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Abstract: We investigate the effect of applied gate and drain voltages on the charge transport
properties in a zinc oxide (ZnO) nanowire field effect transistor (FET) through temperature- and
voltage-dependent measurements. Since the FET based on nanowires is one of the fundamental
building blocks in potential nanoelectronic applications, it is important to understand the transport
properties relevant to the variation in electrically applied parameters for devices based on nanowires
with a large surface-to-volume ratio. In this work, the threshold voltage shift due to a drain-induced
barrier-lowering (DIBL) effect was observed using a Y-function method. From temperature-dependent
current-voltage (I-V) analyses of the fabricated ZnO nanowire FET, it is found that space charge-limited
conduction (SCLC) mechanism is dominant at low temperatures and low voltages; in particular,
variable-range hopping dominates the conduction in the temperature regime from 4 to 100 K, whereas
in the high-temperature regime (150–300 K), the thermal activation transport is dominant, diminishing
the SCLC effect. These results are discussed and explained in terms of the exponential distribution
and applied voltage-induced variation in the charge trap states at the band edge.
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1. Introduction

Zinc oxide (ZnO) has received considerable interest over the past few decades as a promising
material for a variety of applications in electronics, optics, and photonics because it exhibits a direct
wide bandgap (~3.37 eV), a large exciton binding energy (60 meV), a variety of nanoscale forms,
and piezoelectricity [1,2]. Recently, ZnO nanostructures have attracted much attention to the fields of
nanoscale electronic and optoelectronic devices, such as sensors [3], solar cells [4], energy harvesting
devices [5], light-emitting diodes [6], and especially field effect transistors (FETs) [7].

Since the FET based on nanowires is one of the fundamental building blocks in potential
nanoelectronic applications, it is very important to understand charge transport behaviors in
nanowire-based transistors. The electrical properties of nanowire-based FET devices sensitively
depend on their size and shape, defects and impurities, and surface states or defects [7–9]. Moreover,
it has been generally accepted that the contacts between the nanowire and the metal electrodes play
also an important role in the charge transport properties of nanowire-based FETs due to their large
surface-to-volume ratio coupled with unique geometry [10–12]. For example, Lee and coworkers
reported the distinct electrical transport features of FETs made from ZnO nanowires with two
different types of geometric properties: one type consisted of corrugated nanowires with a relatively
smaller diameter and higher density of surface states or defects, and the other type involved smooth
ZnO nanowires with a relatively larger diameter and lower density of surface states or defects [7].
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Lord et al. [10] showed that the electrical transport behavior of nanocontacts between ZnO nanowires
and Au metals can switch from Schottky to Ohmic depending on the size of the metal contact in relation
to the nanowire diameter. Jo et al. [11] and He et al. [12] demonstrated the influence of the contact
resistance on the electrical properties in In2O3 and ZnO nanowires, respectively.

In addition to structural geometry effects associated with nanowires and devices, importantly,
a better understanding of the charge transport properties relevant to the variation in the electrical
parameters actually applied to devices based on nanowires is required for the application of new
nanoscale electronics and devices. Recently, several studies on the effect of bias stress in ZnO nanowire
FETs have been reported [13,14]. Ju et al. [13] reported the effects of bias stress (gate or drain stress) on
the stability of the ZnO nanowire FET with a self-assembled organic gate insulator. Choe et al. [14]
investigated the threshold voltage instability induced by gate bias stress in ZnO nanowire FETs, which
is associated with the trapping of charges in the interface trap sites located in interfaces between the
nanowire and dielectric layer.

Herein, we report the effect of applied gate and drain voltages on the charge transport properties in a
ZnO nanowire FET with a back-gated configuration. To do this, temperature-dependent current-voltage
(I-V) measurements from 4 to 300 K were carried out. Using a Y-function method, we find that the
threshold voltage (Vth) shifts to a negative gate bias direction due to the drain-induced barrier lowering
(DIBL) effect, leading to increasing carrier concentration in the channel. The temperature-dependent
I-V measurements show that the transport behavior of the fabricated ZnO nanowire FET is governed
by space charge-limited conduction (SCLC) at low temperatures and low voltages, in particular by
variable-range hopping (VRH) conduction mechanism in the temperature regime from 4 to 100 K,
and by the thermal activation transport at the high-temperature regime (150–300 K).

