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Abstract 

Background:  Increasing studies have reported the therapeutic effect of mesenchymal stem cell (MSC)-derived 
exosomes by which protein and miRNA are clearly characterized. However, the proteomics and miRNA profiles of 
exosomes derived from human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) 
remain unclear.

Methods:  In this study, we isolated exosomes from hESCs, hiPSCs, and human umbilical cord mesenchymal stem 
cells (hUC-MSCs) via classic ultracentrifugation and a 0.22-μm filter, followed by the conservative identification. 
Tandem mass tag  labeling and label-free relative peptide quantification  together defined their proteomics. High-
throughput sequencing was performed to determine miRNA profiles. Then, we conducted a bioinformatics analysis to 
identify the dominant biological processes and pathways modulated by exosome cargos. Finally, the western blot and 
RT-qPCR were performed to detect the actual loads of proteins and miRNAs in three types of exosomes.

Results:  Based on our study, the cargos from three types of exosomes contribute to sophisticated biological pro-
cesses. In comparison, hESC exosomes (hESC-Exos) were superior in regulating development, metabolism, and anti-
aging, and hiPSC exosomes (hiPSC-Exos) had similar biological functions as hESC-Exos, whereas hUC-MSCs exosomes 
(hUC-MSC-Exos) contributed more to immune regulation.

Conclusions:  The data presented in our study help define the protein and miRNA landscapes of three exosomes, 
predict their biological functions via systematic and comprehensive network analysis at the system level, and reveal 
their respective potential applications in different fields so as to optimize exosome selection in preclinical and clinical 
trials.
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Introduction
Extracellular vesicles (EVs) are tiny vesicles actively 
secreted by cells, mainly containing exosomes, microves-
icles (MVs), and apoptotic bodies [40, 56, 57]. They are 
widely distributed in multiple body fluids, such as saliva, 
breast milk, blood, cerebrospinal fluid, bile, and urine 
[57]. Among them, exosomes have a lipid bilayer with a 
diameter of 40–200 nm, a buoyant density of 1.13–1.18 g/
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ml in the sucrose gradient, and a cup-shaped appearance 
under an electron microscope [21, 53]. Various bioac-
tive compounds, including proteins, nucleic acids, and 
lipids, endow the intercellular communication function 
of exosomes between cells [16, 17]. The lipid bilayer is a 
delicate barrier that protects the contents of exosomes 
from body fluid enzymatic degeneration [49]. Stable 
exosomes can mediate complicated physiological and 
pathological processes via paracrine activity, including 
organ and reproductive development, antigen presenta-
tion, neuronal communication, immune response, aging 
regulation, and cell proliferation [57, 62].

Exosome formation and release is a finely regulated 
process, and the sorting of exosome-encapsulated con-
tents occurs by virtue of the mobilization of various 
proteins [22, 47]. Multiple proteins are crucial to exo-
some formation, which contains the endosomal sorting 
complex required for transport (ESCRT), tetraspanins 
(CD9, CD63, and CD81), apoptosis-linked gene 2-inter-
actin protein X (Alix), and tumor susceptibility gene 
101 (TSG101) [38, 55]. The intracellular trafficking of 
exosomes is driven by the collective activity of a series 
of proteins, including molecular switch RAB GTPases 
and cytoskeletal proteins, such as actin and tubulin 
[24]. Subsequently, exosome secretion is complemented 
by the SNARE complex and synaptotagmin family [22]. 
Research has determined that the budding and shedding 
of exosomes rely on calcium activity and ESCRT recruit-
ment [15]. As a messenger, exosome release is involved in 
cell crosstalk in response to cellular physiology and path-
ological changes, such as activation, pH change, hypoxia, 
radiation damage, or cell stress [61].

To uncover the components of exosomes and their 
possible physiological and pathological functions, pro-
teomic, transcriptomic, and other techniques are often 
used to study exosome RNAs and proteins from different 
species, tissues, and cells [44]. Exosome proteomics anal-
ysis typically includes three steps: the isolation, purifica-
tion, and characterization of exosomes, the identification 
of protein components using mass spectrometry, and raw 
data analysis [14]. The cellular state significantly affects 
the protein composition and abundance of exosomes. At 
present, quantitative proteomic techniques for analyz-
ing protein characterization and abundance are used to 
elucidate the mechanism underlying exosome produc-
tion and deepen our understanding of the physiological 
and pathological roles of exosomes in cells [39]. Among 
them, mass spectrometry-based quantitative proteomics 
technologies are widely used, mainly including label-free 
and stable isotope-labeled methods [13, 42]. miRNAs 
are small bioactive molecules that are closely associated 
with various life activities. The high-throughput sequenc-
ing technique is characterized by high sensitivity and 

precision and has wide application in miRNA sequencing 
(18–30 nt) [6]. Given the development of current tech-
nology, there is no barrier to dissecting the protein and 
miRNA profiles of exosomes.

The hESCs and hiPSCs have high differentiation poten-
tial [36]. However, their direct application in treatment is 
limited due to the risk of malignancy and ethical issues 
[31]. In contrast, mesenchymal stem cells (MSCs) have a 
broader application for intervention in multiple diseases 
in clinical settings [8]. However, their direct use still faces 
several limitations, including a low survival rate, immu-
nological rejection, and safety issues [8, 43]. Currently, 
much attention has been paid to exosomes because of 
their biosecurity, stability, non-aneuploidy, and low 
immunogenicity [51]. Previous studies have documented 
the component comparison of MSCs derived from differ-
ent tissues and their exosomes containing proteomic and 
miRNA profiles [59]. Gong et al. also depicted the regula-
tory network of hESC extracellular vesicles (EVs) in terms 
of the proteome, but only in aging-related pathways with-
out focusing on others [19]. Questa et al. weaved the EV 
proteomic atlas of hiPSCs derived from human foreskin 
fibroblasts (HFFs) [45]. Although these studies have 
partly reported the protein components of EVs, they did 
not focus solely on exosomes, and their comprehensive 
proteomic analysis is not clearly articulated. In particu-
lar, the miRNA profiles have not yet been described. To 
address this, exosomes isolated from hESCs, hiPSCs, and 
hUC-MSCs were selected in the present study for further 
investigation targeting their proteome and miRNA pro-
files to gain novel insights for their research and clinical 
application.

