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Abstract

Background: Transplant patients would benefit from reduction of immunosuppression providing that graft rejection is
prevented. We have evaluated a number of immunological markers in blood of patients in whom tacrolimus was withdrawn
after renal transplantation. The alloreactive precursor frequency of CD4+ and CD8+ T cells, the frequency of T cell subsets
and the functional capacity of CD4+CD25+FoxP3+ regulatory T cells (Treg) were analyzed before transplantation and before
tacrolimus reduction. In a case-control design, the results were compared between patients with (n = 15) and without
(n = 28) acute rejection after tacrolimus withdrawal.

Principal Findings: Prior to tacrolimus reduction, the ratio between memory CD8+ T cells and Treg was higher in rejectors
compared to non-rejectors. Rejectors also had a higher ratio between memory CD4+ T cells and Treg, and ratios ,20 were
only observed in non-rejectors. Between the time of transplantation and the start of tacrolimus withdrawal, an increase in
naive T cell frequencies and a reciprocal decrease of effector T cell percentages was observed in rejectors. The proportion of
Treg within the CD4+ T cells decreased after transplantation, but anti-donor regulatory capacity of Treg remained unaltered
in rejectors and non-rejectors.

Conclusions: Immunological monitoring revealed an association between acute rejection following the withdrawal of
tacrolimus and 1) the ratio of memory T cells and Treg prior to the start of tacrolimus reduction, and 2) changes in the
distribution of naive, effector and memory T cells over time. Combination of these two biomarkers allowed highly specific
identification of patients in whom immunosuppression could be safely reduced.
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Introduction

Currently, 1-year graft survival rates after renal transplantation

are exceeding 90%. However, the life-long administration of

immunosuppressive drugs is accompanied by many side effects.

Next to increased risk of infections and malignancies, the use of the

calcineurin inhibitors (CNI) cyclosporine and tacrolimus is

associated with nephrotoxicity, which can contribute to long-term

graft failure [1,2]. Withdrawal of CNI, once stable graft function is

achieved, has therefore been attempted in several studies but was

associated with an increased risk for acute rejection [3,4]. On the

other hand, successful discontinuation of CNI results in improved

renal function and blood pressure, and long-term follow up of

patients after CNI withdrawal has shown a favorable outcome

[5,6]. Thus, it is highly desirable to identify transplant patients in

whom CNI withdrawal can be successful. To this end, there is a

need for in vitro monitoring tools.

CD4+ and CD8+ effector T cells play a central role in the

pathogenesis of allograft rejection [7]. CD4+CD25+FoxP3+

regulatory T cells (Treg) are involved in maintaining tolerance

towards self antigens, and they can regulate alloreactivity as well

[8,9]. The quantification of alloreactivity, in terms of balance

between effector cells and Treg, may allow the identification of

patients at risk for acute rejection. Early attempts to characterize

alloreactivity have focused on the functional capacity of allor-

eactive T cells in mixed lymphocyte reactions (MLR), but these

assays showed little predictive value in transplantation [10]. Better

information was provided by MLR-based limiting dilution assays,

estimating the precursor frequencies of cytotoxic T lymphocytes

(CTLp) and helper T cells (HTLp) [11]. In bone marrow

transplantation, high CTLp frequencies were associated with

prolonged leukemia free survival time [12]. However, the benefit

of CTLp assessment in solid organ transplantation remains

controversial [13,14]. Using Elispot assays, low numbers of

donor-specific IFN-c producing T cells were associated with

stable long-term renal function [15,16]. Moreover, a high pre-

transplant reactivity to a panel of allogeneic stimulator cells was

correlated with an increased risk for acute rejection after renal
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transplantation [17]. Protein profiling of serum to predict rejection

has shown promising results in experimental models, but these

data have to be confirmed in clinical studies [18].

To date, studies on the role of Treg in alloreactivity are limited

due to the low number of Treg in the circulation. The indirect

assessment of Treg function in depletion assays, showed that Treg

are able to regulate anti-donor responses after transplantation

[19,20], but firm evidence for their role in protection against

rejection remains to be provided.

