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Abstract:  Background:  Osteoarthritis  (OA) is  a  common degenerative joint  inflammation that
may lead to disability. Although OA is not lethal, this disease will remarkably affect patient’s mo-
bility and their daily lives. Detecting OA at an early stage allows for early intervention and may
slow down disease progression.

Introduction: Magnetic resonance imaging is a useful technique to visualize soft tissues within the
knee joint. Cartilage delineation in magnetic resonance (MR) images helps in understanding the dis-
ease progressions. Convolutional neural networks (CNNs) have shown promising results in comput-
er vision tasks, and various encoder-decoder-based segmentation neural networks are introduced in
the last few years. However, the performances of such networks are unknown in the context of car-
tilage delineation.

Methods: This study trained and compared 10 encoder-decoder-based CNNs in performing carti-
lage delineation from knee MR images. The knee MR images are obtained from the Osteoarthritis
Initiative (OAI). The benchmarking process is to compare various CNNs based on physical specifi-
cations and segmentation performances.

Results: LadderNet has the least trainable parameters with the model size of 5 MB. UNetVanilla
crowned the best performances by having 0.8369, 0.9108, and 0.9097 on JSC, DSC, and MCC.

Conclusion: UNetVanilla can be served as a benchmark for cartilage delineation in knee MR im-
ages, while LadderNet served as an alternative if there are hardware limitations during production.

Keywords: Comparative study, convolutional neural network, encoder-decoder neural network, knee cartilage segmentation,
magnetic resonance imaging, osteoarthritis.

1. INTRODUCTION
Osteoarthritis (OA) is a common degenerative joint in-

flammation that may lead to disability in severe cases [1]. Al-
though OA is not lethal,  it  profoundly affects mobility [2]
and  the  patient’s  quality  of  life.  The  incessant  breaking
down of cartilage and continuous bone deformation are the
main causes that lead to joints failure. Patients of severe OA
(end-stage) will experience excruciating pain as the joint car-
tilages degenerate and cause bone-to-bone frictions during
movements.  Arthroplasty  or  total  knee  replacement  is  the
last option available for knee OA patients to regain their mo-
bility. However, this clinical procedure is invasive and cost-
ly. Therefore, diagnosing OA at an early stage is crucial for
clinical intervention in halting disease progression and miti-
gating disability in later stages.

*Address correspondence to this author at Department of Biomedical Imag-
ing, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur,
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Magnetic  Resonance  Imaging  (MRI)  is  the  safest  and
non-radioactive imaging technique to visualize the knee join-
t’s internal derangement, especially in determining OA fea-
tures of the asymptomatic uninjured knee [3]. The main ad-
vantage of MRI as compared with traditional radiography is
its capability to evaluate the structural changes during dis-
ease progressions [4] and provide biomarkers for early OA
diagnosis [5]. Degeneration of cartilage tissues is one of the
main criteria for an early stage of OA as defined by Luyten
et al. [6]. Thus, delineating cartilage in biomedical images is
crucial  because  early  detection  of  cartilage  defects  allows
for early medical interventions and leads to better treatments
[7-9].

In  clinical  practices,  cartilage  delineation  is  manually
performed by a radiologist [2]. Manual delineation is not on-
ly a time-consuming [2, 10] task but is also prone to inter-
and intra-observer variability [11, 12]. In recent years, deep
convolutional neural networks (CNNs) demonstrated state-
of-the-art  performance in biomedical  image analysis,  such
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as breast cancer analysis [13], bone disease prediction [14],
and age assessment [15]. Unlike most conventional machine
learning techniques such as fuzzy logic [16],  bi-histogram
equalization  [17],  and  image  registrations  [18],  CNN  re-
quires no feature engineering but demands a handful of da-
taset  annotation  and  computation  power.  Fortunately,  the
computation requirement is no longer a challenge to CNN
training  with  the  advancement  of  graphic  cards  and  cloud
computing.

Encoder-decoder  pair  is  the  main  core  component  in
most of the existing segmentation neural networks. The en-
coder  harvests  data  into features,  whereas the decoder  de-
codes the features to perform pixel-based classification; the
encoder is discriminative, whereas the decoder is generative.
These encoder-decoder-based CNNs (EDCNNs) reported re-
markable achievements in natural scene images. The current
study  aims  to  examine  the  performances  of  various  ED-
CNNs in delineating cartilage tissues from MR images.

