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Abstract
Background: Parasitic protozoans possess many multicopy gene families which have central roles
in parasite survival and virulence. The number and variability of members of these gene families
often make it difficult to predict possible functions of the encoded proteins. The families of extra-
cellular proteins that are exposed to a host immune response have been driven via immune
selection to become antigenically variant, and thereby avoid immune recognition while maintaining
protein function to establish a chronic infection.

Results: We have combined phylogenetic and function shift analyses to study the evolution of the
RIFIN proteins, which are antigenically variant and are encoded by the largest multicopy gene family
in Plasmodium falciparum. We show that this family can be subdivided into two major groups that
we named A- and B-RIFIN proteins. This suggested sub-grouping is supported by a recently
published study that showed that, despite the presence of the Plasmodium export (PEXEL) motif in
all RIFIN variants, proteins from each group have different cellular localizations during the
intraerythrocytic life cycle of the parasite. In the present study we show that function shift analysis,
a novel technique to predict functional divergence between sub-groups of a protein family, indicates
that RIFINs have undergone neo- or sub-functionalization.

Conclusion: These results question the general trend of clustering large antigenically variant
protein groups into homogenous families. Assigning functions to protein families requires their
subdivision into meaningful groups such as we have shown for the RIFIN protein family. Using
phylogenetic and function shift analysis methods, we identify new directions for the investigation of
this broad and complex group of proteins.

Background
Antigenic variants are proteins expressed by pathogenic
organisms, which are usually exposed to immune pressure
from a vertebrate host. The genes that encode these pro-

teins can be single copy within the genome as is the case
for viruses and the variability therefore exists between
gene copies of individuals. This implies that the proteins
they encode retain the same function. However, other
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organisms maintain several to many copies within the
genomes of each individual [1,2]. Conversely to viral
genes, these multicopy genes are not only under immune
pressure but can also follow distinct evolutionary paths to
differentiate into novel functional units.

The genomes of Plasmodium species contain numerous
large multigene families that have been amplified via
functional or immune pressures [2-6]. One important fea-
ture of these organisms is that they do not express the
whole protein repertoire simultaneously [7-10]. These
polymorphic families are predominantly situated in the
sub-telomeric ends of chromosomes [2-6], where gene
rearrangements are frequent [11,12]. They encode for pro-
teins that presumably fulfill several functions and
immune pressure has driven them to antigenically vary at
the surface of the infected erythrocyte [13]. Empirical
studies have shown that the Plasmodium falciparum Eryth-
rocyte Membrane protein 1 (PfEMP1) can mediate
cytoadhesion by interacting with various host receptors,
resulting for example in sequestration of the infected
erythrocytes in the host tissue or rosette formation with
uninfected red blood cells [13]. The repertoire of PfEMP1
proteins is therefore shaped both by functional pressures
for binding and by diversifying pressures to evade immu-
nity [14]. Yet, such an accumulation of experimental data
is missing for protein families in most parasite species.

We have studied the RIFIN protein family, a group sug-
gested to be under immune diversifying selection. Their
genes, repetitive interspersed family (rif), are the largest fam-
ily in P. falciparum with 150 to 200 copies per haploid
genome. They are small two-exon genes (≈1000 base
pairs), with a conserved domain architecture [15,16].
Characteristically, RIFIN proteins are described as small
polypeptides beginning with a putative signal sequence
followed by a conserved domain, a variable region and a
conserved C-terminal domain. Two transmembrane
regions have been predicted on both sides of the variable
region; with this stretch predicted to be exposed to
immune pressure [9,15]. The proteins most closely related
to RIFINs are of the Sub-Telomeric Variable Open Reading
Frame (STEVOR) family [15], numbering 28 copies in the
reference strain genome [2]. Although primary sequence
similarity is limited [15], this relationship is emphasized
by the existence of a RIFIN_STEVOR family (PF02009) in
the PFAM database [17].

RIFIN proteins have been detected throughout the intra-
human life cycle of the parasite [8,18-21]. Furthermore,
RIFIN proteins are associated with a stable immune
response over time and with rapid clearance of parasites
from the circulation [22,23]. However, as for most protein
families, little more is known and their function(s)
remain(s) to be discovered. In this study, we propose a

novel approach to understand complex protein families
for which little data is available. We demonstrate the divi-
sion of the RIFIN family into two groups, which we asso-
ciate with published differential cellular localization.
Finally, we correlate these differences with the prediction
of a function shift between these sub-groups.