In this study, the level of immunosuppression was reduced to a

CNI free regimen in renal transplant patients with stable graft

function, according to a standard protocol. Blood samples were

collected before transplantation and before the start of tacrolimus

withdrawal. Using a case-control design, we compared the T cell

subset distribution and ex vivo T cell responses between patients

who experienced an acute rejection period following the reduction

of immunosuppression and patients in whom immunosuppression

was reduced successfully.

Methods

Transplant patients and immunosuppression
Patients received a renal allograft in our hospital between

January 2003 and December 2004. Immunosuppression consisted

of tacrolimus in combination with mycophenolate mofetil (MMF)

and prednisolone. Patients received 100 mg of prednisolone

intravenously during the first 3 days after transplantation and

subsequently an oral dose of 15–25 mg/day, tapered to a

maintenance dose of 0.1 mg/kg/day. Tacrolimus was started at

day 1 or 2 after transplantation at 0.15 mg/kg/day and the dose

was subsequently adjusted to achieve whole-blood trough

concentrations of 15–20 ng/mL during days 0–14, 10–15 ng/

mL during weeks 3–6, and 5–10 ng/mL from week 7. Whole

blood tacrolimus concentrations were measured by the IMx

analyzer (Abbott Laboratories, Abbott Park, IL, USA). MMF was

administered at 1000 mg twice daily with a dose reduction to

750 mg twice daily at 2 weeks after transplantation. Induction

therapy with polyclonal or monoclonal antibodies was not used.

At 4 months after transplantation, patients were selected for

reduction of their immunosuppression (including withdrawal of

tacrolimus) when they met the following inclusion criteria: stable

graft function, and at least 1 HLA-B and 1 HLA-DR match

between donor and recipient. Patients who received a kidney from

a HLA-identical living donor, patients with two or more previously

failed grafts, patients with PRA .85%, non-Caucasian patients,

and patients that had experienced a steroid-resistant acute

rejection episode after their current transplantation were excluded.

In addition, patients with severe osteoporosis and patients with

bone marrow depression were not included. At first instance,

MMF was substituted for azathioprine (Aza, 3 mg/kg daily). The

dose of Aza was adjusted in case of leukocytopenia or elevated

liver enzymes. When patients did not tolerate a minimum Aza

dose of 2 mg/kg/day, MMF was reintroduced. Two months later,

six months after transplantation, the tacrolimus dose was gradually

reduced to zero over a period of 4 weeks. Meanwhile, the

prednisolone dose was increased to 0.15 mg/kg/day. The

resulting immunosuppressive therapy after conversion consisted

of azathioprine (at least 2 mg/kg/day; otherwise MMF 750 mg

twice daily) and prednisolone (0.15 mg/kg/day). All patients were

evaluated for acute rejection episodes during the first 6 months

after withdrawal of tacrolimus. When there was a deterioration of

graft function without clear prerenal or postrenal cause, a graft

biopsy was taken. Protocol biopsies at fixed time points were not

performed. The study was approved by the Intstitutional Review

Board of the Radboud University Nijmegen Medical Centre. All

participants gave written informed consent.

Cell isolation and culture conditions
Blood samples (20 ml) were collected before transplantation

(T0) and prior to tacrolimus withdrawal (T1). Donor cells were

obtained from peripheral blood (living donors) or spleen tissue

(deceased donors). For 3rd party controls, buffy coats were

obtained from healthy blood donors (Sanquin Blood Bank region

South East, Nijmegen, the Netherlands). Cell isolation and culture

were conducted as described elsewhere [21]. All cells from donors

and recipients were frozen prior to use in analyses. HLA typing

was conducted according to ASHI standards.

