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Abstract

The effectiveness of a mass vaccination program can engender its own undoing if individu-

als choose to not get vaccinated believing that they are already protected by herd immunity.

This would appear to be the optimal decision for an individual, based on a strategic appraisal

of her costs and benefits, even though she would be vulnerable during subsequent out-

breaks if the majority of the population argues in this manner. We investigate how voluntary

vaccination can nevertheless emerge in a social network of rational agents, who make

informed decisions whether to be vaccinated, integrated with a model of epidemic dynamics.

The information available to each agent includes the prevalence of the disease in their local

network neighborhood and/or globally in the population, as well as the fraction of their neigh-

bors that are protected against the disease. Crucially, the payoffs governing the decision of

agents vary with disease prevalence, resulting in the vaccine uptake behavior changing in

response to contagion spreading. The collective behavior of the agents responding to local

prevalence can lead to a significant reduction in the final epidemic size, particularly for less

contagious diseases having low basic reproduction number R0. Near the epidemic threshold

(R0 � 1) the use of local prevalence information can result in divergent responses in the

final vaccine coverage. Our results suggest that heterogeneity in the risk perception result-

ing from the spatio-temporal evolution of an epidemic differentially affects agents’ payoffs,

which is a critical determinant of the success of voluntary vaccination schemes.

Author summary

A major factor underlying the success of voluntary vaccination schemes is the public per-

ception about the costs and benefits associated with vaccines. Individuals may avoid vacci-

nation if they perceive the risk of infection to be low compared to the potential hazards

and inconveniences associated with getting vaccinated. However, in the course of an epi-

demic outbreak individuals may opt to vaccinate because of the associated higher risk per-

ception. Modeling individual decision-making in the presence of an evolving epidemic

using games, we show that spatial heterogeneity in the vaccine-uptake behavior emerges

with the spread of disease on social networks. Our results highlight the crucial importance
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of the information source shaping an individual’s risk perception for achieving high vac-

cine coverage.

Introduction

Immunization through the vaccination of populations has been estimated to annually prevent

2-3 million deaths from infectious diseases such as measles, diphtheria, pertussis and tetanus

[1]. This number may rise substantially with the development of strategies to further increase

global vaccine coverage [2]. Apart from conferring a long-term protection against the disease

to the vaccinated individual, vaccination has an even more important community-level bene-

fit. A sufficiently high vaccine coverage makes it difficult for the pathogen to find susceptible

hosts, thereby conferring herd immunity to the whole population [3, 4]. Consequently, even

those members of the community who are unable to get vaccinated, such as newborns and

immune-suppressed individuals, are protected against the disease. In principle, any disease

caused by a pathogen that only has human hosts can be eradicated by mass immunization,

provided there is a sufficiently efficacious vaccine that is readily available. Such an outcome

has been realized for smallpox [5, 6] and is expected to be achieved for polio [7, 8]. Conversely,

the presence of a significant fraction of non-immunized individuals, which disrupts the popu-

lation’s herd immunity, can result in the recurrent outbreaks of vaccine-preventable diseases

such as measles, mumps and pertussis [9]. Elucidating the mechanisms that promote wider

acceptance of vaccination in the population can therefore help explicate the reasons behind

the failure of immunization programs.

One of the most important challenges in implementing an effective immunization program

is to ensure that enough individuals agree to get vaccinated. This decision could be based on

many factors such as an individual’s knowledge about the costs, including perceived side-

effects, and benefits of vaccination, as well as the social, economic and cultural environment to

which they belong [10, 11]. The lack of public confidence in the efficacy and/or safety of vac-

cines can give rise to vaccine hesitancy (i.e., delay or refusal to get vaccinated despite the avail-

ability of vaccine services) [12], and in extreme cases generate vaccine scares [13, 14]. Even in

the absence of any bias against a vaccine as such, vaccine uptake in the population may vary

over time with changing prevalence of the disease. Indeed, it is expected that individuals will

be more likely to get themselves vaccinated when there is a higher risk of getting infected [15].

Conversely, low disease incidence may often lead to a significant drop in vaccine uptake, pre-

sumably because of the lower perceived risk of contracting the disease [16]. This suggests that

when the threat of infection is high the individual has a strong incentive to get vaccinated,

while at times of lower risk she may be tempted to avoid vaccination and free-ride on the herd

immunity provided by immunized members of a population without bearing any cost herself.

However, if everyone argues in this manner and avoids vaccination, it would leave the popula-

tion completely exposed to invasion by the pathogen. This is essentially an instance of a social
dilemma [17] that often arises in strategic interactions between rational individuals, who are

trying to maximize the benefits accruing to them from their actions and those of others [18].

That is, while free-riding appears to be optimal from an individual’s perspective, it leads to a

clearly undesirable collective outcome. This is one of the problems central to game theory,

which therefore provides a natural framework for understanding the conditions under which

a population of rational individuals will voluntarily decide to get vaccinated.