Methods
Preparation and characterization of exosomes
hESCs and hiPSCs were cultured in ncTarget medium 
(cat. no. RP01020; Nuwacell. Ltd, China), while the 3rd 
generation of hUC-MSCs were cultured in serum-free 
ncMission hMSC medium (cat. no. RP02010; Nuwacell. 
Ltd, China). Next, 350 mL of the supernatant of cells in 
the logarithmic growth phase (~ 80% confluency) was 
collected for exosome purification. The exosomes were 
extracted in accordance with a series of recognized 
centrifugation and ultracentrifugation, as previously 
described [34, 52]. Briefly, the conditioned media (CM) 
were collected and subjected to gradient centrifuga-
tion (300 × g for 10 min, 2000 × g for 15 min, 10, 000 × g 
for 30  min) to separate cell debris. Exosomes were pel-
leted from the collected supernatants at 100, 000 × g 
for 70  min using a Ti45 rotor (Beckman Coulter, USA). 
They were then resuspended in PBS for the next filtration 
using a 0.22-μm MF-Millipore™ Membrane filter (Sigma, 
USA). The filtrate was subjected to ultracentrifugation 
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at 100, 000 × g for 70 min. The final exosome pellet was 
resuspended in PBS for the next analysis. Dynamic light 
scattering (DLS) system (Wyatt Technology, USA) was 
used to measure the concentration and size of the iso-
lated exosomes.

Transmission electron microscopy (TEM)
TEM scanning was performed to describe the mor-
phology of isolated exosomes, as previously described. 
The resuspended exosomes (1  μg in 10  μl of PBS) were 
planted on a carbon-coated copper grid (200-mesh) and 
allowed to adsorb onto it for 2  min, followed by two 
washes with double-distilled water. Then, the grids were 
negatively stained with 8 μL of 2% uranyl acetate solution 
for 1 min. After natural drying, the samples were exam-
ined using a Tecnai Spirit system (Thermo Fisher, USA) 
at 120 kV.

Dynamic light scattering
The size distribution of exosomes was described via 
nanoparticle tracking analysis using a dynamic light 
scatterometer (Wyatt Technology, USA) according to 
the manufacturer’s instructions (271-DPN), as previ-
ously reported[23]. Briefly, the exosome pellet was 
resuspended in 100 μL of PBS. Then, 50 μL of the above 
exosomes was added to 1450 μL of PBS and vortexed for 
30 s. Exosomes (1.5 mL) were transferred to a disposable 
cuvette for equilibration at 25 °C for 30 s. The dispersant 
refractive index value was 1.37, and both Z-average and 
polydispersity (PDI) determined the size of the exosome 
particles. Three independent measurements were taken 
for each sample.

Tandem mass tag (TMT) labeling and label‑free relative 
peptide quantification (LFQ) analysis
Total protein was extracted from exosomes, and the con-
centration was quantified using the Bradford method. 
The samples were separated by 12.5% sodium dodecyl 
sulfate polyacrylamide gel electrophoresis (SDS-PAGE). 
The protein suspensions were digested with trypsin (cat. 
no. 9002-07-7; Sigma, USA) in 40 μL of tetraethylam-
monium bromide (TEAB) buffer for 12  h at 37  °C and 
then labeled with TMTsixplex™ isobaric label reagent 
set (cat. no. 90061; Thermo Fisher, USA). TMT-labeled 
peptides were fractionated by reversed-phase chroma-
tography using an Agilent 1260 Infinity II HPLC system 
(Agilent Technology, USA). LC-MSC/MS analysis was 
performed by LC-Bio Technology Co., Ltd. (Hangzhou, 
China). Briefly, the analysis was completed using the 
combination of a Q Exactive Plus mass spectrometer 
and Easy nLC (Thermo Fisher, USA). Survey scans were 
acquired at a resolution of 70,000 at m/z 200. MS/MS 
spectra were captured by the MASCOT engine using the 

built-in software Proteome Discoverer 2.4. Label-free rel-
ative peptide quantification analysis was also performed 
by LC-Bio Technology Co., Ltd. as previously reported 
[27]. Briefly, the digested proteins of exosomes were pre-
separated by HPLC and detected by mass spectrometry. 
Raw files from technical and biological replicates were fil-
tered, de novo sequenced, and assigned with protein ID 
using PEAKS 8.0 by searching against the human Swiss-
Prot database. Three independent exosome samples were 
subjected to TMT or label-free assay. The final protein 
profiles of exosomes were determined by overlapping the 
data of TMT (mascot score > 60, abundance > 100, and 
P < 0.05) and label-free (at least two tests results > 0 and 
P < 0.05).

Differentially expressed proteins (DEPs) were consid-
ered valid after the data were normalized by protein load-
ing and differential p-value false discovery rates (FDR) 
corrected [30]. In particular, the proteins with log2|fold 
change|> 1 (|log2FC|> 1), as well as statistical significance 
(P < 0.05), were classified as enriched in exosomes.

miRNA profile analysis
Total RNA was extracted from isolated exosomes using 
the mirVana™ miRNA Isolation Kit (cat. no. AM1560; 
Thermo Fisher, USA). The RNA samples were subjected 
to quality inspection for the miRNA microarray assay 
performed by LC-Bio Technology Co., Ltd. The analysis 
of raw data was performed as previously reported [9]. 
Differentially expressed miRNAs were selected as can-
didate miRNAs at a p-value < 0.05 and |log2FC|> 2. Data 
were omitted if they corresponded to questionable miR-
NAs, according to previous reports or in-house validated 
miRNAs [12]. The miRNA target genes were determined 
by the overlap of prediction of Targetscan (https://​www.​
targe​tscan.​org/​vert_​80/) and miRanda database (http://​
www.​bioin​forma​tics.​com.​cn/l) under the restriction of 
threshold value > 90 (Targetscan) and maximum free 
energy < − 10 (miRanda).