Expression of cell surface markers and of FoxP3
PBMC (1*105) were labeled with fluorochrome-conjugated

monoclonal antibodies in PBS-BSA buffer for 209 at room

temperature (RT) in the dark. Samples were measured on a

Coulter Epics XL flowcytometer (Beckman Coulter, Fullerton,

CA) and analyzed using Coulter Epics Expo 32 software. The

following antibodies were used: anti-CD8-FITC (DK25), anti-

CD27-FITC (M-T271), anti-CD45RO-FITC (UCHL1), anti-

CD25-PE (M-A251), anti-CD28-PE (CD28.1), anti-CD45RA-PE

(HI100), anti-CD3-ECD (UCHT1), anti-CD62L-ECD

(DREG56), anti-CD8-PC5 (B9.11), and anti-CD4-PC5 (13B8.2).

FoxP3-FITC (PCH101) staining was performed according to the

manufacturer’s procedures (eBioscience, San Diego, CA, USA).

Appropriate isotype control mAbs were used for marker settings.

CFSE-based MLR
The number of donor- and 3rd party-reactive CD4+ and CD8+

T cells was determined using a CFSE-based mixed lymphocyte

reaction (CFSE-MLR) [22,23]. Patient PBMC (10*106) were

labeled with 1 mM CFSE (Molecular Probe, Eugene, OR, USA) in

CFSE labeling buffer (PBS containing 0.02% HPS) for 10 minutes

at RT in the dark and the labeled cells (1*105) were stimulated

with irradiated (30 Gy) PKH (Sigma-Aldrich, St Louis, USA)

labeled donor cells (1*105) in 96-wells round bottom plates. As

controls, patient PBMC were cultured with either PKH labeled

irradiated pooled 3rd party PBMC, cultured alone (negative

control), or cultured in the presence of anti-CD3/antiCD28

expander beads (positive control). At day 6, the cells were stained

for CD4 and CD8.

Expansion and functional analysis of CD4+CD25high

regulatory T cells
Patient PBMC (5–10*106) were incubated with CD4-FITC

(clone MT310, Dako, Glostrup, Denmark) and CD25-PE (clone

M-A251, BD Bioscience, USA) for 20 minutes at RT in the dark.

CD4+CD25high and CD4+CD25neg control cells were separated

using high purity fluorescence activated cell sorting (FACS, Altra

flowcytometer, Beckman Coulter, USA). Sorted CD4+CD25high

and CD4+CD25neg T cells were expanded as described previously

[21]. To analyze their suppressive potential, a primary MLC was

set up, consisting of 4th party responder PBMC and donor or 3rd

party stimulator cells. Fourth party responder PBMC were used

instead of patient PBMC because of the low proliferative response

of the patient PBMC to donor stimulator cells (likely due to close

HLA matching), which hampered the read-out of the putative

suppression by Treg. The expanded CD4+CD25high and

CD4+CD25neg (control) cells were added at increasing ratios to

this MLC. It was expected that in the MLC with donor stimulator

cells (and not 3rd party stimulator cells), the added donor-specific
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Treg would be activated and inhibit the proliferation of the 4th

party responders by means of linked suppression. Proliferation was

measured by 3H incorporation.

Statistical analysis
Patients who experienced an acute rejection after tacrolimus

withdrawal and a control group of non-rejecting patients, were as

closely as possible matched for the following items: age of donor and

recipient (,50 versus $50), total number of HLA-mismatches,

percentage PRA (,5%, $5%), and first or re-transplantation. Data

obtained from flow cytometry and CFSE-MLR analyses were

compared between the two groups using a Mann-Whitney U-test.

For analysis of changes in time within patients a Wilcoxon signed

rank test was used. Correlation between values of different time

points was analyzed with Spearman’s rank test. A p-value #0.05

was considered statistically significant.

Results

Patient characteristics
Sixty-six patients fulfilled the inclusion criteria and were treated

according to the protocol. Twenty-four patients (36%) experienced

an acute rejection following the withdrawal of tacrolimus. In 22/

24 patients the rejections were confirmed by histology according to

the 2001 revised Banff classification [24]. In two patients, the

clinical picture and response to therapy was compatible with acute

rejection, but no graft biopsy was performed for logistical reasons.

All acute rejection episodes were treatable and none of the patients

lost their graft within the follow-up period of six months after

tacrolimus withdrawal.