2. Materials and Methods

High-density ZnO nanowires were grown on Au-coated c-plane sapphire substrates by a vapor
transport method without using metal-catalysts. To grow the high-density ZnO nanowires, a mixed
source of ZnO powder (99.995%) and graphite powder (99%) in a ratio of 1:1 was blended with ethanol.
The source materials and substrates were placed in an alumina boat, which was then loaded into
the center of a horizontal tube furnace. The furnace was heated at a rate of 35 ◦C/min and held at
approximately 920 ◦C for 40–60 min. During the whole growth process, a mixed gas of Ar and O2

with mixture ratio of 99:1 was maintained and then the flow rate of the mixed gas was 20 SCCM
(standard cubic centimeters per minute) and the pressure of the furnace was kept at approximately 600
Torr. When the furnace was allowed to cool to room temperature naturally, a large amount of a white
product was grown on the surface of the Au-coated c-plane sapphire substrate (not shown). Structural
characterization of the ZnO nanowires vertically grown on the sapphire substrate was performed using
field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM),
as shown in Figure S1. The energy dispersive x-ray spectroscopy (EDS) of the as-grown ZnO nanowires
shows compositional elements (the inset in Figure S1a). The TEM images (Figure S1c–e) indicate that
the growth direction of the ZnO nanowires is along the c-axis. A selected area electron diffraction
(SAED) pattern confirms the (0001) growth direction (the inset of Figure S1d). The photoluminescence
(PL) measurement of the ZnO nanowires at room temperature was examined by utilizing a FEX system
(NOST, Seongnam-si, Korea) with a He–Cd laser (325 nm) as an incident excitation source (Figure S2).
Next, the ZnO nanowires that were grown on the Au-coated sapphire substrate were transferred onto a
highly-doped silicon wafer with 100 nm-thick thermally grown silicon dioxide (SiO2) by dropping and
drying a liquid suspension of ZnO nanowires for the fabrication of FET devices. For all the fabricated
ZnO nanowire FETs, source and drain electrodes consisting of Ti (100 nm)/Au (80 nm) were deposited
by an electron beam evaporator, as shown in Figure 1a. The distance between the source and drain
electrodes is approximately 4 µm (Figure 1b). The electrical properties of the nanowire FET device were
characterized using a semiconductor characterization system (Keithley 4200-SCS, Keithley, Cleveland,
OH, USA) at a temperature range of 4–300 K. It should be noted that even though the nanowires are
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synthesized in the same conditions, there can be wire-to-wire or device-to-device variations in the
electrical and optical properties, which strongly depend on the dimension (diameter and length, etc.)
and surface states of the as-grown nanowires [7,15].
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Figure 1. (a) Schematic illustration of the fabricated ZnO nanowire FET with a back-gate configuration;
(b) A SEM image of the fabricated ZnO nanowire FET; (c) Output characteristics (IDS-VDS) and
(d) transfer characteristics (IDS-VG) at VDS = 1 V of the fabricated ZnO nanowire FET, which was
measured at room temperature. The inset in (d) shows a semi-logscale IDS-VG curve at VDS = 1 V.

3. Results and Discussion

A schematic illustration and a scanning electron microscopy (SEM) image of the fabricated ZnO
nanowire FET with a back-gate configuration are shown in Figure 1a,b. Figure 1c,d shows the output
(IDS-VDS) and transfer (IDS-VG) characteristics of the fabricated ZnO nanowire FET with a back-gate
configuration (Figure 1a,b), respectively. The fabricated ZnO nanowire FET showed typical n-type
semiconductor properties and depletion-mode operation, which exhibited a nonzero current at zero
gate bias and a negative threshold voltage [15].

Figure 2a shows the transfer characteristics at different drain-source voltages for the fabricated
ZnO nanowire FET measured at room temperature. From this, electrical characteristics were analyzed
by the Y-function method (YFM) (Figure 2b), which has been widely used for contact resistance and
mobility based on a straightforward analysis of the drain current (IDS) in the linear region (electron
accumulation region) [16,17]. The Y-function can be obtained from the IDS-VG (Figure 2a) as follows [17],

Y =
IDS
√

gm
=

√
VDS

µCG

L2
(VG −Vth) (1)

where gm = dIDS/dVG, µ is the mobility, CG is the gate capacitance, L is the channel length, and Vth is
the threshold voltage, in which µ and Vth can be determined from the slope and the VG-axis intercept
of the linear region of the Y-function, respectively (Figure 2b,c). In Figure 2b, it is clearly seen that
Vth shifts to a negative gate bias direction (marked by arrows) when VDS increases from 0.5 to 2.5 V,
which indicates the DIBL effect [18]. This effect can reduce the Schottky barrier between source/drain
electrodes and the nanowire contacts, affecting the contact resistance (RC). Using the Y-function,
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the RC at interfaces between source/drain electrodes and the ZnO nanowire can be calculated from the
following equation [17],

