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Abstract: Alkaline phosphatase (ALP) is a significant biomarker that indicates osteoblast activity
and skeletal growth. Efficient ALP detection methods are essential in drug development and clinical
diagnosis. In this work, we developed an in-situ synthesized three-dimensional graphene networks
(3DGNs)-based electrochemical sensor to determine ALP activity. The sensor employs an ALP
enzymatic conversion of non-electroactive substrate to electroactive product and presents the ALP
activity as an electrochemical signal. With 3DGNs as the catalyst and signal amplifier, a sample
consumption of 5 µL and an incubation time of 2 min are enough for the sensor to detect a wide
ALP activity range from 10 to 10,000 U/L, with a limit of detection of 5.70 U/L. This facile fabricated
sensor provides a quick response, cost-effective and non-destructive approach for monitoring living
adherent osteoblast cell activity and holds promise for ALP quantification in other biological systems
and clinical samples.

Keywords: alkaline phosphatase (ALP); electrochemical sensor; three-dimensional graphene networks;
osteoblast cells; screen-printed electrode

1. Introduction

Monitoring osteoblast activity is crucial for the diagnosis of bone diseases or evaluation
of therapy efficacy. Bone alkaline phosphatase (ALP) is one of the basic enzymes in
osteoblasts and plays a critical role in bone mineralization [1,2]. Bone ALP is highly
expressed in the cells of mineralized tissue and can be released into the circulation; therefore,
the level of bone ALP increases when osteoporosis or some other metabolic bone diseases
occur [3,4]. The total serum bone ALP has been considered a bone biomarker in clinics, but
the detection of bone ALP is challenging because it presents at a very low level and exists in
a complex biological environment [5,6]. Therefore, sensitive, rapid, and on-site monitoring
methods for bone ALP are highly demanded in biomedical research and clinical diagnosis.

To date, various detection strategies have been developed for measuring ALP activity,
such as colorimetry [7,8], surface-enhanced resonance Raman scattering [9,10], and fluores-
cence assay [11–13]. Despite their reliability and sensitivity, many of the testing methods
are time-consuming, requiring professional operators and sophisticated instruments. In
this context, electrochemical sensors offer an alternative due to their high sensitivity, fast
response, easy to use, portability, and low cost. Direct electrochemical tests of ALP activity
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involve the enzymatic hydrolysis of the phosphoric acid esters substrate to electroactive
phenolate products, which can be subsequently electrochemically oxidized to quinone
compounds. The electrochemical signal generated from phenolate product oxidation is pro-
portional to the ALP activity [14–16], so the performance of the sensor is closely associated
with its ability to measure the ALP enzymatic products.

Many efforts have been made to achieve high sensitivity; for example, some nanoma-
terials such as nanoceria particles [17] and copper sulfide nanoparticles [18] were used as
catalysts and signal amplifiers for the substrate-based electrochemical ALP sensors. Among
various nanomaterials applied to electrochemical sensors, graphene performs a specific
activity for the oxidation of ALP enzymatic phenol products due to its high electrical
conductivity and π-electron system [19,20]. However, the strong van der Waals forces and
inter-sheet junction contact resistance between graphene sheets make them aggregate or
restack easily, resulting in a diminished surface area and electron diffusion rate [21,22],
which deteriorate the sensor performance. Three-dimensional graphene networks (3DGNs)
in various porous forms are emerging members of the graphitic family. Combining 3D
porous structures and excellent intrinsic properties of graphene, 3DGNs exhibit features
such as large surface areas, high pore volumes, good mechanical strengths, and quick mass
and electron transport rates, which can accelerate electrolyte movement and analyte access
to the sensing interface [23–26]. Compared with their counterparts, such as graphene quan-
tum dots and 2D graphene materials [27,28], these advantages make 3DGNs as promising
carbon nanomaterials in electrochemical sensors.

