; beta/low gamma: 12–30 Hz; phase neutral filter by 
applying a third order Butterworth filter in both directions) and the signal envelope was derived using the abso-
lute value of the Hilbert transform. The autocorrelation function ACF(s) of the envelope signal x(t) with length N, 
mean μ and variance v was then derived by
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The speed by which the autocorrelation function decays thereby provides information about the persistence of 
temporal correlations in the signal. We here quantified the autocorrelation function decay by capturing its value 
at lag one, i.e. s = 1 in equation 1. Lag-1 autocorrelation is a frequently used measure to robustly estimate the auto-
correlation function decay in many dynamical systems (for review see refs 38,39 and paper cites therein) and has 
also been applied to neurophysiological data40. As an alternative, we also quantified the autocorrelation function 
decay by capturing the first lag-value where the autocorrelation function was equal or below 0.5. This method too 
has previously been used in neuroscience research to quantify the autocorrelation function decay11. Both meth-
ods of quantification revealed similar results.

Detrended fluctuation analysis.  As a second approach to assess the autocorrelation structure in our data, we 
applied detrended fluctuation analysis (DFA). DFA has been applied numerous times in EEG to quantify LRTCs 
before, see ref. 36 for a review. For each artifact-free, filtered (theta: 4–8 Hz; alpha: 8–12 Hz; beta: 12–30 Hz; phase 
neutral filter by applying a third order Butterworth filter in both directions), 20-second signal segment, we first 

Figure 1.  Changes in EEG power during sleep deprivation. (a) EEG power density at the beginning of sleep 
deprivation (0–6 hours, blue) and end of sleep deprivation (33–39 hours, red; grand average across 8 subjects 
and all channels, error bars indicate s.e.m.). Local slopes of the PSD were obtained in the ranges indicated by 
the solid lines. Right: Local slopes indicate a more shallow PSD at the end of sleep deprivation compared to 
beginning of sleep deprivation and after recovery sleep. (b) Power changes in frequency bands. Straight black 
lines indicate linear regression results; bars indicate the average power values at the beginning (0–6 hours) and 
at the end (33–39 hours) of sleep deprivation. Of the three frequency bands, only the alpha band (8–12 Hz) 
showed no significant change during sleep deprivation as judged by linear regression and difference between 
bars (ΔPower).
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extracted the absolute value of the signal’s Hilbert transform. This provided the amplitude envelope of the signal 
x. Next, we determined the signal profile Y(i) by subtracting the mean of the signal and computing its cumulative 
sum:

∑= −
=

Y i x x( )
(2)k

i

k
1

All subsequent steps were performed on the profile of the signal.
We defined a set T of window sizes on a logarithmic scale. These window sizes were equally spaced between 

16 sampling points (0.0625 s) and 4096 sampling points (16 s). This range is a compromise between, on one hand, 
computing the average fluctuation function for a given window size from many signal sub-segments on the one 
side, and, on the other hand, having adequate samples in each subsegment over which to fit a least squares regres-
sion in the detrending step on the other side36.

Next, the fluctuation function F(t) for each window size t∈T was found using the following three steps. First, 
the profile was split into N non-overlapping sub-segments of length t. Second, we fit a polynomial of a given, 
fixed order to each sub-segment and subsequently subtracted the fit from that sub-segment. The detrended 
sub-segment Yd(t) of length t is thus:

= −Y t Y t p t( ) ( ) ( ) (3)d v

where pv(t) is the polynomial fit of the v th sub-segment. Third, the standard deviation was calculated for each 
detrended sub-segment. F(t) for a given window size t was then calculated as the average standard deviation 
across all sub-segments of size t.

Finally, F(t) was plotted for all window sizes on log-log axes. If a time series is characterized by long-range 
temporal correlations, then F(t) increases with window size t according to the power law:

∝ αF t t( ) (4)

Thus, from this log-log plot, the DFA scaling exponent (or Hurst exponent) can be estimated as the slope α via 
linear regression. α > 0.5 indicates long-range correlations, α < 0.5 indicates an anti-correlated signal and α = 0.5 
indicates an uncorrelated signal.