The  contributions  of  this  study  are  listed  as  follows.
First, we propose to group the various EDCNNs into differ-
ent variations or families. To the best of our knowledge, our
study is pioneering as it provides a genealogical chart of ED-
CNNs.  Second,  we  perform  a  benchmarking  process  and
identify the best EDCNN in delineating knee cartilage tissue
within MR images. This paper is organized as follows. Sec-
tion  2  briefly  explains  about  U-Net,  the  base  version  of
ECDNN, and its variations. We grouped different ECDNNs
into families according to their unique characteristics and na-
tures. Section 3 illustrates the methodology, which includes
the datasets, data pre-processing techniques applied, specifi-
cations of model training, and model assessment strategy in
Section 3. Section 4 evaluates the performance of EDCNNs
by reporting the comparative results. Section 5 summarizes
the conclusion and future works.

2. BASE AND VARIATIONS OF EDCNNS
The general architecture of an EDCNN has two paths: a

contracting  path  for  context  capturing  and  an  expanding
path to localize features precisely. U-Net [19] is the first neu-
ral network to employ the encoder-decoder pairing scheme
into the network design for the segmentation task, making it
the first EDCNN. This architecture was inspired by the Ful-
ly Convolutional Network [20], a CNN that can perform pix-
el-wise classification. The encoding path of U-Net is built
with repeating blocks containing 3x3 convolutional layers, a
rectified linear unit (ReLU) [21], and a 2x2 max-pooling lay-
ers with the stride of 2. For each successive block, the fea-
ture map resolutions are reduced by half, whereas the fea-
ture channels are doubled. By contrast, the decoding path of
U-Net contains Up-convolution blocks to up-sample the fea-
ture maps while reducing the feature channels by half. Fea-
ture maps from the encoding path are concatenated to a de-
coding  path  after  each  respective  down-  and  up-sampling
process. These unique and symmetric paths yield a u-shaped
architecture.

2.1. Variations of EDCNNs
In this study, we refer to U-Net as the “Base” for ED-

CNNs while grouping its expansions into four different vari-
ations:  “Skip-Connections,”  “Weight-Initialized,”  “Aux-
iliary-Based,”  and  “Cascaded”  as  shown  in  (Fig.  1).

Base. The original U-Net has a huge drawback: the out-
put resolution from the final layer is not the same as the in-
put image. The feature maps were cropped from each level
of the contracting path as the border pixels were lost during
each convolution. To overcome this problem, we padded the
feature maps in each of the convolution layers, ensuring that
the output dimension is equivalent to the input size to pro-
duce a network known as UNetVanilla.

Skip-Connections. The degree of connectivity within a
neural  network  determines  the  information  flow from one
layer to another. DenseNet [22] exploits the effects of short-
cut  connections  by directly  connecting all  layers  with  one
another  and  performing  iterative  concatenation  of  feature
maps. The improvement in connectivity helps this network
converge faster. Although DenseNet was created for the clas-
sification  task,  a  segmentation  version,  namely,  FC-
DenseNet [23], was carefully extended. FC-DenseNet inher-
its the following advantages of DenseNet: parameter efficien-
cy,  implicit  deep  supervision,  and  feature  reuse.  FC-
DenseNet mitigates a large number of parameters by only up-
-sampling  the  feature  maps  created  at  the  previous  dense
blocks. FC-DenseNet has three variations: FC-DenseNet56,
FC-DenseNet67, and FC-DenseNet103 with 56, 67, and 103
layers, respectively. Unlike FC-DenseNet, LinkNet [24] pro-
vides  a  different  type of  linkage between encoder  and de-
coder, and the input of the encoder layer is bypassed to the
corresponding decoder’s output. This approach aims to re-
cover the lost spatial information that can be utilized by the
decoder  and  its  up-sample  operations.  Moreover,  the  de-
coder uses fewer parameters as the decoders share knowl-
edge learnt by the encoder at every layer.

Weight-Initialized.  Neural  networks  are  normally
trained from scratch,  and their  weights  are  initialized ran-
domly. A wrong initialization will lead to exploding or van-
ishing weights and gradients. Studies showed that deep neu-
ral  networks  could  converge  much earlier  and prevent  the
aforementioned scenarios with a proper initialization strate-
gy [25, 26]. These strategies initialize weights according to a
specific distribution with a formulated pair of mean and stan-
dard deviation. Apart from the manual initialization, we can
replace the encoder path with sequential convolution and Re-
LU layers from a pre-trained CNN. For example, Ternaus-
Net [27] and AlbuNet [28] are using pre-trained VGG [29]
and ResNet-34 [30] as encoder in the contracting path.