Bioinformatics analysis
Raw data were subjected to analysis using the Maxquant 
software package (v1.6.0), and the Swiss-Prot_Human 
data was set as a reference (20,600 proteins) (Proteome 
ID: UP000005640). Identified proteins were mapped to 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) based on KOBAS analysis [60] 
(http://​kobas.​cbi.​pku.​edu.​cn/) terms to determine their 
biological and functional properties. Cytoscape software 
and igraph package in R software (version 3.6.1) were 
used to draw the interwoven network of exosome pro-
teins or miRNAs between signaling pathways.

https://www.targetscan.org/vert_80/
https://www.targetscan.org/vert_80/
http://www.bioinformatics.com.cn/l
http://www.bioinformatics.com.cn/l
http://kobas.cbi.pku.edu.cn/
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Statistical analysis
All experiments were performed in triplicate. The quanti-
tative repeatability of proteins and miRNAs was elevated 
via principal component analysis (PCA), relative stand-
ard deviation, and Pearson’s correlation coefficient. The 
results were analyzed using unpaired Student’s t-test. 
Data are expressed as the mean ± standard error of the 
mean (SEM). P-values were considered statistically sig-
nificant at *P < 0.05, **P < 0.01, and ***P < 0.001.

Results
Exosome isolation and identification
The culture and identification of three human pluri-
potent stem cells were described in Additional file  1. 

Exosomes were isolated from the conditioned media of 
three types of stem cells (Additional file  1: Fig. S1) and 
identified based on morphology, particle size, concen-
tration, and surface markers [19]. TEM revealed that 
these exosomes had a cup-shaped morphology (Fig. 1A), 
and DLS revealed that their size distribution was within 
50–200 nm (Fig. 1B). Western blotting indicated that the 
isolated exosomes carried the positive markers CD63, 
TSG101, and HSP70 but not the negative marker cal-
nexin (Fig. 1C). Each hESC had a similar exosome yield 
to that of hiPSCs, and both were higher than that of 
hUC-MSCs (Fig.  1D). These results indicate that repre-
sentative exosomes were arrested, with no differences 
in shape; however, differences were found among the 

Fig. 1  Quality analysis of isolated exosomes. A Representative TEM micrograph of exosomes derived from hESCs, hiPSCs, and hUC-MSCs. Scale 
bar = 100 nm. B DLS system describing the diameter of isolated exosomes. C Western blot assay determining the expression of Calnexin, TSG101, 
CD63, and HSP70 in cells and exosomes. GAPDH was set as the internal reference. D Evaluation of mean exosomes yield per cell. All statistical data 
are presented as means ± standard deviation of two-tailed unpaired Student’s t-tests. *P < 0.05
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concentrations of exosomes isolated from the three types 
of stem cells.

Bioinformatics of shared and top‑loaded proteins
The SDS-PAGE and quantitative analyses revealed that 
while the protein concentrations of hESC-Exos and 
hiPSC-Exos were not different, they were both higher 
than those of hUC-MSC-Exos (Additional file  1: Fig. 
S2A and B). The PCA plot indicated that exosomes had 
good uniformity within each group (Additional file  1: 
Fig. S2C). The peptide fragments digested via enzymatic 
hydrolysis passed the quality inspection (Additional 
file 1: Fig. S2D–G) and then were subjected to next bio-
informatics analysis. Moreover, the proteins of three 
exosomes were mainly located in the extracellular region, 
followed by the cytoplasm (Additional file  1: Fig. S2H). 
To describe the protein profiles of the three types of 
exosomes, we integrated the TMT (Additional file 2) and 
label-free data (Additional file  3) under the conditions 
of mascot score > 60 and abundance > 100 (TMT assay) 
and abundance of at least two repetitions > 0 (label-free 
assay). Finally, 554, 437, and 911 seeds were selected for 
analyzing the protein profiles of hESC-Exos, hiPSC-Exos, 
and hUC-MSC-Exos, respectively (Additional file 1: Fig. 
S3A). Then these candidates were subjected to Venn dia-
gram assay to select shared proteins (Additional file  1: 
Fig. S3B). Bioinformatics analysis revealed the 303 shared 
proteins dominated the regulation in these signaling 
pathways including regulation of actin cytoskeleton, focal 
adhesion, PI3K-AKT, carbon metabolism, etc. (Addi-
tional file 1: Fig. S3C). GO analysis also indicated that the 
shared proteins were enriched in extracellular exosome, 
membrane, protein binding, and extracellular region, 
(Additional file 1: Fig. S3D).

Furthermore, the top-loaded proteins were selected 
from the candidates with high FDR confidence (TMT 
assay) and abundance of each repetition > 0 (label-free 
assay) (Fig. 2A). Based on these results, 163, 187, and 451 
proteins were screened in the hESC-Exos, hiPSC-Exos, 
and hUC-MSC-Exos, respectively (Additional file 1: Fig. 
S3E). We then described the expression abundance curve 
of the three types of exosomes and identified the top ten 
gene symbols of loaded proteins in exosomes (Fig.  2B). 
The highly loaded proteins were subjected to bioinfor-
matics based on the KOBAS algorithm. The proteomes 
of the three types of exosomes were all involved in a 
complex signaling pathway regulatory network, and the 
top 20 pathways were then sorted based on the value of 
-log10 (P-value) (Fig. 2C–E). All proteomes were enriched 
in the extracellular matrix (ECM)-receptor interaction 
and PI3K-AKT signaling pathways. The protein–protein 
interaction (PPI) analysis revealed that the top-loaded 
proteins in both hESC-Exos and hiPSC-Exos were 

enriched in cell cycle and metabolic pathway, whereas the 
top-loaded proteins in hUC-MSC-Exos were enriched in 
immunity regulation-related pathways (Fig. 2F–H).

Pairwise comparison of exosome proteomics
To evaluate the difference between each two exosome 
proteomes, we constructed a Venn diagram to recognize 
the unique and overlapping protein-coding gene clusters. 
The shared protein-coding genes were then subjected to 
volcano and heatmap analysis and to GSEA, and differ-
entially expressed proteins were filtered at P < 0.05 and 
|log2FC|≥ 1. Comparison of hESC-Exos and hiPSC-Exos 
(Additional file  1: Fig. S4A) revealed that their unique 
clusters were both enriched in ECM-receptor interac-
tion and complement and coagulation cascades (Addi-
tional file  1: Fig. S4B and C) while overlapping clusters 
participated in multiple signaling pathways, including 
metabolic, cell cycle, and Hippo pathways (Fig. 3A). Sig-
nificant differentially expressed protein-coding genes are 
presented in the volcano plot (Fig. 3 B). Heatmap analysis 
revealed that Cluster 1 proteins related to developmen-
tal biology, TGF-β signaling, and pluripotency regula-
tion were enriched in hESC-Exos. Proteins in Cluster 2, 
which were mainly enriched in hiPSC-Exos, were related 
to taurine and hypotaurine metabolism, RNA transport, 
thiamine metabolism, and folate biosynthesis (Fig. 3 C). 
GSEA further emphasized the more important role of 
hESC-Exos in developmental biology and cell cycle com-
pared to hiPSC-Exos (Additional file 1: Fig. S5).

