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Abstract

Canopies are common among autotrophs, increasing their access to light and thereby increasing competitive abilities. If
viewed from above canopies may conceal objects beneath them creating a ‘canopy effect’. Due to complexities in collecting
3-dimensional data, most ecosystem monitoring programmes reduce dimensionality when sampling, resorting to planar
views. The resultant ‘canopy effects’ may bias data interpretation, particularly following disturbances. Canopy effects are
especially relevant on coral reefs where coral cover is often used to evaluate and communicate ecosystem health. We show
that canopies hide benthic components including massive corals and algal turfs, and as planar views are almost
ubiquitously used to monitor disturbances, the loss of vulnerable canopy-forming corals may bias findings by presenting
pre-existing benthic components as an altered system. Our reliance on planar views in monitoring ecosystems, especially
coral cover on reefs, needs to be reassessed if we are to better understand the ecological consequences of ever more
frequent disturbances.
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Introduction

Worldwide, the increasing frequency and severity of ecosystem

disturbances associated with changing climatic conditions and

direct anthropogenic activities has increased the need for

ecosystem monitoring. Effective monitoring programmes aim to

detect disturbances in time to mitigate their impacts [1,2]. To be

effective, these monitoring programmes must be fast and cost-

effective, as this facilitates repeated observations, a vital feature to

detect changes in ecosystems. While a plethora of methods exist to

monitor habitats across various ecosystems, one feature is almost

universal among direct monitoring regimes regardless of ecosys-

tem: the use of horizontal planar views in sampling. This

standardises monitoring and provides rapid assessments of

abundance or cover of organisms [3–5]. A potential concern

arises, however, as ecosystems are inherently 3-dimensional. By

reducing dimensionality in monitoring we simplify data collection

and analysis, but at what cost to the quality of data?

Obviously, recording 3-dimensional data from ecosystems is

highly complex and increases the amount of time needed to

sample. Reducing dimensionality in sampling is therefore justified

if the increased speed and reduced cost improves the spatial and/

or temporal resolution of the data being collected. Of the 3

dimensions, however, it has almost always been the vertical

component that is discarded first, leaving the horizontal axes. The

implications of this reliance on linear or planar views could affect

the data collected in ecosystem monitoring, particularly with

regards to the detection of disturbances in multi-layered

ecosystems. Furthermore, as these methods have often been

extended for use in more detailed ecological studies, biases

associated with reducing dimensionality could undermine our

understanding of key ecological processes in complex ecosystems.

Alongside tropical rainforests, coral reefs are one of the most

biodiverse ecosystems on the planet [6]. Furthermore, coral reefs

are arguably the most threatened high biodiversity ecosystem.

They are highly sensitive to physical and environmental

perturbations [7–9]. As such, many monitoring programmes have

been implemented, some over several decades [4,10]. The

methods used, therefore, are relatively well developed (e.g. [4]),

and numerous detailed ecological studies have used similar

methods in their data collection [11–13]. Almost all of these

methods, however, are based on horizontal linear or planar views,

and the most commonly reported metric of reef health is coral

cover [10,14]. At present, the limitations of planar or linear views

in coral reef studies are poorly understood. Given the fine scale, 3-

dimensional structural complexity of corals, coral reefs represent

an ideal model ecosystem to consider the effects of reduced

dimensionality in sampling methods, and as such they are the

primary focus of this study.

Potential problems with planar views
The use of planar views while studying and monitoring

ecosystems has the potential to create problems falling into several

general categories. The first problem is the development of a

‘methodological inertia’. The widespread and historical use of

planar sampling techniques (e.g. [15–17]), like blinders on a horse,

set a course for future studies to use similar methods. The
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simplicity of data collection and interpretation from planar views

has exacerbated this problem. Such simple methods can easily be

transposed between ecosystems [18–20] and in some cases the

ecological or structural differences between these ecosystems may

have been overlooked. Modern technologies such as still and video

cameras, and even aerial and satellite surveys (e.g. [5,21–22]) have

increased the amount of field data that can be collected, however,

these images are almost exclusively planar. While the areas

sampled may be bigger, the methods are essentially the same.

A second problem is that collecting 3-dimensional data is

challenging. This is particularly the case where rapid and

repeatable observations are needed, as per most monitoring

programmes. Manual collection of 3 dimensional data is

impractical. The use of stereoscopic images [23–25] and other

recent developments allow some level of 3-dimensional sampling

[26,27] but most of these technologies are not widely used in large-

scale studies due to the complexity of data collection and analysis.