Herein, an ALP activity electrochemical sensor is fabricated with a 3DGNs modified
SPE electrode. The 3DGNs were prepared by a one-step in-situ method and used as a
catalytic amplifier for electrochemical detection of ALP activity. The resulting 3DGNs have
a large surface area, high conductivity, and good electrocatalytic activity. As shown in
Figure 1, ALP hydrolyzes the non-electroactive substrate 1-naphthyl phosphate (1-NPP) to
enzymatic product 1-naphthol (1-NAP), which can be further oxidized to 1,4-naphthoquinone
and generate an electrochemical signal. The synergetic effects from π–π conjugate and
electrochemical accumulation of 3DGNs can facilitate the 1-NAP oxidation process. After
optimizing the pH value and incubation time, the sensors were examined by testing ALP
activity in osteoblastic cells supernatant. Unlike some previously reported destructive
methods which measured ALP from the cell lysates [29–31], our non-destructive approach
can monitor ALP activity by obtaining culture supernatants of living adherent cells. This
type of sensor provides a solution for enhancing the detection sensitivity of ALP activity
by using a facile and cost-effective procedure based on the 3DGNs nanomaterials.
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2. Materials and Methods
2.1. Materials

Alkaline phosphatase (activity 10 units/mg) was purchased from Sangon Biotech
(Shanghai). Diethanolamine (DEA), anhydrous magnesium chloride, penicillin-streptomycin,
β-glycerophosphate disodium salt hydrate, and ascorbic acid were provided by Sigma-
Aldrich. 1-Naphthol and 1-naphthyl phosphate were purchased from Shanghai Macklin
Biochemical. α-MEM was from Hyclone, Cytiva. Interferon-gamma recombinant mouse
protein (IFN-γ) was provided by Gibco. Fetal bovine serum (FBS) was purchased from
Atlanta Biologicals. Phosphoric acid and potassium chloride was purchased from Shanghai
Chemical Reagent Corp. All chemicals were of analytical reagent grade and used without
further purification. Deionized water was used for all solution preparation.

2.2. In-Situ Growth of 3DGNs on Screen-Printed Electrodes

Screen-printed electrodes (SPE) were batched-fabricated on the polyimide (PI, 175 µm
thickness) substrate consisting of a silver-silver chloride (Ag-AgCl) reference electrode, a
carbon counter electrode, and a 3DGNs-functionalized working electrode. The 3DGNs
(~1.0 mm diameter) were in-situ synthesized on PI substrate by a laser direct-writing
technology (Speedy 100R, Trotec, Bunkyō, Tokyo). The power and scanning speed of the
CO2 laser (10.6 µm) were set as 7.5 W and 20 cm/s, respectively.

2.3. 3DGNs Nanostructure and Electrochemistry Characterization

The morphologies of 3DGNs were characterized by scanning electron microscopy
(SEM, S4800, Hitachi, Chiyoda City, Tokyo). The microstructures were analyzed by trans-
mission electron microscopy (TEM, Tecnai G20, FEI) operating at 200 kV. Raman spectrum
was obtained by an inVia Reflex confocal Raman microscope (RENISHAW) with a 514-nm
laser. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) detection were
carried out by a CHI 660E electrochemical workstation. The DPV curves were obtained
with the following parameters: amplitude of 0.05 V, pause width of 0.06 s, sampling width
of 0.02 s, and pulse period of 0.5 s. Baseline correction for DPV was done by measuring a
control sample.

2.4. ALP Enzymatic Product Detection

For the electrochemical measurements of ALP-catalyzed products (1-NAP), a 1-NAP
standard stock solution of 10 µM was prepared by dissolving the 1-NAP powder in DEA
buffer (10 mM DEA, 0.5 mM MgCl2, 0.1 M KCl). A series of 1-NAP concentrations of 10 nM,
100 nM, 1 µM, 3 µM, 5 µM, and 7 µM were diluted from the stock solution with DEA buffer
to obtain the calibration curve. The DEA buffer was taken as a control sample. Solutions
with each concentration were measured three times. The electrochemical measurements
were carried out by dropping 5 µL of 1-NAP solution within the working area of the
electrode, then DPV tests read the oxidation current. Each 3DGNs/SPE was used only once
to prevent fouling after the oxidation of 1-NAP.