Most earlier studies of interaction between disease spreading and vaccine uptake behavior

that incorporated a game theoretic framework have assumed homogeneous, well-mixed

Emergent decision-making in voluntary vaccination schemes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006977 May 23, 2019 2 / 18

Funding: SNM was supported by the IMSc

Complex Systems Project (12th Plan) funded by

the Department of Atomic Energy, Government of

India. VS was partially supported by University

Grants Commission-BSR Start-up Grant No:F.30-

415/2018(BSR). The simulations and

computations required for this work were

supported by High Performance Computing facility

(Nandadevi) of The Institute of Mathematical

Sciences, which is partially funded by Department

of Science and Technology, Government of India.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1006977


populations [19–22]. Thus, the risk of infection for every individual, as well as the protection

offered to them by immunized individuals in their neighborhood, is identical. However, in

reality, individuals interact primarily with neighboring members of their social networks and

can have widely different contact structures [23]. Considering the network microstructure

governing contacts between individuals can explain aspects of the collective outcomes of

spreading contagion processes [24–31] and strategic interactions [32] that do not manifest in

well-mixed models of populations. However, models that investigate vaccine uptake behavior

by individuals in social networks typically do not incorporate strategic considerations in terms

of explicit payoffs, i.e., the net benefit associated with specific collective actions. Instead, agents

are assumed to imitate the behavior of their more “successful” neighbor [33, 34]. Additional

model-based studies of voluntary vaccination by agents located on a social network have

offered new perspectives on the impact of network contact structure [35], presence of local

sub-groups [36], and the role of beliefs [37] and learning [38] on decision-making. As models

incorporating strategic decision-making and those utilizing social network approaches each

describe different aspects of vaccine uptake behavior (see [39] for a review), a framework com-

bining both may come closer to capturing the complexity associated with such behavior in

reality.

To understand the interaction between human behavior and epidemic dynamics [40–42],

in this paper we present a model in which rational agents take strategic decisions to vaccinate

themselves on the basis of information about the disease prevalence and the immune status of

their neighbors on a social network. Each agent decides their action by playing a game against

a hypothetical opponent who shares the same neighborhood as it. Unlike previous studies that

use a similar framework of strategic interactions, in our model the payoffs defining the struc-

ture of the game incorporate real-time information on the specific situation prevailing in the

network neighborhood and consequently vary dynamically amongst individuals. Thus, the

games played by the different agents change over time with the spread of the disease across the

network, resulting in an emergent spatio-temporal heterogeneity in the nature of the games.

We find that this heterogeneity at the level of individual agents, in terms of both information

available to them as well as their response, can have significant implications for population-

level outcomes such as the final epidemic size and the extent of vaccine coverage. We also

examine how the source of the information, viz., global (fraction of the population that is

infected) or local (fraction of infected neighbors), that agents may use in assessing the risk of

getting infected can lead to very different collective outcomes. The implications of our results

reported here suggest that access to real-time information about the state of an evolving epi-

demic can change the risk perception and affect the vaccine uptake decisions taken by individ-

uals. These in turn result in emergent patterns of collective choice behavior that may provide

useful insights into the mechanisms driving vaccine acceptance, which could be relevant for

public health planning.

Model

In our model, we study the dynamics of two coupled processes, namely epidemic spreading

and the evolution of vaccine uptake behavior, on a social network of N agents. The connection

topology of the network is specified by the contact structure among individuals in a given pop-

ulation. The time-scale of an epidemic considered here is much shorter than durations over

which the network structure may change significantly as a result of births, deaths and migra-

tions of individuals. This makes it relevant in contexts where a population is suddenly con-

fronted with a situation that warrants vaccination within a short time-frame, such as a

scenario involving the accidental release of a pathogen for which a vaccine is available, or
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perhaps a bioterrorism incident [43, 44]. The spread of the disease over the network changes

the status of an agent which, at any instant, can be in one of three possible states, namely, sus-

ceptible (S), infected (I), and recovered (R). We assume that recovery from the disease confers

immunity from further infection to an agent. The disease is assumed to spread through direct

contact between agents with a transmission rate β, while infected agents recover from the dis-

ease after an average time period of τI. Thus, the disease dynamics follows the well-known SIR

model [45]. We have explicitly verified that qualitatively similar results are obtained upon

varying either β or τI, keeping all other parameters fixed (see S1 Fig). Introducing vaccination
in this framework allows a susceptible individual to avoid the possibility of getting infected by

immediately achieving an immune status (which effectively corresponds to the R state).