As such, 3-dimensional ecosystems are most commonly monitored

in 1- or 2-dimensions.

Potentially the biggest problem with planar views is that the

vertical component of ecosystems is often lost during periods of

ecological change. By overlooking the vertical relief of ecosystems

no data on structural complexity can be derived. However,

structural complexity is of considerable importance in facilitating

the development of high biodiversity and resilience. A highly

complex ecosystem provides cover for prey [28,29], allows predators

to find effective ambush sites [30], and increases environmental

niches, reducing the severity of physical stresses (e.g. [31,32]).

Furthermore, for coral reefs and rainforests alike, one of the most

serious post-disturbance effects is the loss of structural complexity

associated with the collapse of the biogenic habitat [33–35].

Standard planar or linear views of ecosystems do not provide

information on this property, thus their utility in documenting and

understanding the effects of disturbance is limited.

The Canopy Effect
Autotrophs’ need for light has led to the recurring development

of large canopy shaped growth forms to both overtop competitors

and increase the surface area exposed to light. These structures

almost invariably become biogenic habitats themselves. Using

planar or linear views to sample any of these habitats can cause a

bias in sampling, in terms of a ‘canopy effect’. Perhaps the best

conceptual example of this would be from tropical rainforests.

While planar views from aerial or satellite imaging provide useful

information on the areas covered by these ecosystems, little data is

provided on any organisms below the upper canopy as they are

hidden beneath it. This effect is not, however, constrained to

rainforests. In fact, if any observed substrate has 3-dimensional

structure it is likely that the upper layers will obscure those below

them. This effect is more acute if the upper layers occupy more

horizontal space at elevation than they do beneath (i.e. form a

canopy). Canopy effects, therefore, can potentially occur at any

scale from microscopic samples in a Petri dish to satellite imaging

of entire forest ecosystems.

In comparison to rainforests, coral reefs could be especially

prone to canopy effects. Their relatively small vertical elevations

mean that, unlike rainforests, we cannot easily observe the

ecosystem from within, and as such the layered structure is easier

to overlook. Furthermore, pronounced canopies, and the logistical

challenges associated with accessing them accentuate this problem.

As such, in this study we use data collected from coral reefs to

explore and quantify the canopy effect with an emphasis on

potential implications in monitoring disturbances.

Coral reefs and the ‘canopy effect’
While it might be presumed that coral reefs are coral

dominated, this is rarely the case [14,36]. Coral reefs are, of

course, defined by the presence of scleractinian corals, but at

present they rarely represent the primary benthic cover of these

habitats. A meta-analysis revealed that the mean scleractinian

coral cover on coral reefs from 88 locations worldwide was

25.961.5% (mean 6 S.E.; data from [10,37]). As the methods

used to collect these data are entirely based upon linear or planar

views, from reefs likely to be dominated by canopy-forming

species, but without considering a canopy effect, the actual benthic

cover of corals is likely to be much lower. Bare space is, however,

almost non-existent on most reefs [38–40] and, as such, the

remaining three quarters of the benthos of coral reefs is relatively

poorly understood (cf. [14,36,41]).

Although corals are arguably the most important organisms on

coral reefs, especially in terms of growth and accretion, numerous

other benthic organisms play measurable ecological roles on reefs

[42–44]. Calcareous and filamentous algal turfs, for example, are

ubiquitous components of coral reef flora, potentially occupying

more of the reef than corals [14,38,40]. Calcareous turfs aid reef

calcification [45–47], while filamentous turfs create an epilithic

algal matrix (EAM) containing sediments, detritus and infaunal

organisms [48], which can reduce the settlement and survivorship

of coral larvae [38,49] and reduce the palatability of turfs to

herbivores [50]. The effects of algal turfs are becoming more

apparent, yet their actual benthic cover on coral reefs is essentially

unknown; we will provide a preliminary estimation of the benthic

cover of algal turfs on coral reefs.

Coral reefs are not uniform. Scleractinian corals are phyloge-

netically and morphologically diverse and different growth forms

often dominate different habitats. Exposed reef crests are often

dominated by fast growing branching and tabulate corals (e.g.

Acropora spp.), which form extensive canopies. More sheltered reefs

can be dominated by slow growing massive colonies (e.g. Porites

spp.), which, with mound shaped morphologies offer little canopy

cover. If canopy effects have measurable consequences they should

be more pronounced on reefs dominated by branching and

tabulate corals than those dominated by massive corals.