In 15 cases with acute rejection sufficient material from donors

as well as recipients was available to perform the analyses

described below. For each case, we selected two controls from

the group of non-rejectors (n = 42), based on optimal matching for

a set of relevant parameters (as described in materials and methods

section). Because sufficient material was not available for all

donors and recipients, the ultimate number of controls was 28.

Except for a difference in the degree of HLA-DR matching, the

clinical characteristics did not differ significantly between rejectors

and non-rejectors (Table 1).

Frequencies of effector, memory and regulatory T cell
subsets

T cell subset distribution was analyzed in blood samples collected

immediately before the start of tacrolimus dose reduction (T1).

Using antibodies directed against CD62L and isoforms of CD45,

naive (TN, CD45RA+CD62L+), effector (TE, CD45RA+CD62L-),

effector memory (TEM, CD45RO+CD62L-) and central memory

(TCM, CD45RO+CD62L+) T cell subsets were identified [25,26].

Neither in the CD4+ T cell pool, nor in the CD8+ T cell

compartment did the distribution of the four subsets differ between

rejectors and non-rejectors (Figure 1). A similar discrimination

between naı̈ve, effector and memory T cells was made on the basis

of CD27 and CD28 expression which neither revealed significant

differences between rejectors and non-rejectors (data not shown).

Immediately prior to the start of tacrolimus dose reduction, the

median frequency of Treg was 1.6% and 2.0% of the total CD4+
T cell subset for rejectors and non-rejectors, respectively (NS;

Figure 1E).

Next to the size of the T cell subsets, the balance between reactive

and regulatory T cells might be an important determinant of the risk

of rejection [27–29]. Interestingly, the ratio between the percentage

of CD8+ memory T cells (TEM and TCM combined) and the

percentage of Treg was significantly higher in rejectors compared

with non-rejectors (p = 0.007). A similar difference was observed in

the CD4+ T cell compartment (p = 0.032), where low ratios (,20)

were only observed for non-rejectors (Figure 1F). Since the group of

non-rejectors contained 8 patients without DR mismatches, while

none of the rejectors were fully DR matched, we repeated the

analysis after the exclusion of DR matched transplantations. Again,

the ratio between CD8+ memory T cells and Treg as well as the

ratio between CD4+ memory T cells and Treg were higher in

rejectors (p = 0.004 and p = 0.01, respectively). To get informed

about the reproducibility of this parameter, we also measured the

ratio between memory T cells and Treg in blood samples taken two

months prior to the start of tacrolimus withdrawal, and compared

these values with those obtained immediately before the tacrolimus

dose reduction. For the ratio between CD8+ memory T cells and

Treg the values did not differ significantly between both time points

and the correlation coefficient was 0.89 (P,0.001). For the ratio

between CD4+ memory T cells and Treg the values of both time

points did not differ either, and the correlation coefficient was 0.74

(P,0.001). We therefore conclude that the variability in time of this

parameter is limited.

CD4+ and CD8+ alloreactive T cell precursor frequency
and mitotic activity

The precursor frequencies of donor reactive CD4+ and CD8+
T cells ranged from 0.1–6.8%, increasing with the number of HLA

mismatches, and did not differ between rejectors and non-rejectors

(Figure 2B). Differences were neither observed in the precursor

frequencies of 3rd party-reactive CD4+ or CD8+ T cells

(Figure 2C).

The number of mitotic events was higher in third party

alloreactive T cells as compared to donor reactive CD4+ and

CD8+ T cells, but did not differ between rejectors and non-

rejectors (Figures 2D and 2E).

Suppressive potential of Treg
The suppressive capacity of peripheral blood Treg was studied in

9 patients (5 rejectors and 4 non-rejectors). CD4+CD25high were

isolated from PBMC. To obtain sufficient cell numbers for

functional analysis, the cells were expanded using a previously

Table 1. Patient characteristics.