To accurately estimate the DFA scaling exponent, it is necessary to choose the proper range of window sizes 
over which to perform linear regression. Filtering can introduce short-range correlations and cause an over-
estimation of the exponent, if included36. To determine the effect of our filters, we simulated a set of 100 white 
noise segments of the same length as our analyzed signal segments (20 s at 256 Hz sampling), applied each of our 
bandpass filters to the set, computed the average fluctuation function for each window size and plotted the log-log 
DFA plot. This kink visible in this plot demonstrates the impact of filters on our analysis (Fig. 2c). To avoid the 
influence of filters when estimating the scaling exponent, we thus chose the fitting range sufficiently away from it: 
between 2 seconds (512 sampling points) and 16 seconds (4096 sampling points; Fig. 2c, Fit Range).

Stastical Tests.  Changes in signal power, DFA scaling exponent and autocorrelation were tested for signifi-
cance using ANOVA and post hoc t–tests. We also used linear regression based on least-squares fits.

Results
Distinct changes in EEG frequency power and power spectrum slope during sleep depriva-
tion.  Extended wakefulness is known to be associated with distinct changes in EEG power during waking 
and consecutive recovery sleep41–44. In the wake EEG, the increase in slow frequency power in the theta range 
(4–8 Hz) is a particularly well-established sleep deprivation hallmark33. It has been pointed out that the estimation 
of long-range temporal correlations (LRTCs) in EEG can, in principle, be affected by EEG power13,15–17. We thus 
started by thoroughly assessing signal power and its changes over the course of sleep deprivation, as this is of 
central importance for the following characterization of timescales and LRTCs.

We analyzed artifact-free EEG segments of 20-seconds duration during the eyes-open condition. In our data, 
we observed, in line with previous studies, an increasing signal power in theta as well as in higher frequency 
ranges including the beta/low gamma range (12–30 Hz; for simplicity referred to as beta in this manuscript) 
during sleep deprivation (Fig. 1). The significance of power changes over the course of sleep deprivation was 
evident by linear regression (theta: r = 0.80, p = 0.0007; beta: r = 0.64, p = 0.01) and the difference between begin-
ning (0–6 h) and end (33–39 h) of sleep deprivation (theta: p = 1e − 35; beta: p = 4e − 10; two-sample t–test). 
Alpha power (8–12 Hz), conversely, exhibited the well-known circadian modulation33 but no significant cumu-
lative power change during sleep deprivation (linear regression: r = 0.15, p = 0.61; 0–6 hours vs 33–39 hours: 
p = 0.46; Fig. 1b). A heatmap showing the power change in all frequencies across sleep deprivation can be found 
as Supplementary Fig. S1. Besides these changes in confined frequency bands, we also observed a more shallow 
slope of the power spectral density (PSD) across a range of lower frequencies after sleep deprivation. The esti-
mation of local slopes from PSD showed that this change to a more shallow slope is significant, and is reversed 
following recovery sleep (Fig. 1a).

While a large portion of EEG analyses has traditionally focused on restricted frequency bands, the underlying 
scale-free nature of the EEG PSD has been shown to similarly reveal important information, e.g. with regard 
to task performance modulation45,46. From a dynamical perspective, the scale-free (or 1/f) scaling observed in 
the PSD may also indicate that the underlying system exhibits long-range spatio-temporal correlations22 and 
slow autocorrelation decay35. Interpreted within this framework, changes in the PSD slope, as observed in EEG 
during sleep deprivation here, could consequently be indicative of changes in the autocorrelation structure and 
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long-range temporal correlations. However, other mechanisms, such as passive filtering, have also been shown to 
be able to produce scale-free EEG power spectra, even in the absence of any long-range temporal correlations47. 
Methodologically, it can be difficult to obtain robust power spectrum estimates from short time series. For these 
reasons, the structure of temporal correlations in EEG has been primarily studied in the amplitude envelope of 
filtered oscillations within confined frequency bands13,18,19,21,36.