Methods

We applied three linear transects along the same course: firstly, a

planar point intercept transect (hereafter: planar transect) recording

the apparent benthic cover visible from above (as would be seen in a

photographic image of the reef) at set intervals, secondly a benthic

point intercept transect (hereafter: benthic transect), identical to the

planar transect except that the actual benthic cover of the

consolidated reef matrix (i.e. the benthic cover beneath any

overhangs or canopies) was recorded. A comparison of the first

two methods highlights the magnitude any canopy effect on that reef.

Finally a chain intercept transect (hereafter: chain transect), which

conforms to the benthos below the initial tapes provides both a

measure of the vertical relief (rugosity; see [51–52]) and the benthic

cover across both horizontal and vertical axes (Figure 1). These

methods were employed on healthy Acropora- and Porites-dominated

reefs around Lizard Island on the northern Great Barrier Reef to

provide a basis on which to illustrate the canopy effect.

Results

The ‘canopy effect’ hides algae on coral reefs
Regardless of reef type or site, several patterns became apparent

when the sampling methods were compared. Most striking is that,

Planar Views in Ecosystem Sampling
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using standard planar transects, all reefs showed coral as the

dominant benthic component (25.962.1% to 54.464.9%; mean

6 S.E.) and algal turf (EAM) cover as the second most abundant

(21.461.7% to 34.962.7%). Yet when considering cover beneath

the canopy (using the benthic transects) a marked change can be

seen on the Acropora-dominated reefs. The coral cover dropped by

almost half from 53.562.6% planar cover to 27.762.3% in

benthic cover. Concurrently, the cover of turf algae (EAM)

increased by more than two thirds (from 26.762.6% to

44.762.6%) becoming the dominant benthic cover on the reefs

(Figure 2). The canopy effect essentially hides this portion of the

benthos from planar views, and as such, it is overlooked in

standard monitoring practices.

Surprisingly, the chain transects, which provide an indication of

vertical relief and the surface area of each benthic component, did

not provide greatly differing results of coral cover from the planar

point intercept transects (coral cover from 29.161.5% to

49.063.9%). The ‘double counting’ of canopies increases the

proportion of coral cover, much as the canopy effect artificially

increases the proportion of the benthos seen to be canopies. While

coral cover showed similar results between methods, some benthic

components, such as calcareous algae, which tended to grow on

vertical surfaces, showed significant differences between the

benthic and chain transects (on average, chain transects provided

estimates of calcareous algal cover 96.4621.0% higher than

planar transects; Figure S1).

Discussion

Calcification and the canopy effect
Different colony morphologies of corals provide very different

functions on reefs. The planar methods used in most monitoring

programmes provide only a limited ability to distinguish these

functions. For example, the fast growth and high contribution to

coral cover of canopy-forming corals are not necessarily related to

the amount of carbonate they deposit on consolidated reef

structures. Most canopy-forming species have low density,

perforate branches that are easily removed by corallivores [53–

55] and hydrodynamic forces [56], with much of the carbonate

being lost from the reef matrix. As such, with the possible

exception of the dense stems of these colonies [57], canopy-

forming corals provide a relatively small contribution to reef

calcification yet they conceal massive corals and crustose coralline

algae that deposit carbonate directly onto the reef matrix. High

coral cover, therefore, does not mean high accretion rates [14].

Furthermore, additions to reef carbonates as a result of rubble

formation by high cover of canopy-forming corals (e.g. [58]) could

be ecologically deleterious as the mobile substrate produced in this

process can hinder recruitment of corals and subsequent reef

recovery [12,59,60].

Disturbances and the Canopy Effect
The canopy effect, as demonstrated above, influences what we

monitor on coral reefs. The overlooked understory has a markedly

different composition to the canopy. If reefs were stable, this would

result solely in a gap in our ecological understanding of reefs.

However, reefs and other ecosystems are most often monitored to

observe changes in ecosystem composition brought about by

disturbances. The canopy effect is likely to play an important role

in our ability to monitor the effects of, and recovery from these

disturbances. This may be particularly important if there are

differences in the way in which canopy and non-canopy

components of the reef respond to disturbances.

Differential susceptibility and disturbances
Differences between coral colonies are more than morpholog-

ical. Branching and tabulate taxa such as acroporids, which form

the majority of the canopies studied herein, are also the most

susceptible to environmental and physical disturbances [61,62].