2.5. ALP Activity Detection

ALP powder was dissolved and diluted with DEA buffer. The ALP activity test was
performed by adding 5 µL ALP solution containing ALP with a particular activity to 45 µL
of 500 µM 1-NPP in DEA buffer. The solution was then incubated at 37 ◦C in a water bath
for a certain reaction period. An aliquot of 5 µL was sampled onto the 3DGNs/SPE.

For sensor calibration, a 10,000 U/L stock solution was prepared and diluted with
DEA to different ALP activities of 10, 100, 600, 1000, 4000, and 6000 U/L. DEA buffer was
taken as a control sample. Each ALP sample (5 µL) was mixed with 45 µL of 500 µM 1-NPP
at 37 ◦C for 2 min, followed by 10 µL of 2 M phosphoric acid. Finally, 5 µL of the mixed
solution was taken for the DPV test on 3DGNs/SPE. The solution with each ALP activity
was measured three times.
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2.6. Cell Culture and ALP Activity Measurement in Cell Supernatant

An immortalized cell line IDG-SW3, which could mimic Osteoblast-to-Late-Osteocyte
differentiation, was used in this study. α-MEM supplemented with heat-inactivated
10% FBS and 100 U/mL (100 ug/mL) penicillin-streptomycin were utilized as the gen-
eral medium. A culture medium of 2500 U of IFN-γ to 100 mL was used as the cell
proliferation medium.

Cells were plated in the proliferation medium at 33 ◦C at an initial density of
4 × 104 cells/cm2. After reaching 100% confluence in 2–3 days, cells were changed to
a 37 ◦C incubator and the general medium containing 4 mM β-glycerophosphate and
50 mg/mL ascorbic acid, without IFN-γ, was changed for differentiation.

For supernatant analysis, IDG-SW3 cells in the proliferation stage were seeded with
densities of 0.45 × 105, 0.90 × 105, and 1.80 × 105 per well for differentiation, respectively.
The ALP activities in supernatants were detected after 24 h of incubation directly from the
differentiation medium.

For the electrochemical tests, 5 µL of the cell culture supernatant was incubated for
2 min with 45 µL of 500 µM 1-NPP in DEA buffer at 37 ◦C, then 10 µL of 2 M phosphoric
acid was added as the stop solution. A 5 µL aliquot of the mixed solution was taken for the
DPV test on 3DGNs/SPE. The differentiation medium was used as a control sample.

3. Results and Discussion
3.1. Characterization of the In-Situ Synthesized 3DGNs

3DGNs can be directly synthesized on the working electrode through a laser direct-
writing method, as the PI substrate serves as a carbon source. SEM and TEM images in
Figure 2a,b show the 3D porous network structure of the nanomaterial. The high-resolution
TEM (HRTEM) image in Figure 2c also proves the successful growth of multilayered
graphene, as the lattice fringe spacing of 0.34 nm is associated with the interplanar distance
of the (002) crystal plane of graphite. Furthermore, the few-layer (3–10-layer) structures
in Figure 2c indicates that the as-synthesized 3DGNs are graphene-based nanocomposite
structures rather than graphite films [28]. The distinct 2D peak at ~2689 cm−1 in the
Raman spectrum in Figure 2d further confirms the synthesized graphene. The clear D peak
suggests the presence of large amounts of defects in the laser-induced 3D porous graphene
networks. Using the methylene blue adsorption method as detailed in Supplementary
Materials, the surface area of 3DGNs is measured to be 448.73 m2/g, which is in accordance
with previous reports [28]. Owing to the porous network structure, the 3DGNs grown
in-situ with a larger surface area can adsorb more analytes and provide more active sites
for electrochemical catalysis. In addition, the 3D porous structure can effectively avoid
graphene aggregation or restack.