As an epidemic propagates through the population, each agent can have access to local
information about the number of infected cases among her network neighbors (i.e., with

whom she has direct contact), as well as global information about the disease prevalence in the

entire network. In reality, such information is obtained through different channels, e.g., via

mass-media in the case of global information and through word of mouth for local informa-

tion. The agents also have information about the extent to which their neighborhood offers

them protection from the disease. This is provided by their knowledge of how many of their

neighbors are immune as a result of either having recovered from the disease earlier, or

through vaccination. Each agent utilizes the above information to determine their likelihood

of getting infected. Based on this threat perception, the agents subsequently make a strategic

decision on whether to get vaccinated by taking into account the “cost” associated with vacci-

nation. This cost arises from the threat of side-effects, either real or perceived, as well as the

effort involved in getting vaccinated, and tempts the agent to free-ride on the protection that

may be offered by the immunity of their neighbors, particularly when the prevalence is low. By

engaging in such behavior agents can enjoy the benefits of immunization without bearing the

cost of getting vaccinated themselves. However, if every agent argues along the same lines, it

will lead to extremely low vaccine uptake, causing the loss of herd immunity and exposing the

population to the risk of an epidemic outbreak of a vaccine-preventable disease. This results in

a dilemma for a population of well-informed rational agents, who decide their actions entirely

on the basis of maximizing their individual payoffs.

As a game-theoretic framework provides a natural setting for investigating such social

dilemmas, we model the vaccine uptake decision process of individual agents in terms of

games. In order to make a strategic decision each agent plays a symmetric 2-person game

against a virtual opponent who shares the same neighborhood and hence has identical infor-

mation. Note that in the heterogeneous setting that we consider where the network neighbor-

hood of each agent is distinct, the information on the basis of which she takes a decision also

differs from agent to agent. Thus, each agent asks whether by changing her action she could

have increased her payoff given her unique situation. In order to achieve this, we allow the

focal agent to consider a virtual opponent to which she attributes information identical to

that which she possesses, and follows the same decision process as herself. In other words, the

agent plays against her virtual self in order to see if she could have done better had she chosen

a different action with the same information and in the same setting.

At each round of the game, an agent has a choice of two possible actions, i.e., to get vacci-

nated (v) or not (n). The cost and benefit associated with the choices is represented in terms of

a payoff matrix. An important feature of our approach is that the payoffs evolve with the prog-

ress of the epidemic and the ensuing change in vaccine coverage in the population. The payoff

received by the focal player j, where j 2 [1, N], is represented by a function of the form Uxy(fi,
fp), where x, y 2 {n, v} are the actions of the focal player and the virtual opponent, respectively

(see table in Fig 1). Here, fp is the fraction of neighbors that are immune and fi is a linear
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combination of local and global information about the disease prevalence:

fiðjÞ ¼ aðI=NÞ|fflfflffl{zfflfflffl}
global

þ ð1 � aÞðkiðjÞ=kðjÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
local

:

Fig 1. Schematic representation of the coupling between the spread of an epidemic and strategic vaccine uptake

behavior by individuals. Agents are classified according to their state with respect the disease as Susceptible (S),

Infected (I), Recovered (R) and Vaccinated (V). The two layers represent the states of the nodes at two time instants.

The broken lines represent the change in the state of agents and grey solid lines represent the flow of information

about the state (infected and removed) of agents in the network. The curved arrow between the two layers represents

the update (time evolution) of the system. The broken curve encloses the game-theoretic process that determines

whether an agent decides to vaccinate or not, based on the probability of an agent choosing to get vaccinated P(S! V).

The table inside the broken curve is a payoff matrix used by an agent to make decisions. Here the “opponent” is a

hypothetical agent having identical information, choices of actions and associated payoffs. The payoff received by the

focal player is represented by a function of the form Uxy(fi, fp), where x and y are the actions of the focal player and

opponent respectively. The fractions of infected and protected (immune) agents are represented by fi and fp,

respectively. By varying these two parameters the nature of the game can change between different classes, as shown in

the inset to the lower left.

https://doi.org/10.1371/journal.pcbi.1006977.g001
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Note that I is the number of infected agents in a population of size N, while k(j) is the total

number of neighbors of the focal agent j, of which ki(j) individuals are infected. By tuning the

parameter α 2 [0, 1], we can consider any information scenario between the two extreme cases

wherein an agent uses exclusively local (α = 0) or global (α = 1) information.

As mentioned earlier, a high disease prevalence (i.e., a large value of fi) ensures that the ben-

efits of vaccination outweigh its cost, thereby acting as an incentive for the focal agent to get

vaccinated. It is reasonable to assume that the values of the payoffs associated with the decision

to vaccinate increase with prevalence as, all other things remaining same, susceptible agents

will be more likely to get infected when fi is high. Specifically, it is beneficial to get vaccinated if

even one of the neighbors of the focal agent remains susceptible to the disease. Thus the value

of fp will have less relevance in such a situation. Therefore, a reasonable simplification is to

assume that Uvv and Uvn are increasing functions of fi and independent of fp.