They are among the first corals to bleach under environmental

stresses [11], often suffering considerable mortality [63]. Physical

disturbances also readily dislodge these colonies from the benthos

[56] and many coral predators preferentially target these taxa

[53,64,65]. Massive colonies such as Porites, in contrast, are more

Figure 1. Sampling methods for estimating benthic cover of
canopy-forming corals. (A) A typical colony of Acropora hyacinthus
on reefs at Lizard Island. (B), A schematic figure demonstrating
intercepts (vertical lines; blue = coral, green ` other benthos) on a
planar transect, coral cover = 60%. (C), A schematic figure demonstrat-
ing benthic transects, here the dotted vertical lines indicate measure-
ments made beneath the canopy; here coral cover = 20%. (D), A
schematic figure demonstrating the chain transects, where lines
indicate that measurements were made at set distances along a line
that conforms to the outline of the coral; here coral cover = 68%.
doi:10.1371/journal.pone.0027307.g001

Planar Views in Ecosystem Sampling
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tolerant to disturbances, being more hydrodynamically stable [56].

They also bleach less readily [63], and are a less favoured prey of

corallivores (e.g. [53]).

In almost all cases, canopy-forming corals are most severely

affected following disturbances on coral reefs [56,63] and if the

colony’s skeleton is left intact following the disturbance they are

quickly removed from the reef by biological and physical erosion

[9,66,67]. The increased susceptibility of coral canopies to

disturbances may, therefore, create a bias when monitoring the

effects of disturbance on coral reefs.

Canopy loss and coral cover
A simple conceptual model was created using the transect data

to assess the magnitude of the canopy effect on Acropora-dominated

reefs. The high susceptibility of canopy-forming corals to

disturbances often results in extensive loss of these corals from

reefs [13,60,63]. The model replicates this effect. The start point

was set as the mean planar cover of algae and corals found on the

two Acropora-dominated reefs in this study, using the planar

transects. The cover of canopy-forming corals is then reduced by

10% each generation for 62 generations (until canopy cover

,0.05%) to simulate a disturbance. Using the inverse of canopy

cover and the data from the benthic transects, the apparent

change in benthic cover is simulated. The cover of concealed

benthic components (end point of the model) was based on the

results of the benthic transects (Figure 3). A similar model was

created using data from the Porites-dominated reefs.

As would be expected, on Porites-dominated reefs a total loss of

canopy-forming corals causes relatively little change (Figure S2).

Overtopping is rare on these reefs, as the colonies of massive corals

are too large. The only effects seen with the loss of canopy-forming

corals is an equivalent reduction of overall coral cover and similar

apparent increase of EAM cover.

In contrast, the effect on Acropora-dominated reefs is much

greater (Figure 3). As canopy-forming corals are competitively

dominant on these reefs, predominantly by overtopping other

corals, there is a pronounced canopy effect. The loss of canopy-

forming species most obviously reduces overall coral cover.

Figure 2. Benthic cover of algae and corals using three transect methods on an Acropora-dominated reef. (A) The estimated cover of
corals on an Acropora dominated reef using the three different transect types; canopy forming taxa in white and benthic cover species in dark grey.
(B) The estimated cover of algae on the same transects; black bars represent cover of epilithic algal matrix (EAM) and light grey, crustose coralline
algae (CCA). A, B, C and X, Y, Z denote statistically different groupings (Repeated Measures ANOVA with Tukey Kramer post-hoc test, a = 0.05).
doi:10.1371/journal.pone.0027307.g002
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However, an apparent 8.2% increase in the cover of massive corals

was recorded. This increase indicates that almost a quarter of the

space beneath coral canopies was occupied by massive coral

colonies. The reported increase in massive coral cover is,

therefore, an artefact of using sampling methods based on

horizontal planar views in an ecosystem with pronounced canopy

effects. However, there are further implications. The recorded loss

of coral cover associated with the loss of the canopy is effectively

cushioned as the massive colonies are revealed. As coral cover is

among the most commonly reported metrics of reef health, the

impacts of disturbances may, therefore, be under-reported using

planar monitoring methods.

That coral cover provides a somewhat unrealistic measure of

the effects of disturbances is not necessarily always this misleading,

as most monitoring programmes record far more data than just

coral cover. Although there is a clear trade off between precision

and spatio-temporal resolution almost all coral monitoring

programmes include at least some form of categorisation of the

corals observed. Nevertheless, coral cover remains the most

widespread metric for communicating reef health. Unfortunately,

changing coral cover does not reveal the underlying mechanisms

(e.g. recruitment limitation and/or adult mortality), nor can it

identify the causes of disturbances. Furthermore, coral cover

probably underestimates the magnitude of coral loss and the

prevalence of other benthic components. There is the potential,

therefore, that researchers may be led astray by just using planar

data on reefs and in other 3-dimensional systems.