Decline in long-range temporal correlations during sleep deprivation.  To investigate the exist-
ence and the dynamics of long-range temporal correlations during sleep deprivation in our data, we calculated 
the amplitude envelope of ongoing oscillations in confined frequency bands from all channels of artifact-free 
EEG segments. We first focused on signal envelopes in the alpha (8–12 Hz) frequency band since average signal 
power between beginning and end of sleep deprivation did not change significantly there (Fig. 1b). The impact 
of changes in signal power on LRTC estimates will be studied further below. The autocorrelation function exhib-
ited a faster decay in recordings at the end of sleep deprivation compared to the beginning of sleep deprivation 
(Fig. 2a). We quantified the decay by the autocorrelation value at time lag-1, which progressively decreased with 
increasing time awake and recovered towards higher values after consecutive sleep (Fig. 2b). Both changes, the 
decline during sleep deprivation as well as the increase post recovery sleep, were statistically significant (0–6 hours 
vs 33–39 hours, p = 9e − 14; 39 hours vs rec, p = 0.0008; two-sample t–test). An alternative quantification of the 
autocorrelation decay by monitoring the lag when autocorrelation values dropped below 0.5 for the first time 
exhibited a similar decline during sleep deprivation and can be found in Supplementary Fig. S2.

As a second measure to investigate long-range temporal correlations during the course of sleep deprivation, 
we used detrended fluctuation analysis (DFA)48. A substantial amount of research work has shown that DFA 

Figure 2.  Decline in signal autocorrelation and long-range temporal correlations during sleep deprivation. 
(a) Autocorrelation function of the signal envelope in the alpha band (0–6 hours, blue; 33–39 hours, red; inset, 
autocorrelation functions until 1 s). (b) Faster autocorrelation decay during sleep deprivation (0–39 hours 
of sleep deprivation and after consecutive recovery sleep, rec). The solid black line corresponds to the mean 
across all channels from all 8 subjects, error bars indicate s.e.m. (c) Detrended fluctuation analysis of the of 
the signal envelope in the alpha band. Surrogate white-noise data are depicted in grey. DFA scaling exponents 
were obtained from linear fits in double-logarithmic coordinates aver the depicted fitting range. (d) Decline in 
long-range temporal correlations estimated by the DFA scaling exponent. The inset shows results for different 
polynom detrending orders. Results settle for detrending order of three and higher as judged by linear regression 
analysis and the difference between early (0–6 hours) and late (33–39 hours) sleep deprivation (ΔDFA).
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provides a robust measure for the autocorrelation structure of amplitude fluctuations in ongoing neurophysiolog-
ical oscillations13,14,16,18,19,21,49. DFA relies on the quantification of signal fluctuations after removing their trend36. 
It has been suggested that only a comparison of DFA results, using different detrending polynomials, yields full 
recognition of the trends20,50. We thus systematically applied DFA to the same amplitude time series of alpha 
oscillations as analyzed in the previous section using detrending polynomials from order 1 to 10. Our analysis 
again revealed a significant decrease of DFA scaling exponents for detrending orders 3 and higher (0–6 hours vs 
33–39 hours; two-sample t–test; linear regression analysis; both p < 0.05; Fig. 2c,d). Since results did not change 
qualitatively when detrending was performed with higher order polynomials, we used detrending of 4th order 
ploynomials (DFA-4) for the remainder of the analyses. We observed DFA scaling exponents in the range of >0.5 
to 1, which, in line with previous reports, is indicative of long-range temporal correlations in the EEG signals13. 
Similar to the autocorrelation results we observed a decrease in scaling exponents during sleep deprivation, indic-
ative of a decline in long-range temporal correlations (0–6 hours vs 33–39 hours, p = 2e − 8; two-sample t–test). 
The potentially circadian component visible in DFA-4 on top of the decline became less prominent for higher 
orders of detrending while, at the same time, the DFA scaling exponent for the recovery point became higher, 
reaching a significantly higher value for detrending order 10 (39 hours vs rec; two-sample t–test; p = 0.02).

In principle, the observed changes might be due to both homeostatic (time awake) and circadian factors. For 
example, the DFA scaling exponent and power in the theta range show both a change with time awake and a 
superimposed circadian modulation (Figs 1a and 2d). A rested control group to directly disentangle these effects 
is not feasible with such a sleep deprivation design. However, with 40 h of sustained wakefulness, more than one 
circadian cycle is covered, thus one can compare measures obtained at the same circadian phase and assess the 
effect of time awake. We therefore compared autocorrelation measures and DFA exponents over time but within 
the same circadian phase (i.e. the three recordings from 7:00–13:00 o'clock on day 1 and day 2). The consistently 
observed decline of all measures is depicted in Supplementary Fig. S3 and thus suggests that the decline is primar-
ily an effect of the time spent awake. Together, these results from the alpha band thus comprehensively indicate a 
decline in LRTCs with increasing time awake.