Results
Phylogenetic classification of the RIFIN family
An alignment of 134 RIFIN protein sequences from the P.
falciparum reference strain 3D7 (selection criteria detailed
in Methods) was analyzed in order to detect divergences
within the family. This revealed the existence of differ-
ences, prompting an initial division of RIFIN proteins into
at least two major groups. The larger group, which we
named the A-type RIFINs, represents ≈72% (97/134) of all
analyzed proteins, while the second group, which we des-
ignated B-type RIFINs, makes up ≈28% (37/134).
Although both groups have a common architectural struc-
ture [15,16], they differ by several features, as depicted in
the alignment of representative A- and B-RIFIN sequences
(Fig. 1A) and schematically (Fig. 1B). First, the A-type pro-
teins are generally larger than the B-type variants (on aver-
age 350 and 330 amino acids, respectively). This
difference is largely due to a 25 amino acid stretch present
only in the conserved (C1) region of A-type RIFINs, as pre-
viously described [2]. It is located approximately 66
amino acids downstream of the Plasmodium export ele-
ment (PEXEL motif) [24] and contains some highly con-
served residues (Fig. 1). A second distinctive feature
concerns the number of conserved cysteine residues (Fig.
1B arrows). A-type RIFINs are characterized by a total of
10 highly conserved cysteine residues, compared to 6 in B-
type variants, 5 of which are common to both sub-types
(Fig. 1B grey arrows). Notably, two of the conserved
cysteines typical for A-type RIFINs are found in the 25
amino acid stretch.

In order to substantiate this preliminary sub-grouping, we
clustered rif sequences according to their similarities by
constructing Neighbor Joining distance trees. The trees
resulting from protein-derived cDNA alignments sorted
the sequences into two major groups that were largely
concordant with the above sub-grouping (Fig. 2). How-
ever, five sequences deviate from their predicted group
(Fig. 2, stars): PFD0045c and PFI0050w, which are B-
RIFINs, cluster with A-RIFINs; PFB0015c is an A-type
which groups with B-RIFINs; and PFB0040c and
PF10_0402 cluster together and separately from A- or B-
RIFIN proteins. We find it noteworthy that the B-RIFIN
group could be further subdivided into three subsets,
namely B1, B2 and B3, whereas the A-RIFINs did not form
any obvious clusters (Fig. 2). While B1 and B2 sub-clades
formed a monophyletic group with a bootstrap value of
92%, the separation of the B clade from the A clade had a
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RIFIN proteins overviewFigure 1
RIFIN proteins overview. (A) Alignment of a selection of A and B-type RIFINs. Conserved cysteines are highlighted in red; 
shading according to conservation. (B) Schematic RIFIN sub-group characteristics: Overall domain organization and classifica-
tion into subtypes. The 25 amino acid stretch present only in the semi-conserved domain of A-type RIFINs is highlighted and 
depicted by a sequence logo. Grey arrows: common conserved cysteine residues; black arrows: sub-type specific cysteine res-
idues; SP: signal peptide; PEXEL: Plasmodium export element; C1: semi-conserved domain, including the 25 AA insertion/dele-
tion; C2: C-terminal conserved domain; TM1 and TM2: previously predicted transmembrane regions; V1: first variable domain; 
V2: second variable domain.
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Phylogenetic tree of rif cDNAFigure 2
Phylogenetic tree of rif cDNA. The tree shows the segregation of A- and B-rif genes (gaps considered as complete dele-
tions). The B-rif group is further subdivided into B1, B2 and B3 clusters. Stars indicate sequences that group atypically. Boot-
strap support, after 1000 replicates, is only shown for the branches separating the different groups, dots at nodes indicate 
bootstrap values above or equal to 60%.
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weaker statistical support at 61%. This unexpectedly low
bootstrap value together with the observation of relatively
long branches in the B3 sub-group versus the shorter ones
in the B1 and B2 sub-groups prompted us to examine the
sequences more closely. Accordingly, we carried out inde-
pendent phylogenetic analyses of the conserved C1 and
the variable V2 domains (as shown in Fig. 1B). These trees
show that the B3 sequences have an incongruent history
(Fig. 3), which reveals probable recombination/gene con-
version events. Specifically, the V2 domains of the B3 sub-

set segregated with the A-RIFINs rather than with B-
RIFINs, while the C1 domains of the same variants were
of B-type (with the exception of PFE1630w). B3 sequences
thus constitute hybrid variants composed of C1 domains
of the B subtype and V2 domains of the A subtype. Over-
all, we observed long branches for sequences encoding A-
and B3-RIFIN proteins, not seen for B1 and B2 sequences,
clearly a direct consequence of the higher variability
within the V2 region of these sequences.