Rejectors
(n = 15)

Non-rejectors
(n = 28) p-value

Gender (male/female) 9/6 18/10 0.78

Patient age (years) 43615 40613 0.65

Donor age (years) 49614 49610 0.89

Donor living/deceased 6/9 8/20 0.45

HLA mismatches (0/$1)

HLA-A 5/10 15/13 0.21

HLA-B 4/11 9/19 0.71

HLA-DR 0/15 8/20 0.02

Cold ischemia time (hours)* 2068 1765 0.30

PRA pretransplant ($5%) 1 6 0.19

Retransplantation 0 6 0.05

Acute rejection prior to inclusion 1 0 0.17

Azathioprine/MMF at start of
tacrolimus withdrawal

11/4 19/9 0.71

*deceased donors only
doi:10.1371/journal.pone.0002711.t001
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Figure 1. The frequency of effector, memory and regulatory T cell subsets in the peripheral blood of renal transplant patients
immediately before the start of tacrolimus dose reduction (T1). (A) Representative dot plots of CD62L versus CD45RA and CD62L versus
CD45RO. The analysis was performed on cells within the lymphocyte gate in the forward/side scatter plot. (B) The percentage of naı̈ve (TN,
CD45RA+CD62L+), effector (TE, CD45RA+CD62L-), central memory (TCM, CD45RO+CD62L+) and effector memory (TEM, CD45RO+CD62L-) T cells within
the total CD4+ T cell subset. R vs. NR = not significant. (C) As described under A, for CD8+ T cells. R vs. NR = not significant. (D) Representative dot plot
of CD25 versus FoxP3 in CD4+ lymphocytes. (E) The percentage of CD25+FoxP3+ regulatory T cells (Treg) within CD4+ lymphocytes. R vs. NR = not
significant. (F) The ratio between the percentage of memory T cells and the percentage of Treg.
doi:10.1371/journal.pone.0002711.g001
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validated expansion protocol [21]. Treg of each transplant patient

showed potent ability to suppress both anti-donor and anti-3rd-party

responses. Considerable variation was observed in the suppressive

potential of Treg between individual patients, but overall no

differences were observed between rejectors and non-rejectors

(Figure 3). The expanded CD4+CD25- control T cells did not

reveal suppressive capacity in any of the patients (data not shown).

Changes in the distribution of effector and memory T cell
subsets over time

Having established a difference in the ratio between memory

and Treg before the reduction of tacrolimus (T1), we wondered

whether changes over time would provide additional information.

Analysis of the immunological markers before transplantation

(T0), showed no differences between rejectors and non-rejectors.

Figure 2. The functional capacity of allo- and 3rd party-reactive CD4+ and CD8+ T cells and CD4+CD25high regulatory T cells isolated
from the peripheral blood of transplant patients immediately before the start of tacrolimus dose reduction (T1). A CFSE-MLR was
used to determine the precursor frequency and mitotic events of alloreactive CD4+ (left) and CD8+ (right) T cells. CFSE labeled patient PBMC (1*105)
were stimulated with PKH labeled donor or 3rd party cells (1*105) for 6 days. Using flow cytometry, patient T cells were gated based on forward/side
scatter and PKH exclusion and subsequent CD4 and CD8 staining. An example is shown in (A). The precursor frequency and mitotic events of
alloreactive CD4+ and CD8+ T cells were calculated on the basis of the CFSE dilution pattern using Modfit LTTM software [22]. (B) The precursor
frequency of donor reactive CD4+ and CD8+ T cells. (C) The precursor frequency of 3rd party reactive CD4+ and CD8+ T cells. (D) The number of
mitotic events of alloreactive CD4+ and CD8+ T cells. (E) The number of mitotic events of 3rd party reactive T cells. R vs. NR = not significant.
doi:10.1371/journal.pone.0002711.g002
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Interestingly, with regard to CD4+ T cells, all rejectors showed a

relative increase between T0 and T1 in the percentage of naive T

cells and all but one showed a decrease in the percentage of

effector T cells, while in non-rejectors the pattern of changes was

diverse (Figure 4A). In the CD8+ T cell compartment, there were

comparable shifts in T cell subset percentages, but less outspoken

than in the CD4+ T cell population (Figure 4B).

For both rejectors and non-rejectors, the median percentage of

Treg within the CD4+ T cells was lower prior to tacrolimus

reduction (1.6% and 2.0%, respectively) compared to pretrans-

plant values (2.6% and 2.9%, respectively, p,0.01) (Figure 4C).