Influence of EEG signal power on long-range temporal correlation estimation.  The decline in 
timescales during sleep deprivation was observed in the alpha band where signal power did not change to overall 
higher or lower values as a function of time awake. The fact that power did not change is important since times-
cale estimates from autocorrelation and DFA can, in principle, be influenced by EEG signal power changes, as 
has been pointed out13,15–17. The reasoning behind this argument is that the measured EEG signal always contains 
some noise component apart from the neuronal signal which, when EEG signal power is lower (higher) can 
shift estimates of LRTCs to lower (higher) values due to the relative contribution of noise in the signal. A low 
signal-to-noise ratio can thus lead to lower LRTC values due to the relative contribution of a fast decaying noise 
autocorrelation function15. In line with this conceptual argument, detailed analyses have shown that increasing 
amounts of noise (or, conversely, decreasing signal-to-noise ratios) can shift autocorrelation and DFA exponents 
to lower values and vice-versa in EEG15. To demonstrate how estimates such as lag-1 autocorrelation can exhibit 
an apparent dependence on signal amplitude/power when noise is present, we simulated signals composed of a 
sine wave and a noise term from a uniform distribution. By changing amplitudes of the sine wave and thereby 
the signal-to-noise ratio, autocorrelation estimates of the signal envelope increased monotonically (Fig. S4a). 
Conversely, autocorrelation estimates were not effected by different amplitude levels when noise was not present 
(Fig. S4b). Previous work aware of this issue has thus carefully investigated potential correlations between LRTCs 
and signal power which were found to be marginal but significant (alpha and beta bands15,17) to strong (theta17). 
Under conditions with drastic power changes in relevant frequency bands, such as during sleep deprivation in our 
data, it is therefore possible that these effects will impact the estimation of LRTCs.

In our data we observed that DFA scaling exponents were significantly correlated with signal power in all three 
frequency bands (Fig. 3 left column). In stark contrast to the alpha band, we observed an increase in the DFA 
scaling exponent in the theta band which closely mirrored the time course of theta power (Fig. 3 top). Specifically, 
the DFA exponent exhibited a circadian component on top of a monotonic increase which closely resembles the 
well-known increase of theta power during sleep deprivation33. This striking similarity in time course along with 
the significant correlation between power and scaling exponent thus suggest that the increase in DFA exponents 
in theta may be primarily due to the concomittant changes in signal power levels. This influence of signal power is 
also likely to determine the time course of DFA scaling exponents in the beta band to a large extent where signal 
power increases significantly too and may similarly impact the signal-to-noise ratio and estimation of LRTCs15.

For better insight into the influence of the strongly increasing power on DFA exponents in theta and beta 
frequency bands, we repeated the analysis using only channels that did not show a significant change (0–6 hour vs 
33–39 hour; two-sided t–test; p > 0.5). Results were similar when different p-values (0.3–0.9) were used to exclude 
channels with significant power changes. By controlling for power changes (and in particular power increases) 
during sleep deprivation with this method, we observed no significant increases in DFA scaling exponents in 
both theta (7/189 remaining channels) and beta bands (31/189 channels remaining; 0–6 hours vs 33–39 hours; 
p > 0.05; two-sample t–test; Fig. 3 right column). In fact, in theta band, scaling exponents even exhibited a slight 
decrease, albeit not reaching the significance level. When we controlled for power changes in the same way in 
the alpha band (87/189 channels remaining), the significant decrease in DFA scaling exponents during sleep 
deprivation persisted (p = 0.0008; two-sample t–test). Together, these analyses thus provide strong indication 
that the apparent increase of LRTCs in theta and beta bands is due to the concomittant increase in signal power. 
Conversely, when no significant power changes are present, such as in the alpha band, then LRTCs decline during 
sleep deprivation.
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LRTC decline is predominantly found in frontal and parieto-occipital regions.  Our described 
trends so far were based on averages across all channels. The decline in LRTC could also be observed at the indi-
vidual channel level (Fig. 4a; alpha band). The topographical distribution of sleep deprivation changes (0–6 hours 