Another important consideration is when all the neighbors of the focal agent are immune

to the disease. In this situation, there is a high probability that the agent will successfully

escape infection even if she opts not to get vaccinated. Hence, analogous to the arguments

used above, it is reasonable to assume that the payoffs associated with the decision to “not vac-

cinate” increase with the fraction of protected neighbors. In view of the fact that the utility of

getting vaccinated depends primarily on the number of neighbors not protected against the

disease, which is directly related to the probability of the focal agent to get infected, we con-

sider Unv and Unn as increasing functions of fp and independent of fi, as a simplification. For

concreteness, we choose the simplest possible linear functional form for Unv, Unn, Uvv and Uvn

as follows:

Unv ¼ afp þ b; Unn ¼ cfp þ d;

Uvn ¼ efi þ f ; Uvv ¼ gfi þ h:

This linear form in fi and fp has the added advantage of not having multiple solutions (i.e.,

Nash equilibria, explained later) for any particular choice of fi and fp, which would have

required invoking additional selection criteria for choosing among them. As the payoff func-

tions are time-varying, the nature of the game can change depending on the hierarchical rela-

tion between the payoffs that prevails at any instant.

To characterize the hierarchy of payoff functions in the (fi, fp) space, we note that when fi is

high and fp! 1, it is possible to escape infection as long as most of the neighbors are immune

but in the absence of protection from the neighborhood, vaccination is vital to an individual.

This suggests the following relation between payoffs: Unv > Uvv > Uvn > Unn, i.e., the game is

Hawk-Dove [46]. When fi is low and fp! 1, the non-vaccinators prevail as there a very low

risk of infection and most of the population is immune to the disease. This would result in Unv

> Unn > Uvv > Uvn, i.e., the game is Deadlock [47]. When fi is high and fp! 0, the benefits of

vaccination outweigh the perceived cost of vaccination because of the high risk of contracting

disease. This results in the hierarchal relation Uvv > Uvn > Unv > Unn, i.e., the game is Har-

mony [48]. When fi is low and fp! 0, it is extremely tempting to not get vaccinated because of

low prevalence. However the possibility of being infected is non-zero, which makes vaccina-

tion a viable choice. This results in Unv > Uvv > Unn > Uvn, i.e., the game is Prisoner’s

Dilemma [49] (see Fig 1, inset). These four games govern the preference that an agent has for

each action (viz., to vaccinate or to not vaccinate) at the four extremities of the (fi, fp) parame-

ter space. In the interior of this space, the hierarchies among the payoffs gradually change,

thereby giving rise to different games. To ascertain that the system behaves in the same way as

explained above at these four extremities, we choose the parameters a − h such that Unv, Unn,

Uvn and Uvv satisfies the inequalities mentioned above. The payoff associated with not getting
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vaccinated when the opponent chooses to vaccinate (Unv) is always greater than the corre-

sponding payoff for the case where both do not get vaccinated (Unn), as the latter situation

exposes both to the risk of being infected. We hence set a = c without loss of generality. Simi-

larly, the payoff received when both the focal player and her virtual opponent get vaccinated

(Uvv) is greater than that obtained when only the focal player is vaccinated (Uvn). This is

because, in principle, the latter scenario implies that she, instead of her virtual opponent, could

have avoided the cost associated with vaccination. We hence set e = g without loss of generality.

If the parameters a − h satisfy the following relations:

aþ b > eþ h > eþ f > b; aþ d > h > d > f ; ð1Þ

then the situations discussed above (Hawk-Dove, Deadlock, Harmony and Prisoners’

Dilemma) will prevail at the four extremities of the (fi, fp) space. As the information on the

basis of which the agent decides whether to vaccinate changes over time, the nature of the

game played by her also varies. Thus, while under certain conditions, agents can exhibit a pro-

pensity to free-ride (e.g., when prevalence is low), our model is also consistent with recent

observations about the prevalence-elasticity of the demand for vaccines [50–52].

As the epidemic spreads in the population each susceptible agent j will, at any time t, choose

an action such that a unilateral change of action will not yield a higher payoff. In game theory,

such an action profile is known as a Nash equilibrium [53]. If player j (and her opponent)

decides to vaccinate with probability pj (po) and not vaccinate with probability 1 − pj (1 − po),
the expected utility for agent j can then be calculated as

�j ¼ pjðpoðUvv þ Unn � Unv � UvnÞ þ Uvn � UnnÞ þ poðUvn � UnnÞ þ Unn:

Given that the game is symmetric, the Nash equilibrium would be either pj = 0 or pj = 1 if it is

pure, or if it is mixed then the agent j would vaccinate with the probability

pj ¼
Unn � Uvn

Uvv þ Unn � Unv � Uvn
:

Note that the expression for the vaccination probability for a mixed strategy Nash equilibrium

is similar to the strategy referred as mixed ESS in the Bishop-Cannings theorem [54]. As this

probability will be different for each susceptible agent, it introduces heterogeneity in the indi-

viduals’ decision across the network due to differences in the risk-perception of each agent.

Also, as this probability can change with time, an agent can change her decision as the disease

spreads over the network. Incorporating such spatio-temporally varying strategies for the vac-

cine uptake of agents on a network presents a more realistic way of examining the coupled

dynamics of vaccination and disease.

