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Unraveling the genetic basis of Mendelian disorders has been 
a success story of human genetic endeavor over the past three 
decades. Recent technological progress, in addition to the com-
pletion of the International HapMap Project in 2005 (ref. 1), has 
enabled greater elucidation of the genetic components of com-
mon polygenic diseases. The genome-wide association study 
(GWAS) has been the most common modality used in such 
investigations. GWAS attempt to identify single-nucleotide 
polymorphisms (SNPs) that occur more frequently within the 
genomes of sufferers of a disease than in a control population. It 
is generally accepted that these variations at single bases within 
the genome are proxies for a contributory variant, and their 
locations can therefore be used to infer genomic regions for 
disease association. In addition, because these associations are 
typically free from the confounding influences, such as social 
or behavioral factors, that can plague epidemiological research, 
they can be used in accordance with the principle of Mendelian 
randomization as surrogates for exposure when examining the 
effects of putative causal associations for disease.2 GWAS are 
most effective for common diseases whose causative alleles 
are derived from a common ancestor within the population 
and therefore follow the “common disease, common variant” 
hypothesis.3 This view—that disease-causing alleles are com-
mon within a population—was especially popular before the 
first GWAS.4,5

Since the first GWAS in 2002, analyzing genetic susceptibil-
ity to myocardial infarction,6 more than 1,000 others of vari-
ous sizes have been performed, testing a plethora of common 

diseases with differing degrees of success. Arguably, the best-
known and most successful GWAS was by Klein et al.7 in 2005, 
a landmark study of the most common form of blindness in the 
Western world, age-related macular degeneration (AMD). This 
triggered numerous more detailed studies of AMD.

Since that time, GWAS have discovered a vast array of signifi-
cant variants that have advanced our understanding of the biol-
ogy of common disease. A striking example is Crohn’s disease: 
Duerr et al.8 and Rioux et al.9 implicated the interleukin-23 
cytokine and autophagy pathways, respectively, in its pathol-
ogy. Also, Sladek et al.10 showed a new role for β-cell zinc trans-
port in type 2 diabetes, and multiple studies revealed new loci 
causing autoimmune disease.11 Nevertheless, GWAS have most 
frequently uncovered only variants with a small effect—that is, 
those of low penetrance with small odds ratios (a measure of the 
odds of a given allele being present in one population sample 
compared with those of its presence in another sample). In gen-
eral, as a result, these studies tend to have little value in terms of 
predicting an individual’s risk. Furthermore, for many common 
conditions with familial components, such as schizophrenia, 
the majority of their heritability remains “hidden,” most likely 
in rare variants invisible to GWAS.12 Notwithstanding the argu-
ment that this may be attributed to inadequate sample sizes, the 
largest studies, using as many as 250,000 samples, are carried 
out at great cost and often only minimally increase our ability 
to explain heritability.13

In this review we overview AMD and summarize what is 
known about its genetic component. We discuss the seminal 
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In recent years, genome-wide association studies (GWAS), which 
are able to analyze the contribution to disease of genetic variations 
that are common within a population, have attracted considerable 
investment. Despite identifying genetic variants for many condi-
tions, they have been criticized for yielding data with minimal clini-
cal utility. However, in this regard, age-related macular degeneration 
(AMD), the most common form of blindness in the Western world, 
is a striking exception. Through GWAS, common genetic variants 
at a number of loci have been discovered. Two loci in particular, 
including genes of the complement cascade on chromosome 1 and 
the ARMS2/HTRA1 genes on chromosome 10, have been shown 
to convey significantly increased susceptibility to developing AMD. 

Today, although it is possible to screen individuals for a genetic pre-
disposition to the disease, effective interventional strategies for those 
at risk of developing AMD are scarce. Ongoing research in this area is 
nonetheless promising. After providing brief overviews of AMD and 
common disease genetics, we outline the main recent advances in 
the understanding of AMD, particularly those made through GWAS. 
Finally, the true merit of these findings and their current and poten-
tial translational value is examined.
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GWAS and how it has improved our knowledge of the patho-
genesis of AMD. Finally, the current and potential future clini-
cal benefits derived from this, such as those granted by disease 
screening, are analyzed.