The comparison between hESC-Exos and hUC-MSC-
Exos (Additional file  1: Fig. S4 D) revealed that unique 
protein-coding gene clusters of hESC-Exos were mainly 
involved in EGFR, TGF-β, cell cycle, pluripotency regu-
lation, and Wnt signaling (Additional file  1: Fig. S4E). In 
contrast, hUC-MSC-Exos unique clusters were enriched 
in many immunoregulation-related signaling pathways 
such as complement system, inflammation regulation, and 
microbial infection (Additional file 1: Fig. S4F). Overlapping 
clusters were highly enriched in ECM-receptor interaction, 
complement and coagulation cascades, and PI3K-AKT 
signaling (Fig. 3D). The volcano plot depicts the differences 
between hESC-Exos and hUC-MSC-Exos (Fig.  3E). The 
upregulated proteins in hUC-MSC-Exos (Cluster 1) were 
mainly involved in the complement response, natural killer 
cell activity, and Rap1 and PPAR signaling. In contrast, 
hESC-Exos upregulated proteins were mainly involved in 
PI3K-AKT, MAPK, and AMPK signaling (Fig.  3F). GSEA 
confirmed the higher regulatory ability of hiPSC-Exos in 
pluripotency (Additional file 1: Fig. S6A and D) and that of 
hESC-Exos in immunoregulation, including natural killer 
cell-mediated cytotoxicity (Additional file  1: Fig. S6B and 
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Fig. 2  The top-loaded proteins in exosomes were involved in sophisticated network regulation. A Screening of the top-expressed candidate 
proteins from TMT and label-free protein pools under the conditions of high FDR confidence, mascot score > 60, and abundance > 100 (red dots) 
and abundance in each sample > 0 (green dots). Yellow dots represent the top-loaded proteins of exosomes. B Expression abundance curve of the 
three exosome types and the top ten loaded proteins in exosomes. C–E KEGG analysis of the top-expressed proteins in hESC-Exos, hiPSC-Exos, and 
hUC-MSC-Exos, respectively, ranked from high to low -Log10(P-value). The red bar represents the -Log10 (P-value) and the blue dot the proportion of 
candidate genes in the total pathway-related gene pool. F–H PPI analysis of top-expressed proteins in hESC-Exos, hiPSC-Exos, and hUC-MSC-Exos, 
respectively, according to the KOBAS algorithm. The color of the histogram corresponds to the color of the gene clusters in the PPI network
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Fig. 3  The shared proteins had different signaling regulation abilities when performing pairwise bioinformatics analysis. A, D, and G KEGG analyses 
of overlapping proteins in hESC-Exos and hiPSC-Exos A, hESC-Exos and hUC-MSC-Exos B, and hiPSC-Exos and hUC-MSC-Exos G. The red bar and 
black dot represent the -Log10 (P-value) and the proportion of candidate genes in the total pathway-related gene pool, respectively. B, E, and H 
Volcano diagrams of differentially expressed proteins in hESC-Exos vs hiPSC-Exos B, hESC-Exos vs hUC-MSC-Exos E, and hiPSC-Exos vs hUC-MSC-Exos 
E at P < 0.05 and |log2FC|≥ 1. Histogram of the GO and KEGG analyses of upregulated protein clusters ranked from high to low significance. C, 
F, and I Heatmap of the levels of shared proteins between hESC-Exos and hiPSC-Exos C, hESC-Exos and hUC-MSC-Exos F, and hiPSC-Exos and 
hUC-MSC-Exos I. The significantly enriched pathways are shown on the right
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E) and regulation of COVID19-SARS-CoV2 (Additional 
file 1: Fig. S6C and F).

The hiPSC-Exos and hUC-MSC-Exos comparison (Addi-
tional file  1: Fig. S4G) revealed that the unique hiPSC-
Exos protein-coding gene set was significantly associated 
with non-homologous end-joining, TGF-β, and vitamin 
B6 metabolism (Additional file  1: Fig. S4H), whereas that 
of hUC-MSC-Exos was mainly involved in immunoregu-
lation-related pathways (Additional file  1: Fig. S4I). Their 
overlapping proteins also participated in the regulation of 
ECM-receptor interactions, complement and coagulation 
cascades, and PI3K-AKT signaling (Fig. 3G). The volcano 
plot presents the differentially expressed proteins (Fig. 3H). 
Cluster 1 proteins in the heatmap indicated that hUC-
MSC-Exos mainly regulated the immune response and the 
AMPK signaling pathway while hiPSC-Exos mainly regu-
lated the cell cycle and insulin, Hippo, and mTOR signaling 
pathways (Fig. 3 I). GSEA further supported the dominant 
role of hiPSC-Exos in the regulation of developmental pro-
cesses (Additional file 1: Fig. S7A and D) and maintenance 
of pluripotency (Additional file 1: Fig. S7B and E), whereas 
hUC-MSC-Exos were mostly involved in the immunoregu-
lation process (Additional file 1: Fig. S7C and F).

Bioinformatics of overlapping proteomes
Next, we investigated the shared proteomes of the three 
exosome types. In total, 309 protein-coding genes (Fig. 4A) 
were subjected to GO and KEGG analyses. The results 
indicated that shared protein-coding gene sets among the 
three exosome types were mainly involved in extracellular 
activities and biological processes including cellular protein 
metabolic processes, signaling receptor binding, ATP bind-
ing, NAD binding, wounding healing, and lipid metabolic 
processes (Fig. 4B). They also contributed to the construc-
tion of complex regulatory networks of signaling pathways 
such as PI3K-AKT, glycolysis/gluconeogenesis, Hippo, 
Oxytocin, HIF-1, cell cycle, and AMPK pathways (Fig. 4C). 
There were intricate regulatory relationships between these 
proteomic and canonical signaling pathways (Fig.  4D). 
The bubble plot evidences the different abundance of each 
protein cluster in canonical signaling pathway. Whereas 
hESC-Exos and hiPSC-Exos might have stronger regula-
tory abilities than hUC-MSC-Exos in terms of cell cycle 
and AMPK signaling pathways, hUC-MSC-Exos might 
have prominent regulatory effects on the VEGF and NF-κB 
signaling pathways (Additional file 1: Fig. S8).