RC = Rtot −Rch =
VDS
IDS
−

VDS

k2(VGS −Vth)
(2)

where k is the slope of the linear region of the Y-function. The slopes of the linear region of the
Y-function are different (Figure 2c), indicating the difference in RC [17] (Figure 2d). Importantly,
the contact resistance is present at a metal-nanowire interface and can affect the electrical performance
of nanowire FETs [19]. The work function difference between the ZnO and the contact metal leads to
the formation of an energy barrier at the interface between the two materials, which can influence the
barrier height.
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nanowire. The values reached approximately 1 in the high- temperature range due to the thermally 
activated electrons, resulting in deviation from SCLC. The trap densities (Nt) can be estimated by 
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Figure 2. (a) IDS-VG curves measured at room temperature (T = 300 K) for the ZnO nanowire FET,
with VDS varying from 0.5 to 2.5 V; (b) YFM value as a function of VG at different VDS values for the
ZnO nanowire FET. From the linear fitting, Vth and mobility can be extracted from the VG-axis intercept
and the slope, respectively. Each arrow indicates the Vth for each VDS; (c) Slope and mobility as a
function of VDS extracted from linearly fitted curves in (b); (d) Contact resistance as a function of gate
bias, with VDS varying from 0.5 to 2.5 V.

To understand the charge transport mechanism in our nanowire FET with different contact
resistances, the temperature-dependent electrical measurement and analyses of the ZnO nanowire
FET were examined. Figure 3a shows the IDS-VDS characteristics of the ZnO nanowire FET at different
temperatures ranging from 30 to 200 K. With decreasing temperature, the IDS decreased, indicating a
strong temperature dependence. In addition, the logscale IDS–VDS showed the power law relationship,
I∝Vα, and such power law dependence withα> 2 is a characteristic feature of SCLC in a semiconductor
with an exponential charge trap distribution at the band edge [19,20]. The exponents, α, were extracted
from logscale IDS-VDS curves in the temperature range from 4 to 300 K at different gate biases, as shown
in the inset of Figure 3b. The α values increased with decreasing temperature, exceeding 2 in the
low-temperature range. This result implies the existence of trap states in the ZnO nanowire. The values
reached approximately 1 in the high- temperature range due to the thermally activated electrons,
resulting in deviation from SCLC. The trap densities (Nt) can be estimated by extrapolating the
logscale IDS-VDS characteristics, as shown in Figure 3b. Figure 3b shows a crossover point at which the
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conductance was independent of the temperature. The VDS value at the crossover point is denoted as a
crossover voltage (Vc) and it was approximately 25.4 V. The Vc can be expressed by [20],

VC =
qNtL2

2ε0εr
(3)

where q is the electric charge, L is the channel length, ε0 is the vacuum permittivity, and εr is the
relative permittivity of ZnO (~8.5). From the above equation, the calculated Nt at Vc = 25.4 V,
was 1.5 × 1015 cm−3. According to previous reports [21,22], most of the trap densities arise from
oxygen vacancies located on the nanowire surface rather than at the nanowire center. Therefore,
the calculated Nt may correspond to the interface trap states at the metal-nanowire contacts or the
nanowire-dielectric layer, which could affect the charge transport of the ZnO nanowire FET.
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Figure 3. (a) IDS-VDS curves measured at VG = 0 V and different temperatures (30–200 K) for the ZnO
nanowire FET; (b) The extrapolation derived from the corresponding logscale IDS-VDS characteristics at
different temperatures of (a), which provide a critical voltage (VC).

Next, we carried out analyses of the Arrhenius plots of the conductance (G) versus 1000/T at
different VG values to further investigate the transport mechanism of the ZnO nanowire FET, as shown
in Figure 4a,b. Two different regimes in the temperature-dependent conductance of the nanowire
FET device were clearly observed at different VG values (VG from −3 to 10 V, 1 V steps), implying
different charge transport mechanisms. Note that the Arrhenius plots at low VDS regime (0.5, 1, 1.5,
and 2 V) were also characterized for different VG values. In the high-temperature region (150–300 K)
(marked by the gray-colored region), the thermally activated carriers were dominant in the charge
transport, indicating a conductance proportional to exp(−Ea/kT), which can be expressed as Equation (4)
below [23–25].