Canopy loss and algal cover
The removal of a canopy reveals the other benthic components,

which on many reefs, including those selected for this case study,

are primarily algal turfs (EAMs). Simulated removal of the canopy

from Acropora-dominated reefs resulted in a 67% increase in cover

of EAMs (Figure 3). While phase-shifts to algal dominated states

are among the most reported effects following disturbances on

coral reefs [47,68,69] our results suggest that in some cases,

apparent shifts could simply be due to the canopy effect, with the

removal of the coral canopy unveiling a pre-existing algal-

dominated state (e.g. [14,70]. No further ecological succession to

an alternate stable ecosystem would be necessary to create an

apparent phase-shift to EAMs (turfs) following the loss of these

canopy-forming species. Furthermore, exposure of this EAM could

possibly trigger an expansion of macroalgae (see [68,69,71,72]).

As discussed above, high benthic cover of EAMs has both

positive and negative implications for coral reefs. Algal turfs in the

EAM provide settlement cues for a variety of organisms including

corals [73], and a habitat for infaunal detritivores, which provide a

trophic pathway to recycle energy from the detritus (see [41,74]).

Furthermore, well-grazed EAMs indicate high levels of herbivory

by reef fish or invertebrates (see [72]). However, it is likely that a

disturbance that removes a high percentage of branching corals is

likely to involve multiple synergistic stressors (e.g. [60,75]).

Stressors that affect coral cover may have markedly different

effects on the other benthic ecosystem components. The EAM, for

example, is considerably more resilient than corals to most

environmental perturbations [49,76,77]. Indeed, increased tem-

peratures, sediment and nutrients; all stressors to corals, can be

beneficial to the algal component of the EAM [78]. Furthermore

EAMs are tolerant of high sediment loads [38,79] and their

complex structure slows surface flow and increases sediment

deposition [80,81]. Sediment loaded turfs inhibit the settlement of

coral larvae [38] and deter herbivores on coral reefs [50]. The

effects of multiple synergistic stressors might, therefore, increase

the damage done to reefs not just in terms of the amount of coral

damaged but in reducing the recovery potential of reefs, even from

an apparently pre-existing algal dominated state.

Which sampling method is best?
Each of the methods used in this study have benefits and

drawbacks, which are important to consider before designing any

study. Planar transects, for example, provide a focussed assessment

of more susceptible, canopy-forming species (e.g. Acropora sp.). As

such, planar transects allow rapid detection of disturbances, such

as temperature anomalies, which will provoke stress responses (e.g.

bleaching) or localised mortality of canopy-forming species

[11,61,62]. Furthermore, planar transects are quick and easy to

complete, allowing high replication at any site. Underwater video

and photographs can also be used to collect planar data even by

inexperienced observers, with minimal training. However, the

present study has revealed several drawbacks with this method.

Apparent coral loss following major disturbances might be

cushioned as less susceptible benthic corals are revealed. Also,

by revealing pre-existing benthic communities, canopy loss could

lead to misleading reports of phase-shifts with apparent increases

in the cover of algae and massive corals (the changes are relative

not actual). This method is excellent for studies of tabulate corals

but has serious limitations for other benthic components.

Benthic transects provide useful information on the consolidated

reef matrix, which has rarely been the focus of previous studies.

This substrate is the ‘solid’ structure underlying the veneer of living

corals. Calcification and accretion of the reef matrix allows reefs to

maintain their depth with increases in sea-level [82], furthermore,

the consolidated reef matrix is often entirely occupied by algae and

other benthic organisms, which are often overlooked using planar

methods [38–40]. This sampling method also benefits from being

relatively straightforward, although video or photographic tran-

Figure 3. Conceptual model demonstrating the effect of
canopy removal on an Acropora-dominated reef. Note the
apparent increase in both algae (EAM) and massive corals simply as a
result of the loss of the canopy. Start points are based on data collected
using planar transects. Canopy-forming cover is reduced by 10% each
generation. End points are based on data collected using benthic
transects (with no remaining canopy).
doi:10.1371/journal.pone.0027307.g003

Planar Views in Ecosystem Sampling
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sects are probably not possible. Unfortunately, benthic transects

provide little information on canopy forming species, and as such,

are insensitive to the effects of common disturbances

[11,49,76,77]. Benthic transects, therefore, provide an accurate

picture of reef composition in terms of the area of substratum

occupied. Relatively insensitive to changes in canopy forming

species, they more accurately portray the role of algae and other

benthic organisms on the reef surface.