AMD
AMD is a progressive disease affecting the central portion of the 
retina: the macula. Early stages of the disease are characterized 
by an often asymptomatic accumulation of focal extracellular 
deposits, representing the classical AMD lesions, termed “dru-
sen,” that form within Bruch’s membrane beneath the retinal 
pigment epithelium14 (Figure 1b). These drusen contain a bar-
rage of different proteins, inflammatory mediators, and lipids,15 

although, given the sheer number of candidates found in dru-
sen it is difficult to identify what may act as a nucleating point of 
formation as opposed to being simply subsumed into the lesion 
over time. The severe, late-stage form of AMD affects 2.4% of 
individuals over the age of 50 in the United Kingdom,16 and 
with the population of the developed world aging, this preva-
lence is expected to increase. Late-stage AMD is subdivided 
into two types, so-called dry and wet forms (Figure 1d–f). Dry 
AMD is more common; well-demarcated “geographic” atrophy 
of the retinal pigment epithelium and underlying choroidal ves-
sels causes progressive central visual loss. Wet, or neovascular, 
AMD is associated with severe visual loss and results from cho-
roidal neovascularization breaking through Bruch’s membrane 

Figure 1  Changes in ocular phenotype with age-related macular degeneration (AMD) progression. Retinal images acquired by fundoscopy show 
the varying stages of disease progression. (a) A schematic showing the location of the macular region of the eye where drusen formation leads to AMD.  
(b) A cross-sectional schematic demonstrating that drusen form within Bruch’s membrane, which itself is sandwiched between the retinal pigment epithelium 
(RPE) and the blood supply of the eye (choroid). (c) A healthy human eye, in which the radial blood vessels can be seen emanating from the optic disc (OD). 
The macula region is circled and is 5 mm in diameter. (d) In an eye presenting with early stages of AMD, drusen (white arrow) can be seen accumulating in the 
macula. (e) The presence of drusen may lead to choroidal neovascularization resulting in neovascular, or “wet,” AMD. (f) Geographic atrophy, or “dry” AMD, 
where there is complete loss of the RPE layer (seen here as the light yellow region in the macula).
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(which overlies the choroid) into the neural retina.14 These new, 
fenestrated vessels leak blood, resulting in fibrous macular 
scarring and causing more acute central vision loss. Although 
little was known about the pathogenesis of AMD a decade ago, 
today, thanks in part to GWAS, we have a clearer understand-
ing of its etiology and contributory genetic and environmental 
risk factors.17

CONTRIBUTION OF GWAS TO OUR 
UNDERSTANDING AMD

By 2005, AMD was known to be a multifactorial disease with a 
strong genetic component, but standard analytical methods for 
single-gene disorders, such as candidate gene analysis and link-
age analysis, provided only limited insight. Indeed, although 
studies examining genes mutated in rare Mendelian macu-
lar conditions (e.g., TIMP3 (Sorsby disease), found links to 
AMD,18 they still represented only a small fraction of the total 
heritability of AMD.

Early studies examined alleles shared between siblings, 
attempting to identify broad genomic regions suitable for fur-
ther research; a meta-analysis of six such studies found evi-
dence of susceptibility loci, notably at 1q and 10q26 (ref. 19). 
Many of the genetic alterations found on chromosome 1 reside 
in genes encoding components of the complement cascade, 
part of a host’s innate immune system. Complement dysregula-
tion caused by a complement factor H (FH) mutation, which 
was known to lead to membranoproliferative glomerulonephri-
tis (often referred to as dense deposit disease),20 had also been 
implicated in AMD pathology, as affected individuals present 
with retinal drusen.21 In addition, a number of histochemical 
studies sought to analyze the changes that occurred within dru-
sen of affected retinas22; crucially, a role for complement activa-
tion was highlighted.

In 2005 four separate studies examined SNP associations and 
found that variation within the CFH gene on chromosome 1 
represented the most significant predisposition for AMD.7,23–25  
A point mutation, rs1061170, was identified as the susceptibil-
ity allele. This rs1061170 SNP results in a coding change in the 
FH protein, where a tyrosine residue is replaced by a histidine 
residue at position 402 (or position 384 in the mature pro-
tein numbering26), referred to as the Y402H polymorphism. 
Interestingly, ~30% of individuals of European descent carry 
at least one copy of the Y402H risk allele.27 Two studies tested 
SNPs within target regions of chromosome 1q, previously indi-
cated by linkage analysis studies, for AMD association using 
case–control populations.23,25 In another, Hageman et al.24  
examined SNPs within the candidate CFH gene; they had 
previously implicated complement activation in AMD patho-
genesis.22 The most noteworthy of the studies, the GWAS by 
Klein et al.7, examined more than 100,000 SNPs across the 
whole genome within 96 cases and 50 controls. Even with 
such a relatively small sample size, it successfully identified a 
small number of SNPs that were highly significantly skewed 
within patients with AMD relative to controls; two of these 
were intronic variants within CFH, which proved functional as 