In order to study the consequences of the interplay between the strategic decision-making

process for vaccine uptake and epidemic spreading, we simulate the stochastic spread of a

directly transmitted disease on empirical social networks of villages in southern India [55],

as well as model networks (the simulation algorithm is outlined in S1 Text). All agents in our

model are initially susceptible and 0.5% of the nodes in a network are randomly chosen to

become infected to simulate the onset of an epidemic. Note that no node is initially in a vac-

cinated state. We employ the Gillespie stochastic evolution algorithm [56] to determine the

time at which the next event will happen and which node would take part in that event. The

event could be one of the three different types of transitions that can change the state of a

node: (i) disease transmission (S! I), (ii) recovery (I! R), and (iii) vaccination (S! R).

Disease transmission is a contact-dependent transition and can take place only when node j
in state S is in contact (i.e., has a connecting link) with nodes in state I. Recovery is a time-
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dependent transition and depends on the time interval spent by a node j in infected state (for

more details see [57]). Vaccination is an information-driven transition, which involves stra-

tegic decision making (as shown in Fig 1). The simulation is stopped when there are no

infected nodes remaining in the network. The payoff parameter values used for all simula-

tions reported here are a = 0.45, b = 0.3, d = 0.002, e = 0.5, f = 0 and h = 0.2, which satisfy the

relations (1). As shown in S2 Fig, the results reported here are robust with respect to different

choices of these parameter values (which are in any case highly constrained by the above-

mentioned inequalities).

Results

The goal of our study is to see if voluntary vaccination can emerge as a result of spatially het-

erogeneous strategic decision making in response to individual-based assessment of an epi-

demic threat and if so, what role the source of information (local or global) may play in

shaping this collective response. Fig 2 shows the results obtained for a simulated epidemic on

the social network of one of the 75 villages in southern India from the data set of [55]. We

stress, however that our results are qualitatively similar for other choices of social network (as

shown in the subsequent figure). Fig 2(a) and 2(b) illustrates the final outcome of a simulated

epidemic with transmission rate β = 0.025 and average infectious period τI = 10 on the empiri-

cal social network of a specific village (village 55 in the data set), for the two extreme values of

α (results for intermediate values of α are shown in S3 Fig). The blue color represents the

nodes that escaped infection without getting vaccinated. Note that as all nodes were initially

susceptible, the vaccine uptake behavior is entirely epidemic-driven. It is evident from the fig-

ure that more agents experience the disease (as indicated by red colored nodes) when the

information available about prevalence is global (α = 1) as compared to when it is local (α = 0),

although the vaccine coverage (as indicated by yellow colored nodes) is almost same. To

understand the reason behind this disparity in the final outcome of epidemic simulated when

considering different sources of information, we consider the time evolution of the fraction of

nodes in different states, as shown in Fig 2(c). For α = 0, the final fraction of agents that were

infected during the epidemic, inf1, is 0.17 and the final fraction of agents vaccinated during

the epidemic, vac1, is 0.22. In contrast, for the case α = 1, inf1 is 0.42 and vac1 is 0.19.

Hence, even though vac1 is similar for the two cases, there is a significant difference in the

value of inf1. It is clear from the figure that voluntary vaccination behavior emerges much

later in the case α = 1 (at t = 20) as compared to α = 0, where it emerges almost immediately

after initiating the simulated epidemic. As highlighted in the inset of the right panel of Fig

2(c), in the case α = 1 the agents start getting vaccinated when the epidemic prevalence

becomes significantly high. This emergent behavior is a reasonable description of how

responses to epidemics typically unfold. For instance, in the absence of an efficient mechanism

for the dissemination of incidence data, the media usually reports an outbreak only when the

reported cases of the disease becomes sufficiently high. Once a disease has affected a significant

proportion of population, even a subsequent high vaccine coverage would be unable to reduce

the final fraction of infected agents. To test the robustness of these results with regard to the

contagiousness of the epidemic, we simulated epidemics with different values of the basic

reproduction number R0, the average number of secondary cases resulting from a single pri-

mary infection in a completely susceptible population. For each value of R0 we conduct 1000

trials to average over the effect of noise on the final size of the epidemic and vaccine coverage.

On comparing the final outcome of these simulations, it is apparent that the value of inf1 for

α = 1 is always greater than the corresponding value for α = 0, independent of any choice of

Emergent decision-making in voluntary vaccination schemes
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Fig 2. Simulation results for the co-evolution of epidemic spreading and vaccine uptake behavior in the largest connected

component of a social network in a village of southern India. A snapshot of the network for village 55 (see Ref. [57], data obtained

from Ref. [55]) with N = 1180 and hki = 9.78, showing the final states of nodes following a simulated epidemic with β = 0.025 and τI
= 10 for (a) α = 0 and (b) α = 1. The colors of the nodes are representative of the final state: blue, susceptible; yellow, vaccinated; red,

recovered (i.e., infected during the epidemic). (c) A sample time series showing the evolution of S, I, R and V for a simulated

epidemic with β = 0.025 and τI = 10 for α = 0 (left) and α = 1 (right). The inset of (c) provides a closer view of the sudden emergence

of vaccination when the prevalence becomes sufficiently high. A comparison of the final fraction of agents (d) infected inf1 and (e)

vaccinated vac1 during a simulated epidemic with different values of R0, for α = 0 and α = 1. Each of the points represents the

median of 1000 simulation runs and the patches indicate the interquartile range (IQR).