G = G0exp
(
−

Ea

kBT

)
(4)

where G and G0 are the conductance and weak temperature-dependent constant, respectively, Ea is the
activation energy, kB is the Boltzmann constant, and T is the temperature. The Ea characterized by the
linear region in the semi-log plot of conductance versus 1/T is shown in Figure 4a. Here, the Ea can be
extracted by the linear fits in the high-temperature region in Figure 4a (marked by the gray-colored
region). Figure 4c shows the extracted Ea as a function of the VG at different VDS values for the
device. The Ea decreased due to the lowered Schottky barrier at the metal/semiconductor interface
when the applied biases increased, including VG and VDS. In contrast, in the low-temperature region
(4–100 K), the carrier conduction is mainly attributed to VRH, which exhibits charge transport through
the trap states near the Fermi level. According to previous reports [23,26–30], the VRH conduction
can be expected due to charge trapping at localized states in semiconducting nanomaterials at low
applied bias and low temperature where the Fermi level lies in localized sates within a band gap.
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The conductance following the three-dimensional (3D) VRH mechanism can be expressed by the
following equation [25,31,32],

G = G0exp
[
−

(T0

T

)1/4]
(5)

where T0 are the characteristic characteristic temperature. Figure 4b shows that the low-temperature
conductance of the device is well fitted by the 3D VRH as a function of T−1/4 at low applied bias,
indicating that the conductance follows 3D VRH model well for low electric fields. From Equation
(5), the values of T0, which represent how actively VRH occurs [25,31,32], were extracted, as shown
in Figure 4d. As the applied biases (VG and low VDS) increased, the T0 also continuously decreased,
implying reduced VRH conduction. The result might be due to the enhanced electron concentration
from the lowering of the Schottky barrier. The increased electron concentration might additionally fill
the trap states, leading to the reduction in hopping conduction [25,31,32]. As a result, the Ea and T0

values can be modified by the applied electric field, which is associated with the modulation of localized
trap states. This trend is consistent with the results reported for semiconducting nanomaterials with
localized trap states [23,30,33].

Materials 2020, 13, x FOR PEER REVIEW 6 of 9 

 

in Figure 4d. As the applied biases (VG and low VDS) increased, the T0 also continuously decreased, 
implying reduced VRH conduction. The result might be due to the enhanced electron concentration 
from the lowering of the Schottky barrier. The increased electron concentration might additionally 
fill the trap states, leading to the reduction in hopping conduction [25,31,32]. As a result, the Ea and 
T0 values can be modified by the applied electric field, which is associated with the modulation of 
localized trap states. This trend is consistent with the results reported for semiconducting 
nanomaterials with localized trap states [23,30,33]. 

 
Figure 4. (a) Arrhenius plots of the conductance (G) versus 1000/T at different gate voltages from −3 
to 10 V for VDS = 0.5 V. (b) Semilogarithm plots showing the temperature dependence of conductance 
(G) vs 1/T1/4 fitted by Equation (5) at different gate voltages for VDS = 0.5 V. The activation energy (Ea) 
(c) and characteristic temperature (T0) (d) depending on the applied gate and drain voltages. 

The energy band diagram presented in Figure 5 qualitatively shows the charge transport 
mechanisms of the ZnO nanowire FET, as discussed above. Unlike the equilibrium condition (Figure 
5a), the applied biases (VG and VDS) could induce Schottky barrier modulation, resulting in changes 
in the carrier injection properties at the metal-semiconductor contact, as shown in Figure 5b. As a 
result, the modified Schottky barrier could affect the carrier concentration, leading to a change in the 
density of localized trap states in the channel. Furthermore, different temperature-dependent charge 
transport mechanisms were observed. Specifically, thermal activated (TA) conduction of electrons 
from a shallow level of localized states was dominant for charge transport in the high-temperature 
range, denoted as TA in Figure 5b (left), whereas the VRH conduction through the trap states near 
the Fermi level was dominant in the low-temperature range, denoted as VRH in Figure 5b (right). 
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The energy band diagram presented in Figure 5 qualitatively shows the charge transport
mechanisms of the ZnO nanowire FET, as discussed above. Unlike the equilibrium condition
(Figure 5a), the applied biases (VG and VDS) could induce Schottky barrier modulation, resulting in
changes in the carrier injection properties at the metal-semiconductor contact, as shown in Figure 5b.
As a result, the modified Schottky barrier could affect the carrier concentration, leading to a change in
the density of localized trap states in the channel. Furthermore, different temperature-dependent charge
transport mechanisms were observed. Specifically, thermal activated (TA) conduction of electrons
from a shallow level of localized states was dominant for charge transport in the high-temperature
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range, denoted as TA in Figure 5b (left), whereas the VRH conduction through the trap states near the
Fermi level was dominant in the low-temperature range, denoted as VRH in Figure 5b (right).Materials 2020, 13, x FOR PEER REVIEW 7 of 9 
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4. Conclusions
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