proxies for Y402H. These initial findings have been irrefutably 
confirmed by many subsequent successful GWAS.28

GENETIC CONTRIBUTION TO AMD 
PATHOGENESIS

FH is a key regulator of the alternative complement pathway, 
deactivating C3b that has been deposited both on host cells 
and, crucially, the extracellular matrix, such as the acellular 
Bruch’s membrane. Deposited C3b otherwise activates a host 
immune response. FH is primarily synthesized in the liver but 
also is expressed locally in retinal pigment epithelium cells.24 
The FH protein comprises 20 complement control protein 
(CCP) domains; the Y402H polymorphism is located in CCP 
domain 7. The exact causal effects of the many different CFH 
alleles are not yet fully understood. Indeed, since the original 
study of Y402H by Klein,7 other markers in weak linkage dis-
equilibrium with Y402H have shown stronger associations with 
AMD, although these generally represent variants compara-
tively less common within the population.27 However, given 
that the CCP 7 region binds C-reactive protein and heparan 
sulfate (as methods of self-recognition),29 and that it is known 
that the Y402H polymorphism reduces FH binding to both 
C-reactive protein30 and heparan sulfate in Bruch’s membrane,31 
it is likely that this variant leads to a dysregulation of comple-
ment. Indeed, deposition of an increasing amount of the termi-
nal membrane attack complex (which is indicative of increased 
complement turnover) under Bruch’s membrane occurred in 
402H variant homozygous donor eyes compared with 402Y 
“risk” donor eyes.32 Although unlikely to represent the initiat-
ing event of AMD, there is little doubt that a proinflammatory 
environment, driven by poor complement regulation conferred 
by the Y402H polymorphism, aggravates drusen formation and 
contributes to disease progression.30,33 A second major locus for 
susceptibility to AMD, at chromosome 10q26, was identified 
by a similar combination of targeted linkage studies and con-
firmatory GWAS.34–37 The mechanisms by which these effects 
are exerted are less well studied and are confounded by the 
presence of linkage disequilibrium between two genes, ARMS2 
(LOC387715)34,35 and HtrA serine peptidase 1 (HTRA1),36,37 
that lie within a 200-kb region at the candidate locus. To date, 
the relative importance of each of these genes in AMD pre-
disposition remains contentious. Nevertheless, it is tempting 
to note that, although the ARMS2 gene has not yet produced 
a detectable gene product in vivo, the HtrA1 protein from 
HTRA1 is involved in extracellular matrix turnover, especially 
given the site of drusen formation—Bruch’s membrane—forms 
part of  the extracellular matrix.

FH and ARMS2/HTRA1 alleles represent the most influen-
tial of all the genetic factors contributing to AMD, and together 
they increase AMD predisposition by more than 40 times.38 
Other genes, however—most of which also are involved in the 
complement pathway—have been implicated through GWAS 
and candidate studies of genes functionally related to comple-
ment.39–41 The genes encoding complement factor B and compo-
nent 2 were tested using SNP association case–control studies, 
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which found these genes conveyed significant susceptibility39; 
the same was seen for component 3.40 Later GWAS, using larger 
sample sizes, implicated other genes and pathways in AMD 
pathogenesis, in addition to confirming the contributions of 
suspected susceptibility genes. These include another comple-
ment gene, complement factor I41; genes associated with cho-
lesterol and lipoprotein metabolism, APOE, LIPC, and CETP42; 
extracellular matrix maintenance gene TIMP3; the athero-
sclerotic signaling FRK/COL10A1 variant43; the angiogenesis 
gene VEGFA43; and the TNFRSF10A/LOC389641 region.44 The 
AMD Gene Consortium recently found seven new disease loci: 
COL8A1-FILIP1L, IER3-DDR1, SLC16A8, TGFBR1, RAD51B, 
ADAMTS9, and B3GALTL.28 A summary of the most signifi-
cant known genetic contributions to AMD and their proposed 
roles in its pathogenesis is included in Table 1.