https://doi.org/10.1371/journal.pcbi.1006977.g002
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R0 (Fig 2(d)). This underpins the previous observation that the epidemic infects a larger pro-

portion of agents in the network when agents decide to get vaccinated based on the informa-

tion about the global disease prevalence, as compared to local. However, a comparison of vac1

for α = 0 and α = 1 reveals a more complex situation (see Fig 2e). For both low and high values

of R0, vac1 is higher for α = 0 than for α = 1, but there is an intermediate range of R0 in

which the values of vac1 for α = 1 are higher than for α = 0. Thus, there is a crossover of both

the curves of vac1 for α = 0 and α = 1. This shows that an epidemic simulated with these inter-

mediate values of R0 results in higher vaccine coverage when agents base their vaccination

coverage on the global information as compared to local. An important point to note here is

that the effect of high vaccine coverage in this regime of R0 for α = 1 is not reflected in the

final size of the epidemic (Fig 2(d)). This shows that even if the vaccine coverage in this regime

of R0 is high, the simulated epidemic affects more agents for α = 1 than for the case α = 0. A

possible explanation of this is that in the case of global information the threat perception does

not appear significant unless a large proportion of agents are affected by the epidemic and

hence fails to overcome the perceived cost of vaccination. This results in limited vaccine

uptake which does not provide any significant check on the spread of the epidemic. Further-

more, use of local prevalence information leads to localized elevated vaccine uptake in the

neighborhoods of infectious agents which allow for efficient intervention. By contrast, vaccine

usage is dispersed throughout the network in the case where global prevalence information is

used, resulting in sub-optimal outcomes.

To gain more insight into the dynamics of the model, we simulated epidemics on Erdős-

Rényi networks with N = 1024 and average degree hki = 10, for both α = 0 and α = 1 (see Fig

3(a)–3(c)). The results are consistent with those obtained for the empirical social network. We

note that similar results are obtained by increasing R0 by changing τI instead of β as is done

here (see S1 Fig). To see how the crossover behavior near epidemic threshold depends on the

average degree hki of the network, we simulated the epidemic on Erdős-Rényi networks having

different average degree and on empirical social networks from the dataset of Ref. [55] whose

largest connected component (LCC) size is greater than 1000. We calculated the area A
enclosed between the two vac1 vs R0 curves for α = 0 and α = 1. In Fig 3(d), we have shown

how this area decreases with an increase in the value of hki. This indicates that this intriguing

behavior is dependent on the average degree of network.

In order to examine how the results are affected by the size of the population being con-

sidered, we display the dependence of vac1 on N for α = 0 (top) and α = 1 (bottom) in Fig 4

(a). We observe that the change in the values of inf1 and vac1 with respect to R0 show simi-

lar behavior on increasing the size N of the network. The vac1 versus R0 curves for these

two different values of α show two different kinds of behavior, on increasing the system size.

To investigate this change in behavior, we looked into the probability distribution of the

final number of vaccinated agents V1 calculated over 2000 trials. We found that for α = 1

this distribution is unimodal for all values of R0, whereas for α = 0 a bimodal distribution is

observed for some values of R0, i.e. the probability distribution has peaks at two different

locations. To identify where this behavior changes in the ðR0; aÞ parameter space, we charac-

terize the bimodal nature of the probability distribution of V1 by calculating the bimodality

coefficient [58]:

BC ¼
m2

3
þ 1

m4 þ 3
ðn� 1Þ2

ðn� 2Þðn� 3Þ

where, n represents the sample size, m3 and m4 refer to the skewness and kurtosis of the

distribution, respectively. A value of BC greater than 5/9 suggests that the distribution is
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bimodal. Our computational study indicates that the probability distribution of V1 is

bimodal for values of α< 0.5 [shown in Fig 4(b)]. This can be observed from Fig 4(c), which

shows how the probability distribution of V1 changes on increasing the value of α from 0 to

1. This can be a potential signature of a subcritical (discontinuous) transition for local infor-

mation and a supercritical (continuous) transition for global information.