Non-congruence of phylogenetic trees of RIFIN conserved (C1) versus variable (V2) domainsFigure 3
Non-congruence of phylogenetic trees of RIFIN conserved (C1) versus variable (V2) domains. (A) Neighbor Join-
ing tree of the C1 domain (gaps considered as pairwise deletions) showing the segregation of A- from B-RIFIN sequences. (B) 
The same tree construction method applied to the V2 domain showing that B3-RIFIN sequences do not cluster with B1- and 
B2-sequences. Bootstrap support, after 1000 replicates, is shown for values above 50%.
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In addition to the analysis of the 3D7 strain, we have
aligned the 3D7 sequences with 59 of the DD2 and 65 of
the HB3 strain sequences (selection criteria detailed in
Methods). The tree resulting from the protein alignment
confirmed the results obtained with the reference genome
analyses. The sequences sorted into the same two major
clades with no strain specific grouping (see Additional file
1). The B-RIFIN clade is split into three groups; however
the B1 and B2 clades contain few sequences from the DD2
and HB3 genomes.

It is noteworthy that the two B-RIFIN sequences, which
cluster with A-RIFINs (PFD0045c and PFI0050w), have
homologous sequences in both DD2 and HB3 genomes
(see Additional file 1, stars).

Based on the knowledge that non-coding regions may
contain motifs of significance in gene regulation and
expression, we also analyzed 500 base pairs of non-coding
upstream and downstream untranslated regions (UTRs)
from the 3D7 rif genes. The phylogenetic analyses of these
regions segregated the sequences into the same major A-
and B- groups as the coding regions, which we have
termed A-rif and B-rif UTRs (see Additional file 2). For
both 5' and 3' UTR analyses, B-rif UTRs could be further
divided into two groups, one of which included B1 and B2
variant UTRs, the other mostly B3 variant UTRs. As in the
above analysis, some sequences did not segregate into
their expected sub-group, for example a few B3 sequences
were found in the B1/B2 subdivision and vice versa. Addi-
tionally, some A-rif UTRs clustered with B-rif UTRs and in
this case, mostly with the B3 sub-group. In contrast to the
coding sequences, the A-rif UTRs appear to cluster into
sub-groups. Despite overall similarities in observations
between both 5' and 3' UTR analyses, there was only par-
tial congruence between these UTR clusters, in particular
as far as A-rif UTRs are concerned.

A previous study has identified two transcriptional repres-
sion sites (TATGCAATGATT and CGCACAACAC) [25]
upstream of 8 rif genes in a head to head orientation with
UpsA var genes. An exhaustive search on all 14 chromo-
somes of the 3D7 strain shows that these two motifs are
found in 20 and 19 copies, respectively. However, only 15
and 11 copies are upstream (either independently or in
combination) of a total of 16 rif genes (see Additional file
2, indicated by #); the other copies are found up- or down-
stream, or sometimes in the coding region of other genes.
Concordantly to this analysis, 13 of the 5' UTRs of these
genes cluster together in our phylogenetic tree.

An analysis of chromosomal location reveals that only 6
of the 134 sequences (4.5%) used in this study are cen-
trally located genes (data not shown). The other similarly
positioned rif genes are annotated as pseudogenes or are

truncated and none of these are grouped according to pro-
tein or UTR sequences (data not shown). The transcrip-
tion of ≈70% of A-rif and all B-rif genes is telomere
oriented. The A-rif genes with a centromeric transcription
orientation (≈30%) do not cluster on the protein tree
(data not shown), however they are mostly distributed
within three sub-clades of the A-rif 5' UTR tree (see Addi-
tional file 2, crosses).