In all, the 19 hitherto described loci conveying susceptibil-
ity to AMD are estimated to account for as much as 65% of 
its heritability.28 Even accounting for the significant proportion 
that remains unclear despite intense GWAS interrogation, this 
represents massive progress toward unraveling the genetic basis 
of the disorder, and it differs greatly from the extent to which 
we understand that of the majority of common diseases.45,46 
In this respect, GWAS for AMD can be, and are, heralded as 
highly successful.

HAVE GWAS FOR AMD BROUGHT ABOUT 
TRANSLATIONAL BENEFIT?

It was forecast that GWAS success would convey considerable 
patient benefit; Wray et al.47 claimed that the “value of predic-
tive SNPs could be reaped long before the causal mechanism of 
each contributing variant can be determined.” To assess this, we 

discuss the ways in which GWAS discoveries have altered our 
ability to predict AMD progression.47 We then analyze whether 
we are able to tailor individual therapies to each patient as a 
result,48 as well as describe the progress made toward develop-
ing novel therapeutics for AMD.

One aspect of GWAS that many expected to yield significant 
translational benefit was the use of putative genetic factors to 
predict and screen for disease (especially in individuals with a 
family history of the condition),47 with a view toward influenc-
ing choice of treatment or patient lifestyle. Indeed, a number of 
models have been designed for predicting the risk of an individ-
ual developing AMD49; a recent one in particular claimed to be 
as much as 90% accurate.50 This represents remarkable progress 
and underlines the extent to which GWAS have advanced our 
knowledge of and ability to test for genetic factors for the con-
dition. The advertised success of these models, especially rela-
tive to those for other common diseases, has coincided with the 
popular rise of commercial ventures such as 23andMe (https://
www.23andme.com) and GenePlanet (http://www.geneplanet.
com), which are able to assay genetic variants possessed by an 
individual. In theory, the ability to predict how, and roughly 
when, an individual will develop AMD would allow the clini-
cian to personalize treatments based on genetic and environ-
mental risk, thus providing the best tailored treatment. A major 
pitfall, however, is the current lack of interventions available to 
combat predicted onset of disease. This is exemplified by the 
National Health Service’s UK Genetic Testing Network not 
offering a test for AMD susceptibility (http://ukgtn.nhs.uk/find-
a-test/).  Furthermore, the recent warning given to 23andMe by 
the US Food and Drug Administration51 highlights the poten-
tial problems of such biomarker screening when no successful 

Table 1  Single-nucleotide polymorphisms associated with age-related macular degeneration and their affected genes

DNA marker Nearby genes
Joint P value in 
meta-analysis Pathways/functions implicated

rs10490924/T ARMS2/HTRA1 4 × 10−540 Uncertain, possibly mitochondrial/cell growth

rs10737680/A CFH 1 × 10−434 Complement

rs429608/G C2/CFB 4 × 10−89 Complement

rs2230199/C C3 1 × 10−41 Complement

rs5749482/G TIMP3 2 × 10−26 Extracellular matrix degradation

rs4420638/A APOE 2 × 10−20 Lipoprotein metabolism, atherosclerosis

rs1864163/G CETP 7 × 10−16 Lipoprotein metabolism, atherosclerosis

rs943080/T VEGFA 9 × 10−16 Angiogenesis

rs13278062/T TNFRSF10A 3 × 10−15 Cell death

rs13081855/T COL8A1/FILIP1L 4 × 10−13 Extracellular matrix/antiangiogenic activity of endothelial cells

rs8017304/A RAD51B 9 × 10−11 Homologous recombination

rs4698775/G CFI 7 × 10−11 Complement

rs920915/C LIPC 3 × 10−11 Lipoprotein metabolism, atherosclerosis

rs334353/T TGFBR1 3 × 10−11 Widespread, including angiogenesis

rs8135665/T SLC16A8 2 × 10−11 Lactate transport

rs3130783/A IER3/DDR1 2 × 10−11 Cell death/growth

rs6795735/T ADAMTS9/MIR548A2 5 × 10−9 Proteoglycan cleavage, inhibition of angiogenesis

rs3812111/T COL10A1 2 × 10−8 Atherosclerosis

rs9542236/C B3GALTL 2 × 10−8 Glucose transport
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intervention exists to modify disease progression. The clinical 
impact of screening in the case of AMD hinges on the develop-
ment of viable therapeutics to influence disease progression or 
the ability of clinicians to recommend effective lifestyle changes 
to modulate risk.