Fig 3. Simulation results for the co-evolution of epidemic spreading and vaccine uptake behavior in Erdős-Rényi

networks. (a) A sample time series showing the evolution of S, I, R and V for a simulated epidemic with β = 0.02 and τI
= 10 in random networks with N = 1024 and hki = 10 is displayed for α = 0 (left) and α = 1 (right). We display a

comparison of the final fraction of agents that are (b) infected inf1 and (c) vaccinated vac1 during a simulated

epidemic with different values of R0, for α = 0 and α = 1. Each point represents the median of 1000 simulation runs

and the patches indicate the corresponding IQR. (d) Dependence of crossover area A on average node degree hki
behaves similarly in empirical social networks and model random networks. The solid line and patch shows the

median and IQR of the 1000 simulated epidemics on Erdős-Rényi networks respectively. The circle and error bars

represent the median and IQR of the 1000 simulated epidemic on social network of villages in southern India that have

a largest connected component greater than 1000.

https://doi.org/10.1371/journal.pcbi.1006977.g003
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Discussion

Vaccine hesitancy typically rises with decreasing disease incidence as a consequence of

reduced risk perception among individuals of contracting the disease. Understanding the

mechanisms driving such behavior is important as it can reverse the success of any immuniza-

tion program close to achieving the eradication of a disease [59]. We utilize the framework of

game theory to investigate vaccine uptake behavior, as it provides an intuitive description for

the action of rational agents, i.e. in absence of any social or religious bias against decision to

get vaccinated. In contrast to previous approaches, we simulate the spread of an infectious dis-

ease on a social network, where each agent can, at every time step, decide whether to get vacci-

nated. The decision-process of each agent is modelled by a game, in which the payoffs for

different actions vary over time as the epidemic progress and the immunization status of the

neighboring agents change. Each agent plays against a hypothetical opponent who shares the

same neighborhood and thus has identical information, imposing symmetry on the payoff

Fig 4. Use of local or global information by agents can qualitatively alter the collective vaccination outcome to

epidemics. (a) Assessing the dependence of vac1 in a network having average node degree hki = 10 on population size

N. The results are shown for α = 0 (top) and α = 1 (bottom). (b) Bimodality coefficient BC for the probability

distribution of V1 calculated over 2000 trials for Erdős-Rényi networks with N = 16384 and hki = 10, and shown over

the range of values of R0 and α. (c) Probability distribution of V1 as a function of R0, calculated over 2000 trials, and

shown for different values of α.

https://doi.org/10.1371/journal.pcbi.1006977.g004
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matrix. We examined whether information about an epidemic outbreak at the local or global

level can lead to the emergence of voluntary vaccine uptake behavior in a population of agents

that are aware of the benefits of free-riding on the immunity of their peers. In particular, we

focused on how spatio-temporal heterogeneity in individuals’ vaccine uptake decisions can

affect the overall vaccine coverage at the population level, and consequently determine the fate

of an epidemic outbreak. We would like to stress that this heterogeneity is both in terms of the

information an individual receives from the network neighborhood, as well as, the response

based on her individual risk perception [60].

We observe that a defining factor for efficient disease control through voluntary vaccination

is the source of information. Faster and more efficient vaccine coverage is observed for the

case when individuals assess their risk of catching infection based on the prevalence in the

local social network neighborhood, as opposed to that in the whole population of their social

network. Compared to the size of the entire population, the number of cases that are reported

in the initial phase of an epidemic are fairly low, and therefore an individual who only has

access to the global prevalence information may not perceive the disease to be a serious threat.

Consequently, the perception of risk in contracting the disease takes some time to become

significant enough to incite vaccine uptake among individuals. However, by the time global

prevalence becomes high enough so that the perceived risk of infection outweighs the cost of

vaccination, the epidemic will have already affected a large fraction of the population. We find

that this delay in the emergence of vaccination behavior can sometimes manifest as a large

final size of the epidemic despite high vaccine coverage. On the other hand, the presence of

disease in an agent’s neighborhood increases the risk of infection even at the early stage of an

epidemic, and thus leads to an immediate increase in vaccine uptake. This not only increases

the total vaccine coverage but also reduces the burden of disease. An intriguing observation

in the case of agents using local information is that the emergence of voluntary vaccination

results in bimodal distributions of the final epidemic size and vaccine coverage for diseases

with R0 � 1. This behavior, observed close to the epidemic threshold, can be attributed to

competition between the two possible final outcomes for the state of an initially susceptible

individual, namely to get vaccinated or to get infected.

Previous game theory based models of vaccination during epidemic outbreaks have con-

sidered the effect of strategic decision-making in well-mixed populations where all individu-

als have the same risk assessment [19, 20]. In contrast, our model captures the impact of

inhomogeneous risk and benefit perception at the individual level, which gives rise to spatio-

temporally diverse games and hence different Nash equilibria across the population. Conse-

quently, the whole population would never converge to a state in which every agent has the

same strategy, unless the disease is completely eradicated. This also rules out the possibility

that the strategic decision to vaccinate will disappear from the population with time, unlike

in models that utilize imitation game dynamics to describe vaccination behavior. Indeed

such models suggest that the persistence of high vaccine coverage can only be ensured by

incentivizing vaccine distribution [61]. Our findings show that the model presented here

provides a complementary mechanism for the emergence of voluntary vaccination. This

arises as a response to the potential threat of an epidemic outbreak if each agent utilizes the

information available to them and makes a rational decision whether getting vaccinated

might be beneficial to her or not.