Function shift analysis of A- and B-RIFIN proteins
We sought for indications of functional differences
between A- and B-RIFIN sub-groups by analyzing them for
function shifts according to previously described methods
[26]. Function shift analysis calculates the number of rate
and conservation shifting sites (RSS and CSS, respectively)
that exist between two given protein groups. RSS is meas-
ured by U-values, which indicate the likelihood that the
mutation rate changes for each alignment position
between the subfamilies under consideration. A site is
considered rate-shifting (at 5% significance level) if its U-
value is above a cut-off value of 4.0 [27]. CSS is measured
by the Z-score, a normalized method to examine the sim-
ilarity between two distributions of amino acids. Smaller
Z-score values are associated with similar amino acid dis-
tributions in both subfamilies, while larger Z-score values
are associated with very different distributions. The total
numbers of positions are counted for both RSS and CSS
calculations.

The results are compared to enzymatic protein families
that have undergone a change in function, which belong
to several functional categories including immunity
related functions. The function shift model was bench-
marked using organisms from all three kingdoms of life,
namely Archea, Bacteria and Eukaryotes. This results in
the estimation of the likelihood of sub-functionalization
between the two groups. The function shift analysis of
sub-group A against sub-group B (using standard cut-offs
of 4 for RSS and 0.5 for CSS) resulted in the prediction of
81 rate shifting sites (RSS) (22% of all positions) and 60
conservation shifting sites (CSS) (17%) between them
(see Additional file 3, rifins.html, for the full alignment).
We computed the probability of the prediction as 83%
based on RSS alone and 52% based on CSS alone. Consid-
ering comparable knowledge empirically gathered on the
classification of shifts in function of known protein fami-
lies, which combine the two measures [26], A- and B- sub-
groups are predicted to have functionally diverged from
each other.

Listed in Table 1 and 2 are the top positions sorted accord-
ing to their U-values for RSS (stringent cut-off of 15) and
Z-scores for CSS (stringent cut-off of 2), respectively. Both
RSS and CSS are mostly found in the conserved regions of
RIFIN proteins (see Additional file 4, rifins_high.html, for
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the full alignment with stringent cut-offs). In Figure 4A we
show these shifts in a portion of the N-terminus of a ran-
dom selection of A- and B-RIFIN sequences. Figure 4B cor-
relates CSS and RSS plots, along the alignment, with the
predicted conservation of secondary structure of RIFIN
proteins. The high stringency cut-offs used in this figure
highlight the most significantly shifted sites (Fig. 4B
arrows). Notably, most of these shifts involve a change in
the biochemical properties of the amino acid. We will spe-
cifically emphasize the shifts in positions Q31K, R32N,
N33K and H34P, in a predicted loop region about 15 AA
upstream of the PEXEL motif; positions C62S and Y67X
approximately at the PEXEL motif; and positions C62S,
C108R, C112R, and G167C which all involve cysteine res-
idues, commonly engaged in disulfide bonds.

Limitations of function shift analyses lie in regions for
which one group has amino-acid stretches that the other
group lacks. In this case, RSS and CSS calculations give a
null value; however this does not equate to an absence of
impact on functional divergence of the two groups. One
particular way of viewing such a site is to acknowledge it
as a shifted site from a conserved motif to an absence of
residues. The 25 AA stretch present in A-RIFIN sequences
and absent from B-RIFINs can be viewed in this way, spe-
cifically due to the conservation of many of its residues as
seen in Fig. 1B. Additionally, most of this motif is pre-
dicted to be a loop region, which could be involved in a
functional site.

Discussion
Protein families with known functions have successfully
been sorted into functionally different sub-groups using
phylogenetic techniques [28,29]. However, which
approach should be used with proteins of unknown func-
tion? We have combined phylogenetic and function shift
analyses to study the Plasmodium falciparum RIFIN protein
family. Our results demonstrated that these proteins
could be subdivided into two major groups that we
named A- and B-RIFIN proteins. We correlate these groups
with different localization studies [19,21,30] based on
proteins from each of these groups. Moreover, our func-
tion shift analysis points to the probability that these two
groups of proteins have undergone neo- or sub-function-
alization.