The substantial contribution of environmental factors to 
AMD raises the possibility of altering patient lifestyle in 
response to genetic testing. Smoking, for example, is a well-
established risk factor for the condition52 and, theoretically, a 
knowledge of genetic risk might encourage an individual to 
cease doing so. However, whether an increased risk of develop-
ing a chronic disease, when smoking is known to predispose to 
many other such diseases, would actually influence the lifestyle 
of a given individual is debatable. For example, Hollands et al.53 
showed that patients with a familial risk for Crohn’s disease, 
additionally predisposed by smoking, were no more likely to 
stop the habit than those without. Also, the dietary intake of 
a number of substances, notably those with antioxidant prop-
erties such as the carotenoids β-carotene, lutein, and zeaxan-
thin and vitamins C and E, is known to affect progression to 
advanced AMD.54 However, studies attempting to prove that 
modifying dietary intake of such substances is significantly pre-
ventive of AMD have so far been inconclusive.54,55

The greatest advancement in the clinical approach to AMD 
has been the introduction of antiangiogenic therapies for wet 
AMD56,57; the most widely used is the vascular endothelial 
growth factor–inhibiting monoclonal antibodies bevacizumab 
and ranibizumab.58 Wet AMD, the less common form of the 
disease, affects vision more severely, and, although great benefit 
has been derived from this therapy, it only halts disease pro-
gression and does not prevent onset, nor does it reverse damage 
already caused to the vision. Furthermore, it is important to note 
that the implementation of antiangiogenic agents as a method 
of treating AMD was brought about independent of GWAS. In 
fact, despite the different pathways recently implicated in AMD 
pathogenesis, novel interventions that successfully exploit this 
knowledge remain elusive, and dry AMD remains untreatable.

However, GWAS have identified the importance of comple-
ment activation via its alternative pathway (the pathway con-
trolled by FH) in AMD pathogenesis. As such, a number of 
complement-based therapeutics are currently undergoing 

clinical trials (see Table 2) or are currently in preclinical devel-
opment. Eculizumab, an antibody against the complement pro-
tein C5, was the first logical choice because it was already in 
clinical use for other complement-mediated disease (e.g., atypi-
cal hemolytic uremic syndrome). The use of eculizumab for 
treating dry AMD, however, failed to affect the progression of 
geographic atrophy.59 This is perhaps unsurprising because this 
drug targeted the complement pathway at a point downstream 
of the alternative activation pathway: All GWAS-identified 
SNPs are in genes whose proteins are involved in an alterna-
tive pathway, not the lectin, classical, or terminal pathways.60 
Similarly, other therapeutics that also target C5—as either an 
antibody (LFG316; Novartis) or an aptamer-based C5 inhibitor 
(Zimura; Ophthotech)—are currently in ongoing clinical trials.

A slightly different approach is represented by the drug lam-
palizumab (Genentec/Roche), an antibody Fab fragment raised 
against complement factor D. This has great promise, targeting 
only the alternative activation pathways of complement (the one 
associated with AMD) and leaving the remaining pathways unaf-
fected, thus providing patients with continued protection against 
bacterial infections. Phase II trials have been completed, deliver-
ing lampalizumab by intravitreal injection for geographic atro-
phy. While the results remain unpublished, Roche has indicated 
that efficacy has been seen and a phase III trial is commencing.

Other putative therapies also are under consideration. These 
include antibodies against properdin and complement factor B, 
both of which are essential for the activation of complement via 
the alternative pathway, and even the introduction of specifi-
cally designed “mini” complement regulators in an attempt to 
readdress the imbalance of complement activation in the back 
of the eye. Given the early stages of such research, assessing how 
it will translate into the clinic remains difficult, but nonetheless 
it demonstrates the considerable effort being put into comple-
ment-mediated therapeutics for AMD.