The heatmap analysis further revealed differences in the 
expression of shared proteins (Fig.  4E). In Cluster a, pro-
teins involved in the PI3K-AKT, Hippo, VEGF, and B-cell 
receptor signaling pathways were enriched in hUC-MSC-
Exos and hESC-Exos. Proteins in Cluster b mainly par-
ticipated in the regulation of PPAR signaling, cholesterol 
metabolism, and IgA production and were depleted in 
hESC-Exos. The hUC-MSC-Exos mainly contained Clus-
ter c proteins, which regulated the complement response, 
microbial infection, HIF-1 signaling, MAPK signaling, 
metabolic pathways, and the NF-κB pathway. Proteins in 
Cluster d, which were enriched in hiPSC-Exos, participated 
in regulating Ras signaling, oxidative phosphorylation, and 
mTOR signaling. Proteins in Cluster e were more abundant 
in both hiPSC-Exos and hESC-Exos than in hUC-MSC-
Exos, and they were involved in multiple metabolic pro-
cesses, such as the citrate cycle, cell cycle, insulin signaling, 
fatty acid metabolism, and AMPK signaling. Proteins in 
Cluster f participated in regulating calcium reabsorption, 
glycolysis/gluconeogenesis, adrenergic signaling, and pyru-
vate metabolism and were depleted in both hUC-MSC-
Exos and hiPSC-Exos. Proteins in the different clusters are 
listed in Additional file 4.

miRNA profiles of the three exosome types
To investigate the miRNA profiles of the three exosome 
types, total RNA was isolated from exosomes to couple 
the 5’ and 3’ ends for subsequent inverse transcription. 
The cDNA obtained was used for library construction and 
broad testing. RNA integrity number (RIN) was 2.7, 2.6, 
and 2.6 in hESC-Exos, hiPSC-Exos, and hUC-MSC-Exos, 
respectively (Additional file 1: Fig. S9A). Determination of 
RNA concentration revealed that hESC-Exos dominated 
the RNA load, followed by hiPSC-Exos and hUC-MSC-
Exos (Additional file  1: Fig. S9B). Pearson’s correlation 
coefficient (Additional file  1: Fig. S9C) and PCA (Addi-
tional file  1: Fig. S9D) were used to evaluate the repeat-
ability of miRNAs quantitatively. Heatmaps were used to 
represent the differentially expressed miRNAs in the three 
exosome types (Additional file 1: Fig. S9E), and the num-
ber of differentially expressed miRNAs at P < 0.05 or 0.01, 
was evaluated between each two exosome types (Addi-
tional file 1: Fig. S9F). Based on the sequencing results, the 
top 20 miRNAs in each of the three exosome types were 
identified (Fig. 5 A–C). In hESC-Exos, has-miR-302 domi-
nated the read counts and comprised has-miR-302b-3p, 
has-miR-302a-5p, and has-miR-302d-3p (Fig.  5A). The 

Fig. 4  The overlapping proteins of three exosome samples were involved in complex biological regulation. A Venn diagram of the shared proteins 
in hESC-Exos, hiPSC-Exos, and hUC-MSC-Exos. B and C GO and KEGG analyses of the shared proteins among the three exosome types. The red bar 
represents the -Log10 (P-value) and the blue dot the proportion of candidate genes in the total pathway-related gene pool. D Crosstalk between 
the shared proteins in hESC-Exos, hiPSC-Exos, and hUC-MSC-Exos and regulated the signaling pathways they regulate. E Heatmap of the levels of 
shared proteins among the three exosome types. The significantly enriched pathways are shown on the right

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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three miRNAs with the highest read counts were has-miR-
372-3p, has-miR-371a, and has-miR-302a in hiPSC-Exos 
and has-miR-21-5p (Fig.  5B), has-miR-146a-5p, and has-
miR-320a-3p in hUC-MSC-Exos (Fig. 5C).

To investigate the miRNAs involved in biological pro-
cesses, the top miRNAs were filtered at P < 0.05 and read 
count > 1000 for further target gene prediction. Enriched 

genes were then subjected to GO and KEGG analyses. 
The results indicated that hESC-Exos miRNAs signifi-
cantly affected the following processes: Rap1, PI3K-AKT, 
calcium, Hippo, cAMP, ErbB, Foxo, cell cycle, AMPK 
signaling pathway, etc. (KEGG analysis) (Fig.  5D), and 
the cell cycle, multiple organism development, intracel-
lular signal transduction, cell differentiation, aging, Wnt 

Fig. 5  The top miRNAs derived from three exosome samples finely regulate complex signaling network. A–C Abundance of the top 20 miRNAs in 
hESC-Exos (A), hiPSC-Exos (B), and hUC-MSC-Exos (C). D–F Pathways regulated by the top miRNAs (read > 1000) in hESC-Exos (D), hiPSC-Exos (E), 
and hUC-MSC-Exos (F). G–I Biological processes regulated by the top miRNAs (read > 1000) in hESC-Exos (G), hiPSC-Exos (H), and hUC-MSC-Exos (I). 
The red bar represents the -Log10 (P-value)
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signaling, and fatty acid metabolism. (biological pro-
cess) (Fig.  5G). Target gene enrichment of hiPSC-Exos 
miRNAs indicated that the following processes were 
significantly regulated: PI3K-AKT, Rap1, Ras, Calcium, 
Hippo, cAMP, and cGMP-PKG signaling pathway, etc. 
(KEGG analysis), and the cell cycle, multiple organism 
development, phosphorylation, cell differentiation, cell 
migration, and response to hypoxia. (biological process) 
(Fig.  5H). In the regulatory network of hUC-MSC-Exos 
miRNAs, the most plausible biological processes were: 
Rap1, Ras, PI3K-AKT, calcium, cAMP, Hippo, the cell 
cycle, JAK-STAT, and HIF-1 signaling pathway. (KEGG 
analysis) (Fig.  5F), and phosphorylation, intracellu-
lar signal transduction, ATP binding, cell division, lipid 
metabolism, T cell co-stimulation, wound healing, NF-κB 
binding, and inflammatory response. (biological process) 
(Fig. 5 I). The network of the top five miRNAs and their 
regulatory pathways was also depicted (Additional file 1: 
Fig. S10).