Taken together, a decrease in the percentage of naı̈ve T cell

levels identified transplant patients at low risk for acute rejection

following reduction of immunosuppression.

Changes in the functional capacity of CD4+ and CD8+ T
cells over time

The precursor frequency and mitotic events of donor and 3rd

party reactive CD4+ and CD8+ T cells showed little variation over

time and the changes did not differ between rejectors and non-

rejectors (Figures 5A and 5B). In addition, the ability of isolated

Treg to suppress alloreactivity was comparable at the time of

transplantation and the start of tacrolimus withdrawal (Figure 5C).

Predictive value of immunological markers for the
occurrence or freedom of rejection

As stated above, two markers were associated with successful

reduction of immunosuppression: 1) a low ratio (,20) of memory

CD4+ T cells: Treg prior to the start of immunosuppression

reduction, and 2) a decrease in the percentage of naive T cells

before start of tacrolimus reduction compared to pre-transplant

values. Combination of these two markers resulted in a test with a

high predictive value. We defined a positive test result (associated

with rejection) as the absence of both markers, and a negative test

result (associated with absence of rejection) as the presence of one

or both markers. Both markers were available in 33 patients (12

rejectors and 21 non-rejectors). The sensitivity of the test for

detecting a subsequent rejection was 100% (12/12) while the

specificity was 76% (16/21). The positive predictive value (markers

absent = positive test) with respect to subsequent rejection was

76% (12/17), while the negative predictive value (one or both

markers present = negative test) was 100% (16/16). In conclusion,

the combination of the two biomarkers was very useful to identify

patients in whom the immunosuppressive therapy could be safely

reduced.

Discussion

In this case-control study, we have evaluated a number of T cell

markers to predict the occurrence of acute renal allograft rejection

following the discontinuation of tacrolimus. We did not aim to

study the kinetics of T cell populations during rejection and after

treatment thereof. Rather, we tried to identify markers of a state of

allograft acceptance that may allow minimization of immunosup-

pression. In samples taken immediately before the withdrawal of

tacrolimus, the ratio between memory CD8+ or memory CD4+ T

cells and Treg was significantly higher in patients who experienced

a rejection episode compared to non-rejectors. Apparently, an

enhanced memory T cell: Treg ratio did not result in rejection as

long as sufficient immunosuppression was provided. Reduction of

immunosuppression tipped the balance towards rejection in a

number of these patients. Our findings underscore the importance

of a balance between effector/memory and regulatory mecha-

nisms in the maintenance of immune homeostasis as has been

demonstrated in several studies [27–29].

In addition, we observed that the change in T cell subset

distribution between transplantation and the initiation of tacroli-

mus withdrawal was different between rejectors and non-rejectors.

In the group of rejectors, an increase over time was observed in the

percentage of naive T cells in the peripheral blood, with a

reciprocal decrease in the percentage of effector T cells. Although

more pronounced for CD4+ T cells, this phenomenon was also

observed for CD8+ T cells. Without the analysis of other immune

compartments and graft tissue, it is difficult to interpret these

intriguing findings.

Figure 3. The suppressive potential of Treg isolated from transplant patients immediately before the start of tacrolimus dose
reduction. R = rejectors (n = 5), NR = non-rejectors (n = 4). CD4+CD25high and CD4+CD252 control cells were isolated from patient PBMC using
fluorescence activated cell sorting resulting in .95 purity. The cells were expanded using anti-CD3/CD28 coated expander beads in combination with
IL-2 and IL-15 for 14–21 days. After expansion, Treg were rested for 2–3 days after which their capacity to suppress anti-donor and anti-3rd party
responses was evaluated in a suppression assay, in which Treg were added at increasing ratios to a newly setup MLR (with donor or 3rd party
stimulator cells). Proliferation was measured at day 6 using 3H incorporation The percentage inhibition of proliferation (y-axis) of anti-donor (left) or
anti-3rd-party (right) responses by Treg, added at increasing ratios (x-axis) to the MLR, isolated from rejectors and non-rejectors. R vs. NR = not
significant.
doi:10.1371/journal.pone.0002711.g003
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The combination of the memory T cell: Treg ratio and the

changes in T cell subsets over time, resulted in a test, that is highly

sensitive in the detection of patients that will develop a rejection

after the withdrawal of tacrolimus at six months after renal

transplantation. Accordingly, when confirmed in another study,

this test could be very useful to identify renal transplant patients in

whom immunosuppression can be safely reduced.