Figure 3.  Influence of signal power on estimating long-range temporal correlations. DFA scaling exponents 
exhibited a significant correlation with signal power in all frequency bands investigated (left column). Middle 
column: DFA scaling exponents (black) follow a very similar trajectory to signal power (green) particularly 
when power is changing significantly, as is the case in the theta (top) and beta (bottom) bands. Right column: 
DFA increases between early (0–6 hours, blue) and late (33–39 hours, red) sleep deprivation vanish in the 
theta and beta bands when only channels with no significant power change (power controlled channels) are 
considered for DFA estimation. Conversely, the decline in DFA scaling exponents in the alpha band remains. 
This suggests that it is the strongly increasing signal power in theta and beta bands that leads to an apparent 
increase of DFA scaling exponents in these frequency bands.
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vs 33–39 hours) showed that LRTC decreases are visible across all EEG channels and are particularly prominent 
over frontal and parieto-occipital leads for both autocorrelation and DFA (Fig. 4b,c).

Discussion
In the present work, we report the decline of long-range temporal correlations (LRTCs) in cortical activity during 
sustained wakefulness. We estimated the timescales of temporal correlations in EEG amplitude fluctuations of 
ongoing neuronal oscillations from the autocorrelation function directly, as well as using detrended fluctuation 
analysis. While both analyses indicated the presence of long timescales associated with a slow autocorrelation 
decay at the beginning of sleep deprivation, sustained wakefulness led to a progressive decline with shorter times-
cales. We observed this decline of LRTCs to be visible when measures were obtained from the same circadian 
phase which suggests the leading cause to be the time spent awake. Given that EEG recordings were relatively 
short, other causes, such as for example time-on-task or boredom, are rather unlikely. Our results provide a novel 
perspective on the changes of cortical network dynamics with implications for their information processing capa-
bilities during sustained wakefulness. They provide a missing link to previous findings indicating a disruption of 
critical dynamics during sleep deprivation32 and highlight the importance of adequately taking into consideration 
signal power changes when assessing long-range temporal correlations in EEG.

Our main analyses focused on LRTCs in the alpha band where signal power exhibits a circadian modulation, 
but no significant overall in- or decrease occurs as a function of time awake. Under these conditions, a clear 
decline in LRTCs quantified by autocorrelation directly and by detrended fluctuation analysis could be observed 
during sustained wakefulness. Conversely, in the other frequency bands studied (theta and beta), signal power 
increased significantly over the course of sleep deprivation which compromised the estimation of LRTCs in these 
bands. The relevance of signal power for the estimation of LRTCs has been pointed out and studied several times 
before15–17. Broadly speaking, estimates of LRTCs can be biased towards lower, more noise-like values when 

Figure 4.  The decline of timescales during sleep deprivation occurs over broad cortex areas with a 
particular dominance in frontal and parieto-occipital regions. All plots correspond to results from the 
alpha band (8–12 Hz). (a) Exemplary time courses from two individual EEG channels indicating a strong 
decline in autocorrelation values during sleep deprivation. (b) Topographic distribution of changes in lag-1 
autocorrelation during sleep deprivation (difference between average values from 0–6 hours and average 
values from 33–39 hours). Each marker corresponds to one EEG channel. While a decrease in autocorrelation 
is evident in all channels, changes a particularly prominent in frontal and parieto-occipital regions. (c) 
Topographic distribution of sleep deprivation changes in DFA scaling exponents. (d) Topographic distribution 
of average power in the alpha band.
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signal power (and thus the signal-to-noise ratio) is lower and vice-versa. Consequently, Linkenkaer-Hansen et al. 
observed positive, albeit weak, correlations between signal power and DFA exponents in some EEG channels15. 
In a similar vein, Smit et al. reported marginal correlations of LRTCs with power in the alpha and beta bands and 
substantial correlations in the theta band, which led the authors to conclude that the stronger signal-to-noise ratio 
in this frequency band may have caused increased LRTCs17. Our results confirm this dependence and indicate 
that these effects are particularly important to consider in experimental conditions when signal power changes 
dramatically in some frequency bands, such as during sleep deprivation33. To make a robust conclusion about 
changes in LRTCs, or any other EEG measure for that matter, in an experiment, it is therefore important to 
carefully consider whether these changes could be caused by concomitant alterations in signal power. Here, we 
observed decreasing LRTCs during sleep deprivation when power remained constant (alpha band) and an appar-
ent increase in the other bands (beta and theta) only when there was a drastic concomitant power increase. This is 
similar to our observations of synchronization measures in a previous study32, which were also found to be most 
predominant in the alpha band. Thus, these changes in LRTCs and synchronization measures cannot be explained 
as a direct consequence of the alterations in spectral power, which are most evident in the theta band33.