Unique and shared miRNAs of the three exosome types
Next, we investigated the role of the unique miRNAs 
from the three exosome types in signal regulation. The 
Venn diagram revealed 16, 27, and 61 unique miRNAs in 
hESC-Exos, hiPSC-Exos, and hUC-MSC-Exos, respec-
tively, and 70 shared miRNAs (Fig.  6A). The regulatory 
network of miRNA-protein interactions was evaluated 
by targeting the unique miRNAs. In hESC-Exos, the 
16 unique miRNAs were found to regulate autophagy, 
PI3K-AKT, Foxo, HIF-1, ErbB, mTOR, longevity, AMPK 
pathway, etc. (Fig.  6B). For the 27 unique miRNAs in 
hiPSC-Exos, KEGG analysis revealed multiple signifi-
cant ontologies, including metabolism of xenobiotics, 
AGE-RAGE signaling, mTOR signaling, retinol metabo-
lism, cellular senescence, MAPK signaling, etc. (Fig. 6C). 
In hUC-MSC-Exos, the 61 unique miRNAs were found 
to participate in the regulation of PI3K-AKT signaling, 
human papillomavirus infection, cGMP-PKG signaling, 
cellular senescence, Ras signaling, mTOR signaling, JAK-
STAT signaling, NF-κB signaling, etc. (Fig. 6D).

The miRNA components indirectly contribute greatly 
to multiple signaling pathways. To investigate the inter-
action between the unique miRNA clusters and canoni-
cal pathways, we performed a regulatory network 
analysis using the IPA database (https://​www.​ipagl​obal.​
com/​about/​datab​ases/). IPA results revealed that the top 
read count miRNAs (P < 0.05, abundance > 1000) in the 
regulatory network were mapped to multiple canonical 
signaling pathways. miRNAs and their corresponding 
pathways are listed in Additional file 5. Using hESC-Exos 
miRNAs as examples, multiple high-abundance miRNAs, 
including has-miR-95-3p, has-miR-30a-3p, has-miR-
181-5p, has-miR-183-3p, and has-miR-301a-3p, were 

involved in AMPK, autophagy, ErbB, longevity regula-
tion, and the FOXO signaling pathway, among others. 
Cytoscape was used to draw the network of unique miR-
NAs from the three exosome types and their regulated 
signaling pathways (Additional file 1: Fig. S11).

miRNA profiles related to pluripotency regulation
To investigate the regulatory effect of exosome-derived 
miRNAs on the pluripotency of stem cells, we predicted 
the target genes and screened the miRNAs involved in 
regulating the above process. Pluripotency-related miR-
NAs (abundance > 1000) in the three exosome types are 
listed (Fig.  7A–C). The top three miRNAs in the three 
exosome types were has-miR-302b-3p, has-miR-302a-5p, 
and has-miR-302d-3p (hESC-Exos), has-miR-372-3p, 
has-miR-371a-5p, and has-miR-221-3p (hiPSC-Exos), 
and has-miR-21-5p, has-miR-146a-5p, and has-miR-
320a-3p (hUC-MSC-Exos). Furthermore, we described 
the regulatory network of the top ten miRNAs from 
exosomes and their target genes involved in pluripotency 
regulation (Fig.  7D–F). Venn diagram analysis revealed 
12 overlapping miRNAs, which indicated that they might 
be crucial miRNA sets in regulating the pluripotency of 
stem cells (Fig. 7G–H).

Specific proteins and miRNAs in the three exosome types
To further verify the actual expression of specific pro-
teins in the three exosomes, we performed western 
blotting to detect candidate proteins in different path-
ways (Fig.  8A and B). For the cell cycle, three crucial 
regulatory factors, MCM5, PCNA1, and CDK1, were 
more highly expressed in hESC-Exos and hiPSC-
Exos than in hUC-MSC-Exos. PRKAA1, belonging to 
the ser/thr protein kinase family, is a cellular energy, 
conserved factor in all eukaryotic cells and showed 
a similar load in the three exosomes. SYK is widely 
expressed in hematopoietic cells and is involved in 
the coupling of activated immunoreceptors to down-
stream signaling events. BTK plays a crucial role in B 
cell development and immunoregulation. The protein 
loads of SYK and BTK were elevated in hUC-MSC-
Exos compared to those in hESC-Exos or hiPSC-Exos. 
Wnt5 is a member of the Wnt gene family, which has 
been implicated in developmental processes, includ-
ing the regulation of cell fate and patterning during 
embryogenesis. hESC-Exos were the most enriched in 
Wnt5, followed by hiPSC-Exos and hUC-Exos. RHEB 
is vital in regulating growth and cell cycle progres-
sion given its role in the mTOR/S6K signaling pathway. 
Western blotting indicated that the three exosome 
types carried a similar RHEB load. EGFR is a cell 
surface protein that binds the epidermal growth fac-
tor, thus inducing receptor dimerization and tyrosine 

https://www.ipaglobal.com/about/databases/
https://www.ipaglobal.com/about/databases/
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autophosphorylation, leading to cell proliferation. 
Both hESC-Exos and hUC-MSC-Exos had higher 
EGFR levels than hiPSC-Exos did. ICAM2 is a member 

of the intercellular adhesion molecule (ICAM) fam-
ily and mediates adhesive interactions important for 
antigen-specific immune response, NK cell-mediated 

Fig. 6  The signal regulation characteristics of specific miRNAs derived from three exosome samples. A Venn diagram of the miRNAs in hESC-Exos, 
hiPSC-Exos, and hUC-MSC-Exos. B–D Pathways regulated by the unique miRNAs in hESC-Exos (B), hiPSC-Exos (C), and hUC-MSC-Exos (D). The red 
bar represents -Log10 (P-value). E Heatmap of the shared miRNAs among the three exosome types. F Significantly enriched pathways regulated by 
the different miRNA clusters in (E). The bubble size represents -Log10 (P-value)
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clearance, lymphocyte recirculation, and other cellular 
interactions important for immune response and sur-
veillance. Among the three exosomes, hUC-MSC-Exos 
had the highest ICAM2 level. In addition, the top five 
miRNAs in the three exosome types were evaluated by 
RT-qPCR, and their expression was consistent with the 
RNA sequencing results (Fig. 8C).