Until now, in vitro monitoring tools in solid organ transplan-

tation have mostly been used to predict the course early after

transplantation, and the most relevant information has been

Figure 4. Changes in the frequency of naı̈ve, effector, memory and regulatory T cell subsets in the peripheral blood of transplant
patients between the time of transplantation (T0) and the start of tacrolimus withdrawal (T1). A positive value indicates an increase and
a negative value indicates a decrease of the value in time. The change in the percentage of naı̈ve (TN, CD45RA+CD62L+), effector (TE, CD45RA+CD62L-),
central memory (TCM, CD45RO+CD62L+) and effector memory (TEM, CD45RO+CD62L-) T cell subsets within (A) the total CD4+ T cell population, and (B)
the CD8+ T cell population. (C) The change in the percentage of peripheral blood CD4+CD25+FoxP3+ T cells within the total CD4+ T cell population.. R
vs. NR = not significant.
doi:10.1371/journal.pone.0002711.g004
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provided by functional assays of anti-donor reactivity [30]. One

study concerned the prediction of acute rejection following

reduction of immunosuppression by measuring CTLp frequencies

[13]. The authors found that low CTLp frequencies (,10/10*106

PBMC) identified patients in whom immunosuppression could be

safely reduced. The low CTLp frequencies observed by van

Besouw et al. might be viewed as a state of immune quiescence,

which in some way appeared to be reflected by a low memory T

cell: Treg ratio in our study. Combining the assessment of CTLp

frequencies and memory T cell: Treg ratios might provide a strong

monitoring tool.

Although the results of our study are based on a relatively small

sample size, similar studies with comparable or larger number of

patients have not been published. It is important that our findings

are reproduced in a second validation cohort of patients before

they can be used for the management of patients. We recognize

that in a number of the assays we used, overall reactivity rather

than donor reactivity was measured. In clinical practice however,

monitoring tools will especially be welcomed if they are easy and

fast to perform, give reproducible results, require small blood

volumes of the patient, and do not require donor material.

In conclusion, in this study we have monitored a variety of

phenotypic and functional T cell markers in the peripheral blood

of renal transplant patients in order to find a marker that would

help to predict the occurrence of acute rejection following the

discontinuation of tacrolimus. Flow cytometric T cell analysis was

found to be the most informative in our study and revealed an

association between the occurrence of rejection and 1) the ratio of

memory T cells and Treg immediately prior to the start of

tacrolimus reduction and 2) changes in the distribution of naive,

effector and memory T cells over time. These findings may

contribute to the development of in vitro monitoring tools to

identify transplant patients in whom immunosuppression can be

safely reduced in order to avoid long-term side effects.

Figure 5. Changes in the functional capacity of T cells isolated from the peripheral blood of transplant patients between the time of
transplantation (T0) and the start of tacrolimus withdrawal (T1). A positive value indicates an increase and a negative value indicates a
decrease of the value in time. A CFSE MLR in combination with Modfit LTTM software was used to calculate the precursor frequency and the number
of mitotic events of allo- and 3rd-party-reactive CD4+ and CD8+ T cells. (A) The change (y-axis) in the precursor frequency of alloreactive CD4+ and
CD8+ T cells. (B) The change in the number of mitotic events (ME) of CD4+ and CD8+ alloreactive T cells. (C) The functional capacity to suppress anti-
donor responses of Treg isolated before transplantation (T0, white circles) and before the start of tacrolimus reduction (T1, black circles) in 5 rejectors
(upper graphs) and 4 non-rejectors (lower graphs).
doi:10.1371/journal.pone.0002711.g005
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