The 3D7 rif cDNA tree we constructed by the Neighbor
Joining method distinguished A- and B-type RIFIN vari-
ants, the latter being subdivided into three groups (B1, B2
and B3). The additional analysis of combined rif
sequences from three different strains (3D7, DD2 and
HB3) confirms this grouping (see Additional file 1). How-
ever, most DD2 and HB3 sequences clustered in the A and
B3 groups, with only four sequences in the B1/B2 group.
Our strict inclusion criteria have resulted in the removal of

over 45% of the DD2 and HB3 RIFINs, mainly truncated
sequences. We do not know whether these are simply
pseudogenes within these genomes or if they appear as
truncated due to the difficulties in sequencing and assem-
bling subtelomeric regions of P. falciparum parasites. Con-
sidering this latter case, we prefer not to draw genome
wide conclusions from possibly incomplete genomes.

Upon further investigation of the 3D7 RIFINs, B3-
sequences showed to be hybrid variants that have B1/B2
features in their C1 domains but A-type features in their
V2 domains. Vice versa, two A-variant hybrids carrying A-
specific C1 domains and B1/B2-specific V2 domains were
also found (Fig. 3). Recombination events and gene con-
version are likely to serve as explanations for the forma-
tion of such hybrid sequences. The former are essential for
the generation of antigenic diversity [11] and previously
proposed to be responsible for the diversity of the var gene
family [31]. These authors argue for recombination events
restricted between genes grouped according to their chro-
mosomal location and transcription orientation. In con-
trast to the var genes, there is no evidence for such specific
recombination within the A- and B-rif gene groups: ≈70%
of the A-rif and all B-rif genes have the same telomere-
directed transcription orientation; the remaining ≈30% of
A-rif genes do not cluster in our gene tree. Also, over 95%
of all rif genes analyzed here are subtelomeric. Theoreti-
cally, recombination can thus occur between A- and B-
types of the same orientation. DePristo et al. showed that
low-complexity regions are preferred sites for recombina-
tion events to occur in var genes [32]. Since low-complex-
ity regions are commonly found within RIFIN sequences
at the boundaries of the variable region, it is tempting to
suggest these sites to have a role in the generation of such
hybrid sequences. Gene conversion has been observed in
P. falciparum [11,33,34] and is the other possible explana-
tion for these sequences. However, gene conversion has a
homogenizing effect that is not detected between B3-rif
V2 regions and the sequences showing highest identity to
them (66,6% average sequence identity). This might be an
indication in favor of recombination events or, simply,
that gene conversion is not as frequent as suggested for fal-
cipain genes [34].

Whichever mechanism, both recombination and gene
conversion events are known to interfere with phyloge-
netic reconstruction [35]. Another factor that influences
the resolution of phylogenetic analysis is long branch
attraction [36,37]. We have seen that A- and B3-RIFIN
sequences have long branches (Fig. 2), which could also
interfere in our phylogeny. To further confirm our pro-
posed sub-grouping, we constructed phylogenetic trees of
the UTRs of rif genes. Previous analysis of gene families
has shown that long-term survival of paralogous genes
allows for changes in the regulatory regions of those genes
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Function shift analysis of A- and B- RIFIN proteinsFigure 4
Function shift analysis of A- and B- RIFIN proteins. (A) Sample sequences from the high stringency global alignment 
available as Additional file 4. Columns with Orange-Blue represent RSS; columns with yellow-green represent CSS; columns 
with Salmon-green represent both RSS and CSS. (B) Plots of Z-scores and U-values, for CSS (red curve) and RSS (blue curve) 
respectively, according to alignment position. The predicted consensus secondary structure is plotted with pink and green bars 
representing helices and loops, respectively. The heights of the bars indicate conserved predictions. Arrows correlate the high-
est scoring shifted sites with secondary structure predictions.
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[38]. Our analysis of rif gene UTRs demonstrated a signif-
icant segregation of these non-coding regions into similar
A- and B-rif UTR groups (see Additional file 2). Taking all
these facts into consideration, we conclude that despite a
seemingly low bootstrap value of 61%, RIFIN proteins can
be divided into A- and B-RIFIN proteins.