Differences in signal power and signal-to-noise ratio may potentially also help to reconcile some perhaps con-
tradictory findings. In a recent study, larger LRTCs associated with higher insomnia complaints were observed 
within groups of insomnia patients and control subjects and interpreted as a sign of being closer to criticality51. 
Interestingly, no LRTC differences were observed between control and insomnia patient groups. In light of the 
strong impact of signal power on estimates of LRTCs in our data, especially under conditions with high sleep 
pressure, it is possible that signal power changes associated with worse sleep quality may have contributed to the 
apparent increase in LRTCs in these subjects, similar to our data.

The extended timescales and memory effects associated with LRTCs have long been thought to provide 
favorable neuronal substrates for the integration of information across time and across different cortical areas in 
order to increase the signal-to-noise ratio in cognitive tasks, such as, for example, during decision making7,9,11,13. 
This notion is supported by several experimental studies where LRTCs were found to correlate with and predict 
behavioral performance19,21. In the present work we link changes in these dynamical signatures to sleep depri-
vation for which cognitive impairments are well known1–4, but the corresponding neuronal correlates have thus 
far been difficult to identify. Our work suggests the long cortical timescales and LRTCs as promising candidates 
for these neuronal correlates. The question whether cortical timescales can also predict cognitive function over 
the course of sleep deprivation will be the topic of future research. Future studies may help to substantiate the 
generalizability of our findings with respect to larger subject cohorts and cohorts consisting of both women and 
men and thereby overcome the limitations of the present study in terms of the small sample size (8 subjects) and 
the absence of cognitive correlates. A very recent report of similar cortical timescale declines in individual neuron 
activity in rodents during sleep deprivation suggests this framework to be applicable across scales and species to 
describe network dynamics in terms of its ability to integrate information over time52.

Long-range temporal correlations are generic features of systems in the vicinity of a critical state22. The obser-
vation of LRTCs in EEG has thus been taken as additional evidence for a growing body of computational and 
experimental studies indicating that cortical neural networks operate at some sort of critical state13,24,26–28,30,31. 
Interpreted within this criticality framework, the decline of LRTCs during sustained wakefulness complements 
the observed fading of other signatures of critical dynamics during extended wake32. This framework also pro-
vides an interesting link between network function and the often-observed impairments of cognitive capabilities 
during extended wake. Critical dynamics are often regarded to support optimal computational functioning23–26,53. 
The decline of LRTCs and other signatures of critical dynamics during prolonged wakefulness suggests that the 
brain can benefit less from the computational advantages of critical or near-critical dynamics. Behavioral obser-
vations of impaired cognitive functioning and information processing after sleep deprivation2 might be the result 
of these functional deficits.

With regard to the mechanisms responsible for the observed disruption of long timescales, it is conceivable that 
the control of cortex dynamics through subcortical regions might play a role. It is known that several subcortical 
structures in the brainstem, hypothalamus and basal forebrain regulate the maintenance of waking and sleep states 
through neuro-modulatory action54. During extended wake, these subcortical structures could transiently disrupt 
the ongoing cortical dynamics leading to an apparent decline in long-range temporal correlations. Alternatively, it 
is conceivable that sleep/wake dependent structural changes in cortical networks, such as changes in average syn-
aptic strenghts55,56, might drive network dynamics closer/further away from criticality and thereby effect cortical 
timescales. Independent of the underlying mechanisms, our results indicate that sleep is important to reorganize 
cortical networks towards dynamics with long-range temporal correlations for optimal function during wake.
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