One of the key assumptions that underpins our approach is that agents are well-informed

and make rational decisions based on the information available to them. In reality, the condi-

tions under which individuals make vaccination decisions may, of course, deviate from this

assumption. However, the rational agent framework, where individuals take decisions purely

based on self-interest, provides a benchmark for investigating voluntary vaccination behavior.
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This can be then extended to include, for example, the effect of personal beliefs and peer influ-

ence [52], which can result in anti-vaccine sentiments [62] or vaccine scares [63].

While we have investigated how the final size and vaccine coverage varies for diseases with

different contagiousness (i.e. R0), it is also possible to augment our model with additional

parameters that capture other features such as case fatality ratio. For instance, two diseases

with comparable R0, such as Ebola and Influenza, and thus similar transmission rate and vac-

cination costs, could result in different coverages, based on the subjective perception of how

harmful (or severe) a disease is. The dynamics of disease progression may also be modified by

including additional stages, for instance to account for appreciably long infection periods [64].

Additionally, one could also explore the consequence of differential vaccine efficacy among

individuals and finite durations for the protection afforded by the vaccine. The social network

on which the disease spreads has, for simplicity, been assumed to be static through the course

of an epidemic. However, over time the network can indeed change by vital dynamics, i.e.

through individuals dying and new ones being born. An additional source of temporal varia-

tion in the connection structure arises from the changing behavior of the agents [65] including

actions taken by them in response to the epidemic, such as social distancing [66, 67].

We would like to stress that our results are independent of population size and meso-level

structural details, such as the existence of modularity, but depend strongly on the degree (aver-

age number of contacts a person has) of the network. This could partly be because we are pri-

marily considering the final outcome of the simulated epidemics, such as final epidemic size

and total vaccine coverage. Another potential reason is that the strategic decision making in

our model depends crucially on the neighborhood which is a micro-level detail of the social

network. From a policy-making viewpoint, it is easier to estimate how many social contacts a

person has on average rather than meso- and macro-level details, which widens the scope of

our model and its results. We also stress on the importance of taking into account the hetero-

geneity in the disease status of neighbors in a social network for risk assessment when deciding

whether to vaccinate. The prevalence aggregated over the whole population may sometimes

result in a false perception of risk, especially if the disease is in one’s vicinity. The key outcome

for public health planning is that accurate and localized reporting of disease outbreak is crucial

for changing individuals’ risk perception and thereby their attitude towards vaccination, espe-

cially during the initial phase of an epidemic.

Supporting information

S1 Fig. The asymptotic fraction of infected agents inf1 (a) and vaccinated agents vac1 (b)

in a population are shown as a function of the basic reproduction number R0 of the simu-

lated epidemic. As can be seen, increasing R0 by either changing the average infectious period

τI keeping the transmission rate β (= 0.01) constant [filled markers] or by varying β keeping

τI (= 10) fixed [unfilled markers] result in curves that are almost identical, for both the cases of

local information (α = 0, circles) and global information (α = 1, triangles).

(EPS)

S2 Fig. Probability distributions of the ratios of the median numbers of the asymptotic

fraction of infected agents inf1 for α = 0 and α = 1 (a), and of the ratios of the median

numbers of the asymptotic fraction of vaccinated agents vac1 for α = 0 and α = 1 (b),

shown as a function of the basic reproduction number R0 of the simulated epidemic. To

obtain the distributions, we randomly sampled 105 parameter sets where each individual

parameter value was chosen from U(0, 1) (uniform distribution bounded in the unit interval)

from which only 127 sets were found to satisfy all the inequality relations [see Eq (1) in the

main text]. We have performed 100 trials starting from randomly chosen initial conditions
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with each of these 127 parameter sets and obtained the median of the final fractions of infected

and vaccinated agents for each of these sets. We have done this for both the extreme case sce-

narios, viz., exclusively local information (α = 0) and exclusively global information (α = 1),

for a range of values of the basic reproduction number R0. As expected from the results

reported in the main text for inf1, the ratio inf1

1
=inf0

1
is always greater than unity for all val-

ues of R0. The black squares represent median values of the distribution and a blue line, indi-

cating a value of unity, is shown for reference.

(EPS)

S3 Fig. Simulation results for the co-evolution of epidemic spreading and vaccine uptake

behaviour for α in the range (0, 1). (a) A sample time series showing the evolution of S, I, R
and V for a simulated epidemic with β = 0.02 and τI = 10 for α = 0.5 on a social network of vil-

lages in southern India (left) and Erdős-Rényi network (right). A comparison of the final frac-

tion of agents infected inf1 and vaccinated vac1 during a simulated epidemic on a social

network of villages in southern India (b and c) and Erdős-Rényi network (d and e) respec-

tively, with different values of R0, for α in the range (0, 1).

(EPS)

S1 Text. Pseudocode outline of the simulation algorithm.

(PDF)
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