Auxiliary-Based. Apart from introducing a new weight
initialization strategy and skip-connections scheme, existing
studies  explore  the  potential  of  equipping  EDCNNs  with
auxiliary  elements  such  as  Attention  Gates  (AGs)  and
 recurrent residual modules. AG is commonly applied in im-
age captioning [31], machine  translation [32, 33], and  clas-
sification  tasks [34,  35].  With  the  help  of  self-attention  
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Fig. (1). Genealogical chart of EDCNNs. Various EDCNNs were grouped according to its distinctive functionality.

gating modules,  AttentionUNet [36] shows that  a  network
learns to focus on salient image regions and suppresses fea-
ture  activation  in  irrelevant  regions  without  introducing  a
substantial computational overhead. By contrast, Recurren-
tUNet [37] is using the recurrent residual module to accumu-
late features at different time-steps. This process allows the
production of a relatively strong representation of features
by extracting essential low-level features. RecurrentAttentio-
nUNet [38] is introduced by combining both AGs and recur-
rent residual module into U-Net. This network takes advan-
tages of three different cores: using U-Net to capture infor-
mation at multiple scales while integrating low- and high-
-level features; stacking residual blocks to allow a network
to go deeper; implementing attention modules to change the
attention-aware features adaptively.

Cascaded.  Conventional  EDCNNs come with a  single
pair of encoder-decoder until the birth of LadderNet [39], an
ensemble structure of multiple U-Nets. LadderNet concate-
nates encoder-decoder pairs, introducing additional paths for
information  flow  and  improving  the  capability  of  an  ED-
CNN to capture complex features. A weight-sharing strategy
was applied to the residual blocks to constrain the increase
in trainable parameters due to the chaining of encoder-de-
coder pairs.

3. EXPERIMENTAL

3.1. Comparative Study
All  the  EDCNNs were  trained  using  the  Osteoarthritis

Initiative (OAI) datasets, a longitudinal study of knee OA.
This  dataset  contains  4,796  participants,  with  X-rays  and
Magnetic Resonance (MR) images of participants’ knees. Al-
though the  size  of  this  dataset  is  enormous,  we arbitrarily

chose 100 sets of Double Echo Steady State (DESS) MR im-
ages  and  subsequently  annotated  both  femoral  and  tibial
knee cartilages. Twenty sets of MR images were held out as
a control set, while the remaining were partitioned into train-
ing and validation (ratio of 3:1). Isolating the control set will
prevent the control set  from exposure to the model during
the training and validation process. The goal of a control set
is to validate the models without any bias. The training and
validation  sets  respectively  contain  570  and  190  images,
while the control set has 189 images.

Unlike natural scene images, medical images are usually
stored as Digital Imaging and Communications in Medicine
(DICOM). As OAI datasets are saved as DICOM files, ex-
traction and format conversion are necessary. We performed
MR slice extraction and format conversion through python
scripting. The image dimensions of the MR slices were main-
tained at 384 height (pixels) and 384 width (pixels).

EDCNNs are prototyped using adaptive moment estima-
tion, batch size 1 for 30 epochs, initial learning rate at 1e-3,
and weight decay at 1e-4. The learning rate is controlled by
a learning rate scheduler along the model training process.
The scheduler reduces the learning rate by 0.1 if no improve-
ment  is  seen  on  the  validation  loss  for  two  consecutive
epochs. We also utilized the early stopping algorithm to pre-
vent a model from overfitting. We seized the model training
process if the validation loss remained stagnant for the past
two consecutive epochs, while the learning rate has been re-
duced  to  the  lower  bound  at  1e-10.  We  conducted  model
training by using PyTorch.

In this study, the model’s prediction output image was
compared with manual annotations pixel by pixel. Through
the  pixel-wise  comparison,  a  confusion  matrix,  as  seen  in
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Table  1  was  produced.  With  the  four  basic  elements  (i.e.,
TP, FP, FN, and TN), different metrics can be used to ana-
lyze the model’s performance. We evaluated the trained ED-
CNNs with the isolated control set with three different met-
rics.

Table 1. Confusion matrix and its four basic elements.

- - Manual Annotations
- Pixel’s Class Cartilage Background

Model’s Output
Cartilage True Positive False Positive

Background False Negative True Negative

Jaccard Similarity  Coefficient  (JSC):  JSC is  used to
gauge the similarity and diversity between two finite sample
sets. It measures by dividing the size of the intersection with
the  size  of  the  union  of  the  sample  sets.  The  formula  is
shown as equation 1:

(1)

Dice Similarity Coefficient (DSC): DSC is a harmonic
mean  between  precision  and  recall.  This  value  is  in  the
range  of  [0,  1].  DSC  is  different  from  JSC,  which  only
counts true positives once; however, both JSC and DSC do
not  take  the  true  negatives  into  account.  The  formula  is
shown as equation 2:

(2)

Matthew’s  Correlation  Coefficient  (MCC):  MCC  is
commonly used in the field of machine learning as a mea-
sure to assess a binary classification task.  Unlike JSC and
DSC, MCC summarizes the confusion matrix elements into
a value. MCC returns a value in the range [-1, 1], with per-
fect prediction labelled as 1; -1 indicates a completely incor-
rect prediction, while 0 represents that the prediction is no
better than random. The formula is shown as equation 3:

(3)

Table 2 reports the JSC, DSC, and MCC values of each
of the EDCNNs.