The chain transects might appear to provide a more balanced

approach to benthic sampling as they concurrently assess both the

canopy and benthos. In fact, from the perspective of a fish or

settling coral planula, which rely on reef surface area for feeding or

settlement respectively, it is perhaps the most relevant measure of

reef cover. Furthermore, this is the only method, which includes 3-

dimensions. However, for some ecological surveys, the double

counting of canopies (i.e. including both the upper and lower

surfaces) artificially increases the importance of canopy forming

corals. Changes in coral cover of the sensitive, canopy-forming

species is thus at risk of being over-reported after disturbances.

Massive coral colonies, for example, contribute directly to

calcification of the reef matrix but due to their low surface area

their loss would not be reported to be as important as high surface

area, but structurally delicate, canopy forming corals. The main

disadvantage with chain transects is, however, logistical. The

complexity of the methods means that replication at any site will

suffer and less area will be surveyed. Furthermore, the sampling

would rely on experienced observers and becomes much more

challenging in adverse conditions (a fact to which the authors can

attest).

It appears that a combination of survey methods may be most

appropriate. For example, stratified sampling using planar and

benthic transects together would allow some increased dimension-

ality with minimal extra effort. Furthermore the problems of the

canopy effect could be overcome, as the cover beneath canopies is

recorded and therefore can be included as a correction factor if

any changes in canopy cover are observed. It must, however, be

highlighted that this study is far from comprehensive and a great

many more sampling methods currently exist (cf. [4]). Further-

more, new ecological studies will obviously demand the develop-

ment of new sampling methods. Similarly, sampling in other

ecosystems will require different considerations. There is no simple

answer to the question, ‘‘which sampling method is best?’’ The

most important messages, highlighted by this study are 1) that it is

important to match the census technique to the question and, 2)

that it is of vital importance to critically evaluate what any method

is actually estimating. The greatest danger is following method-

ological inertia, choosing methods simply because they have been

used before.

Conclusions
The canopy effect has the potential to be pervasive in ecological

survey techniques across ecosystems. It is most prevalent in systems

dominated by canopy-forming autotrophs as in tropical forests and

on coral reefs. The canopy effect, however, is particularly relevant

for coral reefs where massive changes are predicted around the

world. While planar transects are logistically practical and have a

long history of use we must be careful to consider the hidden

portions of the benthos, which have the potential to alter our

interpretations of the status of ecosystems and how they respond to

ever more frequent disturbances. The understories of reefs are not

ecologically irrelevant, with diverse algal and coral communities,

which, when compared to the canopies, have different suscepti-

bilities and responses to disturbances. Therefore, the current

‘coral-centric’ view of coral reefs, which are often not numerically

dominated by corals, might be misleading. A reliance on planar

assessments of coral cover as a proxy for reef health should be

reassessed. By looking at both planar and benthic cover we can

begin to move beyond simple cover estimates to understand the

processes that shape benthic configurations and better understand

the impacts of the more frequent and severe disturbances that

coral reefs are likely to suffer.
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Supporting Information

Figure S1 Results of the three transect types from four
reefs around Lizard Island. A. represents Mermaid Cove and

B. South-Palfrey, two Acropora-dominated reefs. C. represents

Clam Gardens and D. Trawler Beach, two Porites-dominated reefs.

The left hand portion of the graphs shows the algae recorded using

the three methods (light grey = epilithic algal matrix, dark grey =

crustose coralline algae). The right hand portion of the graphs

shows the results for corals (mid-grey = massive and encrusting

colonies, black = canopy-forming species). Notice the consistent

decreases in canopy forming corals and subsequent algal increases

(especially EAMs) with the benthic point intercept transect.

(PDF)

Figure S2 Conceptual model demonstrating the effect of
canopy removal on a Porites-dominated reef. Start points

are based on planar transect data. Canopy cover is reduced 10%

each generation. End points are based on benthic transect data

(with no remaining canopy). The ‘loss’ of canopy cover (difference

between planar transects and benthic transects) was almost

identical to the apparent increase in benthic algae (6.58% loss

vs. 7.23% increase respectively).

(PDF)
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