One question arises at this point: could there be an alter-
native grouping of rif/RIFIN sequences? var, the other

major family in P. falciparum has been classified according
to 5' UTR and genomic position [2,39,40]. Their classifi-
cation into 3 major sub-groups (A ≈17%, B ≈42% and C
≈40%) mainly relies on the following features: (i) 5' UTR
grouping (UPSA, B and C); (ii) gene position (A and B tel-
omeric, C central); and (iii) transciption orientation (A
and C towards the telomere, B towards the centromere)
[39]. However, PfEMP1 proteins are more complicated
than RIFINs by the fact they are modular. Recognizable

Table 1: Most significant Rate Shifting Sites

Position in the Alignment Residues in A-RIFINs Residues in B-RIFINs U-value Residue Conserved in family

121 L HQVEKL 38.5120 A
81 EARASKD S 32.1770 B
67 Y EQPHYNR 31.5882 A
32 RKQWSNM N 24.8960 B
91 QSTA S 21.2050 B
218 A TAQVIKL 20.3432 A
153 S NSLK 18.7734 A
88 KRDLQVH R 18.6986 B
22 X T 18.6422 B
440 L X 18.4488 A
256 X S 16.4634 B
371 X A 16.3382 B
126 E DEVQ 15.3118 A

Top RSS positions sorted according to their U-values for RSS (stringent cutoff of 15).

Table 2: Most significant Conservation Shifting Sites

Position in the Alignment Conserved Residue in A-RIFINs Conserved residue in B-RIFINs Z-Score

443 I T 5.132
156 D E 4.794
175 P G 4.509
112 C R 4.231
167 G C 3.852
83 M K 3.628
8 N K 3.561

115 E N 3.509
32 R N 3.432
65 E D 2.992
447 E N 2.932
58 T S 2.913
108 C R 2.783
7 I S 2.691

121 L H 2.671
31 Q K 2.442
33 N K 2.423
4 V L 2.347
81 E S 2.287
62 C S 2.211
168 I G 2.144
440 L A 2.127
125 L M 2.122
180 I F 2.093
34 H P 2.061

Top CSS positions sorted according to their Z-scores (stringent cutoff of 2).
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signatures allow for the identification of each module but
intra-module similarity is limited [2]. The overall function
of these proteins is accepted as adhesion to host receptors
and is highly module dependent (reviewed in [13]).

A parallel analysis of rif genes shows that, on one hand,
very few are not sub-telomeric and no obvious pattern
regroups these sequences. In the absence of more conclu-
sive evidence, we do not think this is a good criterion for
sub-grouping rif genes. On the other hand, rif UTR
sequences can be grouped into sub-clusters. Also, the 5'
UTRs of A-rif genes transcribed towards the centromere
are non-randomly distributed (see Additional file 2,
crosses). These observations confirm previous reports of
differential regulation of A-rif expression within the same
parasite strain [21]. However the clustering of these A-rif
UTR sequences is not congruent with the clustering of the
protein-derived cDNA sequences. A recent study of yir
genes, the largest P. yoelii yoelii multigene family, shows
that some yir genes undergo alternative splicing events
[41], which implies regulatory signals in addition to those
controlling gene activation and silencing. Therefore,
although it is tempting to further the sub-grouping of A-
rif genes, we believe additional experimental evidence of
differential transcription is required to ascertain these
sub-divisions.

A recent study has shown that the intracellular distribu-
tion of RIFIN molecules in the infected erythrocyte is
more diverse than previously envisaged [21]. In order to
address the issue of cross reactivity of the antisera used in
this study, Petter et al. [21] tested recognition of the anti-
RIF29 and anti-PFI0050c antisera against other recom-
binant proteins of each group. Also, their western blot
analyses show that neither A-RIFIN antisera are cross-reac-
tive. A-type RIFINs, detected by an antiserum directed
against PFB1035w [8] as well as an antiserum directed
against RIF29 [23] (both A-type RIFINs), are transported
to Mauer's clefts and towards the surface of the infected
cell [19,21], while B-type RIFINs, detected by an antise-
rum directed against PFB1040w [8] and an antiserum
directed against PFI0050c [30] (both B-type RIFINs), are
expressed inside the parasite [21], which is consistent with
this group's previous report [30]. Additionally, both A-
and B-RIFIN proteins were detected in merozoites, here
again with different sub-cellular distributions [21]. The
localization of B-RIFINs is concordant with the lower var-
iability they exhibit in their V2 region, at least for the B1-
and B2- RIFIN proteins (shorter branch lengths in Fig. 2).
This would be expected of sequences not exposed to the
immune system for long periods of time, as they would be
at the infected erythrocyte surface.