4. RESULTS AND DISCUSSION
The comparative study of EDCNNs can be split into two

parts: based on the model’s physical specifications and mod-
el’s performances. The first part investigates the model size
and the total trainable parameters for each EDCNN, while
the second part focuses on the performance metrics.

The size of a model is generally proportional to its num-
ber of trainable parameters, i.e., the more the trainable pa-
rameters, the bigger the model size. According to Table 2,
FCDenseNet-56 and LadderNet are the smaller models with
approximately 5 megabytes (MB) and approximately 1.3 mil-

lion trainable parameters. As mentioned in Section 2.1, the
weight-sharing strategy in LadderNet reduces the total train-
able parameters, although multiple encoder-decoder blocks
are  concatenated.  By  contrast,  auxiliary-based  EDCNNs
(i.e., AttentionUNet, RecurrentUNet, and RecurrentAttentio-
nUNet) have the largest size with at least 34 million train-
able parameters. However, a smaller model size is likely to
improve the efficiency of model serving but does not neces-
sarily generate better performances in terms of a model’s ac-
curacy and precision.

Table  2.  Comparing  the  physical  specifications  of  EDCNNs.
The  model  sizes  are  represented  in  MB.  The  smallest  model
size is in bold numbers.

Variant & Architecture Model Size
(MB) Trainable Parameters

UNetVanilla 118.0 31,045,441
FCDenseNet-56
FCDenseNet-67
FCDenseNet-103

LinkNet-34

5.39
13.40
36.00
83.20

1,374,865
3,460,353
9,319,521
21,794,721

TernausNet-11
TernausNet-16

AlbuNet

87.40
111.00
134.00

22,927,393
29,306,465
35,117,897

AttentionUNet
RecurrentUNet

RecurrentAttentionUNet

133.00
149.00
150.00

34,878,573
39,091,393
39,442,925

LadderNet 5.28 1,381,821

Following  JSC,  DSC,  and  MCC,  UNetVanilla  slightly
outperformed  FCDenseNet-56  and  LadderNet.  However,
they come with a  disadvantage because the former has 22
times more trainable parameters than the latter. With additio-
nal trainable parameters, the training process for UNetVanil-
la will be longer than FCDenseNet-56 and LadderNet. From
Table 3, UNetVanilla crowns all the performance metrics, al-
though it is only a baseline model. The reasons are as fol-
lows.

First, we limited each EDCNN to 30 training epochs as
stated in Section 3. In each of the epoch, each EDCNN iter-
ates through all images within the training dataset and pro-
ceeds to validation at the end of the epoch. The model state
with the lowest validation loss is then retrieved. However,
the EDCNNs might not be at its optimum stage as we only
limited the training to 30 epochs.

The second possible reason is the difference in the loss
function.  We  implemented  Binary  Cross  Entropy  (BCE)
with Logit loss as compared with Sorensen-Dice [36, 38] or
custom-weighted loss function [19, 24, 27, 28].  BCE with
Logit loss is numerically stable with log-sum-exp function.
This feature might explain why EDCNNs could not surpass
the performances of the baseline architecture.

The  third  reason  is  the  inconsistency  of  the  decoder
block. Several methods can increase the size of feature map
in the decoding path.  Examples are interpolation,  up-sam-

𝐽𝑆𝐶 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃 +  𝐹𝑁

𝐷𝑆𝐶 =
2𝑇𝑃

2𝑇𝑃 +  𝐹𝑃 +  𝐹𝑁

𝑀𝐶𝐶 =
𝑇𝑃 ∙ 𝑇𝑁 −  𝐹𝑃 ∙ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
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pling, and transpose convolution. Different approaches were
chosen for the EDCNNs on the basis of their original works.

Overfitting is another potential cause for a model not to
perform,  especially  models  involving  recurrent  modules.
The recurrent layer is well known for its high possibility of
overfitting. Tables 2 and 3 do not report the results of Recur-
rentUNet  and  RecurrentAttentionUNet  due  to  overfitting.
Apart  from  the  early  stopping  algorithm,  we  must  imple-
ment strong mechanisms to reduce the chances of overfitt-
ing.