3.2. Electrochemical Detection of ALP Enzymatic Product

As illustrated in Figure 1, 1-NAP is the ALP enzymatic product and can be oxidized to
generate the electrochemical signal. Thus, the electrochemical sensing response to 1-NAP
can be used to represent the ALP activity. Before ALP activity measurements, the sensing
response to 1-NAP should be investigated. In order to demonstrate that the oxidation
signal of 1-NAP can be amplified by 3DGNs material, CV tests were carried out and
the results are shown in Figure 3a. When scanning from −0.2 V to 0.6 V, 1-NAP was
oxidized to 1,4-naphthoquinone. As shown by the red curve in Figure 3a, an oxidation peak
occurred at 0.35 V with a current of 0.66 µA on the bare SPE. In contrast, the oxidation peak
current obtained from 3DGNs/SPE was 3.13 µA (blue curve), which was about five-fold
greater than that of the bare SPE. The signal amplification may result from the large π

conjugated structure of 3DGNs, which could accumulate 1-NAP via π-π aggregation [19].
The enhanced signal could also be attributed to the excellent electric conductivity and large
surface area of 3DGNs, which facilitate and accelerate electron transfer on the electrode
interface [20].
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structure and interplanar distance of graphene. (d) Raman spectrum confirming the successful
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Sensor performance was evaluated by DPV from the peak current of 0.35 V and with
1-NAP concentrations ranging from 10 nM to 10 µM. As shown in Figure 3b, the regression
equation was y = 24.04x + 5.24, and the correlation coefficient R2 = 0.9985. The limit of
detection (LOD) for 1-NAP was estimated to be 5.41 nM based on three times the standard
deviation of the control sample (n = 3). The high sensitivity towards 1-NAP demonstrates
the high electro-catalytic activity and potential of the 3DGNs-based sensor for subsequent
ALP activity measurement.
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Figure 3. (a) CV characterization of the electrochemical oxidation of 1-NAP by 3DGNs/SPE compared
with bare SPE; (b) calibration curve of the current peaks for 1-NAP oxidation at 0.35 V. Error bars
represent the RSD of triple measurements. The inset shows DPV curves of the enzymatic product
1-NAP in DEA buffer with the concentration range from 0.01 to 10 µM obtained by 3DGNs/SPE.
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3.3. Optimization of ALP Activity Detection

In this work, the ALP activity was measured with the strategy illustrated in Figure 1.
First, the substrate 1-NPP is enzymatically converted to 1-NAP by ALP. Then 1-NAP is
oxidized to 1,4-naphthoquinone on the 3DGNs material, producing an amplified current
response. As shown in Figure 4a, the sensor’s ability to detect ALP was investigated by CV.
In the absence of ALP (black curve), no oxidation peaks were observed for 1-NPP, while an
oxidation peak at 0.42 V appeared in the presence of ALP (blue curve). The results indicate
that 1-NPP is non-electroactive and could not be hydrolyzed to 1-NAP without ALP.
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In order to obtain the optimal experimental conditions affecting the enzymatic reaction
of ALP, the pH value and incubation time were optimized. It is known that ALP converts
1-NPP to 1-NAP under an alkaline environment [14]. Therefore, the pH optimum during
ALP activity analysis was investigated from 8.0 to 11.0. As shown in Figure 4b, ALP offers
the highest hydrolysis ability at pH = 10, which agrees with previous literature [32,33].
Hence, pH 10.0 was utilized for subsequent experiments.