Although all RIFIN variants bear a motif for directing pro-
teins onto the secretory route, out of the parasite and into

the cytoplasm of the host cell, referred to as the Plasmo-
dium Export Element (PEXEL) or Vacuolar Transport Sig-
nal [24,42], additional factors not yet characterized might
enhance or interfere with protein export. Bioinformatics
analyses of biochemical properties of the PEXEL motif
and surrounding amino acids suggest possible modula-
tions of the role of this motif (J. Hiss, J. Przyborski, F.
Schwarte, K. Lingelbach and G. Schneider, personal com-
munication). Alternatively, presence or absence of con-
served motifs distributed elsewhere in the protein, such as
the 25 AA stretch present in A-RIFINs, and/or different
native 3D conformations of A- and B-RIFIN variants due
to the highly conserved subtype specific cysteine residues
(possibly involved in disulfide bonding), could impose
restrictions on the export signal carried by the PEXEL
motif. A previous study of synthetic constructs of the gene
PFI0050c (a B-RIFIN) fused to a green fluorescent protein
shows that this protein is retained in the parasite when its
full length is expressed [30]. However truncated versions,
notably when lacking the C-terminal conserved region,
are exported to the Maurer's Clefts. It is not clear whether
this difference of localization is due to missing motifs in
the C-terminus or to changes in 3D conformation due to
the truncation of the C-terminus, including a transmem-
brane domain, of the protein. Whichever their respective
transport mechanism, A- and B-RIFIN proteins have a dis-
tinct pattern of distribution during the intraerythrocytic
life cycle of the parasite, which in correlation with the
divergence of their regulatory regions [38] is suggestive of
functional differences.

To test this hypothesis, we carried out a function shift
analysis [26] of our sub-groups. The evolution of protein
families and the consequential evolution of their function
are accompanied by the accumulation of mutations at
individual sites throughout the protein sequence [43].
These sites may incur different types of selective pressures.
A specific site may become important for the maintenance
of the function, and therefore a specific amino acid is
fixed in that position. In contrast, a fixed site may lose its
importance, and become prone to mutation (typical RSS
sites). Alternatively, a switch of functional specificity of a
site may result in the switch from one amino acid to
another accompanied by strict conservation (no further
mutations allowed) in both sub-groups (typical CSS site).
Finally, the remaining mutations are thought to be ran-
domly accumulated at selectively neutral sites. However,
recent studies have shown that mutations in non-essential
residues can greatly influence protein stability and aggre-
gation [44]. These types of mutations may build up a com-
pensation mechanism for mutations in key functional
sites. Our function shift analysis shows, between A- and B-
RIFIN proteins, which sites are under strict or varying
selective pressure (see Additional file 3, rifins.html).
Although the function shift analysis does not take into
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consideration sites for which one of the groups has a full
gap (as the 25 AA insertion/deletion in the C1 domain),
the accumulation of these shifted sites throughout the
RIFIN sequences resulted in the prediction of a function
shift between A- and B-type RIFIN proteins. A more strin-
gent analysis of these shifted sites (see Additional file 4,
rigins_high.html) identified specific residues about 15 AA
ahead of and within the PEXEL motif with significant
physical and chemical property changes. This analysis
confirms the observations made by Hiss et al. (J. Hiss, J.
Przyborski, F. Schwarte, K. Lingelbach and G. Schneider,
personal communication). Also, the changes in cysteine
conservation between the two groups are potentially
involved in the variation of their three dimensional struc-
tures. These changes are likely to modulate the trafficking
properties of RIFIN proteins. These predicted RSS and CSS
sites can be tested, in future studies, by experimental tech-
niques like site directed mutagenesis for their ability to
bring about function changes.

Although rif genes have been initially discovered and sub-
sequently studied in the blood stage of the parasite's life
cycle [8,9,19,21,30,45], recent large scale transcriptional
and proteomic analyses show that rif gene transcripts and
RIFIN proteins are most abundant in sporozoites (25 and
20 respectively) as well as being present in gametocytes
and merozoites [18,21,46-49]. Recent work in other Plas-
modia species has also put forward modulations of expres-
sion and function of multi-copy protein families such as
VIR of P. vivax and both YIR and PY235 of P. yoelii yoelii
[41,50,51]. In particular, the expression of these proteins
in different stages of the parasite life cycle advocates for a
greater subdivision of these families and their specific
functions.