POWERFUL GENETIC RESEARCH TO UNCOVER 
MISSING HERITABILITY

As previously mentioned, ~35% of the heritability of AMD 
remains undiscovered. Indeed, the inability of GWAS to elucidate 
the entire genetic component of common diseases is a recurring 
theme; for some conditions, the vast majority of their heritability 

Table 2  Current complement-based therapeutics directed against age-related macular degeneration (AMD)
Therapeutic  
(alternate name)a

Treatment  
type

Complement 
target Company

Targeted AMD 
form 

Clinical  
trials

POT-4 Protease inhibitor C3 Potentia Wet NCT00473928; phase I

Eculizumabb Monoclonal antibody C5 Alexion Dry NCT00935883; phase II

LFG316 Monoclonal antibody C5 Novartis
Dry NCT01527500; phase II

Wet NCT01535950; phase II

Zimura (ARC1905) Aptamer-based inhibitor C5 Ophthotech
Dry NCT00950638; phase I

Wet NCT00709527; phase I

Lampalizumab 
(FCD4514S)

Antibody Fab fragment Factor D Genentech/
Roche

Dry NCT02247479; phase III 
NCT02247531; phase III

aIn some instances, therapeutics have previously been known by a different name. bEculizumab was originally a treatment for other complement-mediated diseases and was 
in clinical use before genome-wide association studies’ association of complement with AMD.
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remains unknown.61 This failure of GWAS to consistently find 
individually significant genetic risk factors has led to the rise in 
popularity of a view of common disease genetics opposing the 
“common disease, common variant” theory. This new viewpoint 
is known as the “common disease, rare variant” (CDRV) hypoth-
esis, originally put forward before the first GWAS.62 CDRV states 
that genetic factors causing common disease can be rare within a 
population, and were they to contribute more to the heritability 
of such conditions, it would correspond to the selective pressures 
upon such variants within the gene pool.3 In other words, there 
exist variants of great significance that are too rare for GWAS to 
uncover. The degree to which these two hypotheses prevail seems 
to differ from one common condition to the next.

It is thought that elucidation of the hitherto unknown 
genetic component of AMD, possibly caused by rare variants 
overlooked by GWAS, would help to elucidate the underlying 
pathogenesis, fueling drug discovery. These variants could be in 
the form of new loci, exposing novel pathways as important to 
pathogenesis, or new variants within known loci, helping to elu-
cidate exactly the functional consequences of mutations. Here, 
the next-generation sequencing era introduces exciting new 
possibilities; singling out genetic variants in individuals, no mat-
ter how rare within a population, will provide a greater range 
of genetic factors from which to study gene function and dis-
ease mechanisms. The potential impact of this type of study for 
AMD was illustrated by Raychaudhuri et al.63 In that study, high-
throughput analysis identified a high-penetrance haplotype for 
AMD, a rare CFH variant, and its functional consequences were 
examined. The potential advantages conveyed to AMD genetics, 
and indeed common disease genetics, by the accurate and rapid 
sequencing of human genomes are therefore significant.

Furthermore, targeted therapeutics require full comprehen-
sion of the biology of a condition: The new wave of poten-
tial therapies for AMD, such as novel attempts to disrupt the 
angiogenesis pathway, complement inhibitors, and integrin 
inhibitors,64 has resulted from the success of studies involving 
functional analysis of molecules and pathways. An example is 
the study of the functional consequences of the common Y402H 
FH polymorphism and the fact that it alters the ability of FH 
to regulate complement at the site of disease pathogenesis.31,65 
Functional studies of this ilk are anticipated to help discover 
future potential treatments for AMD, and greater knowledge of 
the “hidden” heritability of AMD will help their success.

CONCLUSIONS
The GWAS for AMD are a much-celebrated scientific advance-
ment. Although these have provided significant insight into 
the genetic component of the condition, it has been shown 
here that the translational benefit derived to date, beyond pre-
dictive disease susceptibility, has been limited. It goes without 
saying, though, that in an ever-changing field with much ongo-
ing research, it is fair to expect greater elucidation of the hid-
den heritability of the condition (especially by next-generation 
sequencing) and subsequently more effective functional analy-
sis of the mechanisms underlying AMD pathogenesis in the 

near future. It is hoped that these advancements will facilitate 
the discovery of novel effective treatments that will revolution-
ize clinical management of AMD and simultaneously improve 
the value of predictive genetic screening.
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