The effects of incubation time on sensor signal responses were investigated by the
addition of a stop solution which can end the enzymatic reaction after a particular time [16].
Regarding the optimization of incubation time, 500 µM of 1-NPP substrate reacted with
ALP (100 U/L), and 2 M phosphoric acid was added as the stop solution at different
reaction periods. As shown in Figure 4c,d, the DPV peak current linearly increased with
the incubation time. A current signal with a decent signal-to-noise ratio can be obtained in
2 min with the help of 3DGNs. Despite the stronger current and better sensor sensitivity,
a longer incubation time prolongs the tests. Therefore, an incubation time of 2 min was
chosen to establish a quick ALP activity detection protocol.

3.4. Detection of ALP Activity

The sensitivity of the 3DGNs-based sensor was investigated by DPV. As shown in
Figure 5a, the peak current of DPV increased with rising ALP activities on the optimized



Biosensors 2022, 12, 406 7 of 10

experimental conditions. Figure 5b exhibits the linear relationship between the DVP
peak current and ALP activities from 10 to 10,000 U/L. The linear regression equation is
y = 0.666x + 0.476 with a correlation coefficient R2 = 0.9843 (n = 3). The estimated LOD is
5.70 U/L, and the quantification limit was calculated as 20.67 U/L (ten times the standard
deviation of the control sample). This sensitivity can satisfy the requirement for ALP
activity detection in biological samples (46–190 U/L for adults [34]).

As shown in Table S1 (Supplementary Materials), our 3DGNs-based sensor exhibited
good sensing performance, and the sensitivity was comparable to the reported techniques.
In addition, our 3DGN-based sensor for ALP detection has the advantages of short assay
time and wide detection range, which can be attributed to the signal amplification of
3DGNs for ALP hydrolyzed product, showing potential for real biological sample testing.
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3.5. Detection of ALP in the Living Adherent Osteoblastic Cells Supernatant

The feasibility of the 3DGNs-based sensor was validated by measuring the activity of
ALP secreted from the IDG-SW3 cells in the differentiation stage. IDG-SW3 cells were incu-
bated for 1 day at various seeding densities (0.45 × 105, 0.90 × 105, and 1.80 × 105 per well,
respectively) for differentiation. Then the ALP activity was measured from the cell culture
supernatant. As shown in Figure 6, the DPV peak current increased with the rising cell
densities. The results demonstrate that the 3DGNs-based sensor can detect ALP released by
adherent living cells in the culture supernatant. The incubation time of 2 min and a sample
volume of 5 µL can guarantee the desired sensitivity for different cell densities. More-
over, our approach is non-destructive to cells, which makes it suitable for the long-time
osteoblastic activity monitoring by analyzing the ALP activity in the supernatant. Since the
cell density range is commonly used in the culture of osteogenic cells, the electrochemical
method is also promising for measuring the ALP activity of other osteogenic cells.
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4. Conclusions

In summary, 3DGNs nanostructure was successfully synthesized in-situ and used
as a signal amplifier for electrochemical detection of ALP activity in both solution and
cell supernatant. The unique porous structure and large surface area of 3DGNs enhance
the synergetic effects from the π–π conjugate and electrochemical accumulation for ALP
enzymatic product at the sensing interface, resulting in an amplified current signal. This
sensor exhibits a LOD of 5.70 U/L in a wide range of ALP activities from 10 to 10,000 U/L.
To measure ALP activity existing in the complex biological samples at trace levels, unlike
some clinically used methods which require expensive and bulky instruments, complex
pre-treatment procedures, and long assay times, the proposed micro-sensor exhibits high
sensitivity, low sample consumption (5 µL) and a short incubation time (2 min). This
3DGNs-based electrochemical sensor is cost-effective, portable, disposable, and easy to
operate, making it suitable for point-of-care testing (POCT) applications. Moreover, it
detects cell-secreted ALP in a non-destructive way, having the potential for long-time
osteoblastic activity monitoring in biomedical and clinical research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12060406/s1, Table S1: Limit of detection of the proposed
ALP sensor compared with other technologies [17,35–42].
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