Discussion
EVs are rich in various biologically active substances and 
are mainly composed of proteins, nucleotides, and lipids 
[3, 17]. In recent decades the research community has 
ushered in the golden age of analytical techniques for 
protein, nucleotide, and lipid omics. Among these tech-
niques, mass spectrometry [14, 20] and high-throughput 
sequencing [6, 54] enable the large-scale screening and 

Fig. 7  Three exosome samples had different miRNA profiles related to pluripotency regulation. A–C Abundance of the miRNAs related to 
pluripotency regulation. D–F Regulatory network of the top ten miRNAs and their target genes in pluripotency regulation. G Venn diagram of the 
miRNAs involved in pluripotency regulation and shared among the three exosome types. (F) Abundance of the miRNAs in (G). The bubble size 
represents abundance
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identification of EV components. Two databases, Vesi-
clepedia (https://​micro​vesic​les.​org) [28] and EVpedia 
(https://​evped​ia.​info) [29], are continuously updated 
and provide a summary of the components of mam-
malian and non-mammalian EVs, respectively. As EVs, 
exosomes differ from MVs in terms of their biological 

origin and physical dimensions [46]. With continuous 
advances in the field of EVs, new methods are constantly 
being optimized to facilitate the isolation and purifica-
tion of exosomes, meeting the rigor need for comparative 
analysis. To replenish the exosome databases and expand 
the scope of their clinical applications, in this study we 

Fig. 8  Detection of specific proteins and miRNAs in the three exosome types. A Representative western blot graphs regarding the detection 
of representative proteins in hESC-Exos (1), hiPSC-Exos (2), and hUC-MSC-Exos (3). GAPDH was set as the internal reference. Three independent 
replicates were performed. B Quantification of protein levels in (A). All statistical data are presented as means ± standard deviation of two-tailed 
unpaired Student’s t-tests. *P < 0.05, **P < 0.01, and ***P < 0.001. C RT-qPCR detection of the expression of the top five miRNAs in the three exosome 
types. Three independent replicates were performed

https://microvesicles.org
https://evpedia.info
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describe the component framework of exosomes from 
hESCs and hiPSCs, which has not yet been reported. We 
also compared their composition and biological functions 
with those of hUC-MSC-derived exosomes. To this end, 
we arrested exosomes from EVs at recognized sizes using 
ultracentrifugation combined with filtration, excluding 
MVs and apoptotic bodies, which facilitated the refine-
ment of exosome components. During the logarithmic 
growth phase of the cells, the collected CMs were ready 
for exosome preparation. The particle concentration of 
hESC-Exos was found to be significantly higher than that 
of hUC-MSC-Exos, but similar to that of hiPSC-Exos. 
Similar results were obtained when comparing the pro-
tein concentrations. In contrast, total RNAs exhibited a 
significant decrease in gradients from hESC-Exos and 
hiPSC-Exos to hUC-MSC-Exos. These results indicate 
that hESCs (H9) may play a central role in the replication 
activity and have a stronger ability to secrete exosomes 
among the three stem cells.

In previous studies, researchers have focused on the 
accessibility of exosomes [1, 11, 58] while being confined 
to their research field. As a result, less attention has been 
paid to difference analysis between exosomes derived 
from different sources. Although some EV proteomics of 
the three stem cells has been performed, researchers have 
not yet refined the dimension of exosomes [19, 32, 59], 
and the assay method is generally based on a single mass 
spectrometry technique. In the present study, both TMT 
and LFQ methods were used to measure and quantify the 
protein components of the isolated exosomes. Bioinfor-
matics analysis revealed that highly loaded proteins could 
coordinate the processes of development, damage repair, 
and metabolism via intervening Wnt, AMPK, VEGF, and 
cell cycle signaling pathways, which was consistent with 
a previous report [19]. Similarly, hiPSC-Exos could also 
participate in the above biological processes by affecting 
the collateral signals. However, the EV proteomics of hiP-
SCs induced from HFFs showed a different gene ontology 
overview, focusing more on the processes of DNA repli-
cation and RNA catabolism [45]. Therefore, we deduced 
that exosomes secreted from hiPSCs derived from differ-
ent tissues may have different protein profiles. In terms 
of hUC-MSCs-Exos, its components blended into many 
immunomodulatory activities by regulating complement 
system, microbial infection, NF-κB signaling, and so on, 
and affected multiple metabolic signals, such as choles-
terol metabolism, phospholipase D metabolism, and 
purine metabolism, providing results similar to those of 
previous reports [1, 59].

In the present study, we compared the proteomes 
of three types of exosomes pairwise and further ana-
lyzed their exclusive proteins regarding functional path-
ways and regulatory networks. The hiPSCs are a type of 

pluripotent stem cells that can be generated by repro-
gramming somatic cells to mimic the pluripotency of 
hESCs [48], which shows that these cells are similar to 
a certain extent. Although their exosome proteins were 
highly overlapping, those of hESC-Exos were enriched 
in developmental regulation and the cell cycle functions, 
indicating that hESC-Exos might have a stronger ability 
to regulate pluripotency than hiPSC-Exos in our study. 
The pluripotency of hUC-MSCs is inferior to that of hiP-
SCs and hESCs, as reflected by their notably different 
protein profiles. The proteome of hUC-MSC-Exos dif-
fered from that of hESC-Exos and hiPSC-Exos in immu-
noregulation, being enriched in proteins regulating the 
activities of natural killer cells and the complement sys-
tem. Furthermore, bioinformatics of the proteins shared 
by the three exosome types revealed that the upregula-
tion of hESC-Exos or hiPSC-Exos proteins focused more 
on metabolism, development, and cell proliferation func-
tions by interfering with classical signaling pathways such 
as the AMPK, Wnt, mTOR, and the cell cycle. In compar-
ison, the upregulated proteins of hUC-MSC-Exos were 
not only enriched in immune-related signaling, including 
the complement system, microbial infection, NF-κB sign-
aling, and B cell receptor signaling, but also in metabolic 
processes such as PPAR signaling, cholesterol metabo-
lism, and MAPK signaling.