Moreover, the masking of all images is manually annotat-
ed, which is subject to a degree of errors due to intra- and in-
ter-observer variability.  Unlike natural scene images, each
pixel from the MR images is not color-coded. Thus, segment-

ing the boundary of tissues is challenging, and the classifica-
tion  of  a  pixel  near  the  tissue  boundary  is  vague.  Mean-
while,  we  considered  the  manual  annotations  as  near
“Ground Truth” level, accepting that minor mistakes may ex-
ist across the manual masking.

In general, all the EDCNNs reported high scoring in all
performance metrics.  The lowest  and highest  performance
scores  across  EDCNNs  range  within  0.77-0.83  for  JSC,
0.86-0.91 for DSC, and 0.87-0.90 for MCC. As seen in (Fig.
2), all EDCNNs successfully predicted the cartilage regions.
The slight imperfections are the FP and FN pixels at the tip
of the cartilage as well as at the boundaries. By referring to
the confusion matrix element images, FCDenseNets tend to
have higher False Positive (red) pixels, while TernausNet-16
has the highest number of False Negative (green) pixels.

Table 3. Comparing the performances of EDCNNs in terms of JSC, DSC, and MCC onto the 20 sets of testing images. The scores are
tabulated as mean and standard deviation. Results of RecurrentUNet and RecurrentAttentionUNet are excluded due to overfitting
and did not result in any high confident results. The highest scores are in bold numbers.

Variant & Architecture Jaccard-Similarity Coefficient Dice Similarity Coefficient Matthew’s Correlation Coefficient
UNetVanilla 0.8369 ± 0.0285 0.9108 ± 0.0172 0.9097 ± 0.0174

FCDenseNet-56
FCDenseNet-67
FCDenseNet-103

LinkNet-34

0.8124 ± 0.0362
0.8017 ± 0.0323
0.7706 ± 0.0417
0.8305 ± 0.0389

0.8956 ± 0.0225
0.8895 ± 0.0200
0.8696 ± 0.0269
0.9067 ± 0.0243

0.8946 ± 0.0226
0.8898 ± 0.0193
0.8719 ± 0.0246
0.9057 ± 0.0243

TernausNet-11
TernausNet-16

AlbuNet

0.8310 ± 0.0298
0.7873 ± 0.0430
0.8357 ± 0.0308

0.9072 ± 0.0181
0.8801 ± 0.0275
0.9101 ± 0.0187

0.9062 ± 0.0182
0.8796 ± 0.0272
0.9090 ± 0.0188

AttentionUNet
RecurrentUNet

RecurrentAttentionUNet

0.8241 ± 0.0315
-
-

0.9028 ± 0.0195
-
-

0.9024 ± 0.0193
-
-

LadderNet 0.8253 ± 0.0373 0.9037 ± 0.0228 0.9025 ± 0.0232

Fig. (2). Segmentation results from EDCNNs and comparison against manual annotations on a single MR image. Image with a label ending
with “1” indicates the overlay results of EDCNNs onto MR images, while that label ending with “2” shows the results on the basis of the ele-
ments of confusion matrix: True Positive (black), False Positive (red), False Negative (green), and True Negative (gray). A to J are labels for
UNetVanilla, FCDenseNet-56, FCDensetNet-67, FCDenseNet-103, LinkNet-34, TernausNet-11, TernausNet-16, AlbuNet, AttentionUNet,
and LadderNet. (A higher resolution / colour version of this figure is available in the electronic copy of the article).
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CONCLUSION
This study provided a genealogical chart of EDCNNs by

grouping architectures according to their characteristics. It
then performed a benchmarking process onto 10 EDCNNs
to identify the best architectures in segmenting cartilage tis-
sue in MR images. In this comparison study, we compared
EDCNNs from two perspectives: the model’s physical speci-
fications  and  its  segmentation  performances.  On  the  one
hand, LadderNet has the least trainable parameters, and the
model size is only 5 MB. On the other hand, UNetVanilla
crowned the best  performances by having 0.8369,  0.9108,
and  0.9097  on  JSC,  DSC,  and  MCC,  respectively.  There-
fore, LadderNet is found to be the lightweight architecture,
while UNetVanilla is the best performing architecture. The
outcome of this study can serve as a guideline, reference, or
even a comparison standard in the task of delineating knee
cartilage tissue in MR images for OA analysis. We wish to
expand this study in the future by including other variations
and  designs  of  EDCNNs  and  performing  further  in-depth
comparative analysis.
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