Conclusion
So far, the RIFIN protein family has been considered to be
one large family with an unknown function but our
results argue for a cautious approach when studying such
variable protein families. The RIFIN proteins have been
long neglected, possibly in part because of the complexity
involved in studying such a large group of proteins. Anti-
genic variation is mostly a secondary function, as seen
with the PfEMP1 proteins, which main function is in
cytoadhesion. While physiological functions of RIFIN
proteins remain obscure, it is expected that future focus
on RIFIN sub-families, the 25 AA insertion/deletion and
the predicted conservation-shifted sites between these
sub-groups will help to simplify the quest for understand-
ing their biological roles in the parasite. Finally, the lower
variability of B-RIFIN molecules and their expression
throughout the cycle of the parasite (multi-stage) suggest
these proteins as candidate vaccine targets. Further analy-
sis of this family in wild isolates may confirm this hypoth-
esis.

Methods
Phylogenetic analysis and sequence representation
3D7 RIFIN sequences were retrieved from PlasmoDB v4.4
[52]; DD2 and HB3 sequence and annotation informa-
tion was downloaded from the Broad Institute of Harvard
and MIT [53]. Protein multiple sequence alignments were
generated using the Kalign software [54] and manual
refinement was carried out with the help of the BioEdit
software [55]. We chose as inclusion criterion for RIFIN
sequences that they correspond to the described rif and
RIFIN structures: two exon gene and protein composed of
a signal peptide followed by a conserved domain, a varia-
ble region and ending with a typical positively charged C-
terminus. Out of the 159 RIFIN sequences from the 3D7
reference strain, 25 were either truncated sequences or
lacked obvious similarity with the majority of RIFIN
sequences and were thus eliminated from our analysis.
Similarly, only 59 (of the 156 with a RIFIN_STEVOR
PFAM annotation, 25 of which are STEVORs) and 65 (of
the 131, 26 of which are STEVORs) sequences of DD2 and
HB3, respectively, were retained for analysis.

Independent alignments and phylogenetic analyses were
carried out, on one hand, for the 3D7 strain (134
sequences) and, on the other hand, for the combined
3D7, DD2 and HB3 strains (258 sequences).

Five hundred base pairs of upstream and downstream
untranslated regions (UTR) as well as the cDNA sequences
of the 3D7 rif genes were retrieved from GeneDB [56]. The
UTRs were aligned in the same manner as the protein
sequences.

Protein sequences are easier to accurately align than
cDNA, however the degeneracy of the genetic code makes
cDNA more informative than the corresponding protein
translation. We used cDNA alignments derived from our
protein multiple sequence alignments in order to increase
the precision of the phylogenetic analysis. The cDNA
alignments were constructed by replacing the amino acids
in the protein alignments with the corresponding P. falci-
parum gene specific codons using the PAL2NAL software
[57]. All the alignments are available upon request to the
authors.

The C1 domain starts at the PEXEL motif and ends 30 AA
after the insertion/deletion. The V2 domain starts 31 AA
after the insertion deletion and ends 57 AA before the N-
terminus of the protein alignment.

The alignments were used to construct distance trees using
the Neighbor Joining method with the MEGA3.1 software
[58]. We used a p-distance model with gaps/missing data
treated as pairwise deletion for the proteins and UTRs and
complete deletion for cDNA alignments. No trees were cut
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down throughout the experiments. In order to estimate
robustness, bootstrap proportions were computed after
1000 replications.

Protein motifs were generated using Protein Sequence
Logos and Relative Entropy server [59,60].

Secondary structure predictions were computed using
PSIPRED [61,62]. The predicted secondary structures were
aligned according to the protein alignment and a consen-
sus prediction was generated using the Jalview software
[63].

Function shift analysis
The function shift analysis was carried out on each sub-
family pair, of the 3D7 genome sequences (after exclusion
of two A-RIFIN and four B-RIFIN sequences which are
hybrid A/B sequences; see Discussion for further details),
using a previously described method [26]. In this method,
two types of sites, namely rate shifting sites [27] and con-
servation shifting sites [26] are detected and a combined
measure is calculated to assess the level of function shift
between the sub-groups under consideration. In order for
the algorithms to calculate shifting sites, the sequences
need to segregate into their predicted groups. Six
sequences (two A-RIFIN and four B-RIFN proteins) clus-
tered in the opposite sub-group creating systematic errors
in the algorithm. These sequences are all hybrids and were
excluded from the function shift analysis.
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