Exosome cargos are of unique tissue and cellular ori-
gins and contain miRNAs [16]. The present study also 
showed that exosomes isolated from CMs produced 
in  vitro by hESCs, hiPSCs, and hUC-MSCs contained 
distinctive and specific miRNA signatures. We found 
that each exosomal miRNAs had a unique landscape. 
miRNA expression and interaction with the 3’ or 5’ UTR 
of their target genes are involved in complex physiologi-
cal and pathophysiological activities[18]. The top-loaded 
miRNAs of the three exosome types regulate a series of 
biological processes, including the cell cycle and Hippo, 
Wnt, AMPK, and TGF-β signaling. However, the miRNA 
profiles of hUC-MSC-Exos had a stronger immunomod-
ulatory ability than that of hESC-Exos or hiPSC-Exos 
regarding the behaviors of B and T cells, as well as TNF, 
JAK-STAT, and NF-κB signaling. In particular, most 
unique miRNA profiles were linked to the regulation 
of autophagy, longevity, and PI3K-Akt, mTOR, AMPK, 
and p53 signaling, indicating that these miRNA clus-
ters may modulate aging, aging-related diseases, tissue 
repair after injury, and metabolism. The unique miRNAs 
of hiPSC-Exos regulate mTOR signaling, cellular senes-
cence, retinol metabolism, and TNF signaling, which 
also contributes to senescence and metabolism regula-
tion. In addition to mTOR signaling and cell senescence, 
the unique miRNAs of hUC-MSC-Exos regulate Foxo, 
Jak-STAT, and NF-κB signaling, which may contribute 
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to remodeling the metabolic and immune microenvi-
ronment. The analysis of shared miRNAs among the 
three exosome types further supported these differences 
in signaling regulation. Overall, the miRNA clusters in 
hESC-Exos or hiPSC-Exos coordinated the occurrence 
of multiple events, such as development, cell cycle, and 
cell differentiation. The miRNA set of hiPSC-Exos seem 
to play less important role in these functions than that of 
hESC-Exos but a more important role than that of hUC-
MSC-Exos. As for hUC-MSC-Exos, the miRNA profiles 
found indicate their superior ability in regulating the 
immune environment, particularly in wound and infec-
tion healing.

In developmental biology, exosomes derived from 
pluripotent stem cells promote the maintenance of the 
pluripotent state. Therefore, miRNAs entering the cell 
microenvironment contribute significantly to the main-
tenance of stemness [4, 32]. The three exosome types in 
the present study contained different miRNA clusters 
that regulate pluripotent signaling. Nevertheless, the 12 
miRNAs shared among the three exosome types may 
be crucial for pluripotency regulation, including miR-
21-5p, miR-92a-3p, and miR-221-3p. This hypothesis 
remains to be tested, and more stem cell types need to 
be investigated. In addition, the overlapping miRNAs 
between hESC-Exos and hiPSC-Exos may be involved in 
cell differentiation and reprogramming, as indicated by 
the results of more detailed analyses. For example, the 
miR-302 family was highly enriched in and exclusive to 
hESC-Exos and hiPSC-Exos and contributed greatly to 
influencing stem cell behavior by modulating reprogram-
ming [33, 50]. This point indirectly matches previous 
research regarding the uniqueness of miR-302 in human 
and mouse ESCs [33, 50]. Expression analysis of miRNA 
clusters that were highly expressed in ESCs during the 
initial phase of reprogramming revealed the induction 
of miR-17 [41] and miR-106a/106b [37]. Overexpression 
of miR-93 promoted an increase in the colony number of 
iPSCs [35].

The signaling network established by exosome car-
gos drives intracellular events, further intervening in a 
series of pathological and physiological processes [3]. 
The exosomes of hESCs contain numerous loaded pro-
teins and miRNAs predicted to regulate the landscape 
of development, metabolism, and anti-aging via blend-
ing into the AMPK, mTOR, and Wnt signaling pathways 
and regulating autophagy, longevity, and the cell cycle. 
Multiple studies have highlighted the functions of hESC-
EVs in rejuvenating the aging hippocampus [25, 26], bone 
marrow [19], and endothelial cells [10], as well as allevi-
ating recurring osteoarthritis by delivering specific pro-
teins or miRNAs [58]. Our findings also support previous 
research, in which ESC-derived EVs were found to have 

positive implications in restoring impaired cardiovascu-
lar function [5]. ESC-derived EVs enabled maintaining 
the stemness of ESCs, thus being capable of reprogram-
ming [4], which is in line with our results for hESC-Exos 
cargos. In our study, hiPSCs reprogrammed from umbili-
cal cord cells had biological functions similar to those of 
hESC-Exos; however, no reports have specifically sup-
ported this theory. In comparison, hUC-MSC-Exos have 
received more attention, and various preclinical and clin-
ical trials have clarified their therapeutic effect on multi-
ple diseases [51]. Although hUC-MSC-Exos contribute to 
tissue regeneration and tissue remodeling, these abilities 
are inferior to that of hESC-Exos and hiPSC-Exos. Our 
analysis revealed that hUC-MSC-Exos exhibited excel-
lent immune regulation ability. These findings provide a 
basis for further research on inflammation-related dis-
eases such as COVID-19 [2].

Conclusions
Overall, hESC-Exos is outstanding in regulating devel-
opment, metabolism, and anti-aging, hiPSC-Exos has 
similar biological function, but inferior to hESC-Exos. 
In comparison, hUC-MSC-Exos contribute more to 
immune regulation. Our analysis broadens the applica-
tion scope of hESC-Exos, hiPSCs, and hUC-MSC-Exos 
and highlights their respective advantages in the inter-
vention of disease-related signaling. To the best of our 
knowledge, this study is the first to report a systematic 
and comprehensive analysis of exosome proteomics and 
miRNA profiles of hESCs, hiPSCs, and hUC-MSCs. Our 
study further enriches the current EV databases, facilitat-
ing the mining of more valuable data for the identifica-
tion of appropriate acellular therapies in clinical settings. 
These exosomes also cater for the drug development as 
an alternative delivery system to replace virus delivery 
system like adenovirus [7]. Although current predic-
tions lack substantial validation, these findings could 
reveal further individual or joint applications of the three 
exosomes in preclinical or clinical research. Moreover, 
future research could also be conducted via the inte-
grated differential analysis of exosome cargos with EVs, 
as well as of the components of the cells themselves.
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