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Abstract
That the physicochemical properties of amino acids constrain the structure, function and

evolution of proteins is not in doubt. However, principles derived from information theory

may also set bounds on the structure (and thus also the evolution) of proteins. Here we ana-

lyze the global properties of the full set of proteins in release 13-11 of the SwissProt data-

base, showing by experimental test of predictions from information theory that their

collective structure exhibits properties that are consistent with their being guided by a con-

servation principle. This principle (Conservation of Information) defines the global properties

of systems composed of discrete components each of which is in turn assembled from dis-

crete smaller pieces. In the system of proteins, each protein is a component, and each pro-

tein is assembled from amino acids. Central to this principle is the inter-relationship of the

unique amino acid count and total length of a protein and its implications for both average

protein length and occurrence of proteins with specific unique amino acid counts. The

unique amino acid count is simply the number of distinct amino acids (including those that

are post-translationally modified) that occur in a protein, and is independent of the number

of times that the particular amino acid occurs in the sequence. Conservation of Information

does not operate at the local level (it is independent of the physicochemical properties of

the amino acids) where the influences of natural selection are manifest in the variety of pro-

tein structure and function that is well understood. Rather, this analysis implies that Conser-

vation of Information would define the global bounds within which the whole system of

proteins is constrained; thus it appears to be acting to constrain evolution at a level different

from natural selection, a conclusion that appears counter-intuitive but is supported by the

studies described herein.
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Introduction
Systems composed of discrete pieces, often arranged in a sequence, are ubiquitous and in origin
are both natural and man-made. Examples from nature include the systems of nucleic acids,
proteins and complex carbohydrates. The proteins, while themselves discrete components of a
system, are individually assembled from smaller discrete pieces i.e. the amino acids. Historical-
ly, the biological polymers of proteins, DNA and complex carbohydrates have been studied pri-
marily in the reductionist and mechanistic context of biochemistry and genetics, thereby
producing ever-increasing and finer-grained insights into their properties.

However, such systems can also be analyzed from a global perspective, using concepts from
information theory [1–6] and statistical physics [7–9] that demonstrate amongst other things
the extraordinary ubiquity of power-law distributions in biological and many other systems
[10]. Indeed Karev et. al [1] specifically note that “The question that emerges when the same
mathematical structure appears in apparently unrelated contexts is: are these formal similari-
ties coincidental and superficial or do they reflect a deep connection at the level of evolutionary
mechanisms?”We will argue here that in the case of proteins such a connection exists; howev-
er, the evidence suggests that the connection is at a global level and results from the action of a
conservation principle (Conservation of Information) derived from information theory. The
counter-intuitive implication is that the Conservation of Information sets boundaries within
which the evolutionary mechanisms operate.

Conservation principles and their associated symmetries have long been known to be funda-
mental in the evolution of physical systems [11] and the relationship between local effects and
the global constraint of conservation principles is well understood in for example the operation
of the general gas equation, in which the pressure, volume and temperature are constrained
through a universal constant, independently of the local motion of the molecules. In a biologi-
cal system, the operation of the laws of thermodynamics on biochemical and biophysical sys-
tems is well understood, in which local violations (e.g. the reversal of entropy characteristic in
life forms) are permitted but in which the global system nevertheless adjusts so that the second
law of thermodynamics is not violated.

In this study we address whether the global structure of a system of proteins is constrained
by the Conservation of Information, which was recently shown to operate in systems of com-
puter software [12]. We were led to ask this particular question of proteins because the Conser-
vation of Information applies to systems that possess a feature that is shared by proteins and
computer software, i.e. the element of sequential choice. Both systems consist of components
that are themselves assembled sequentially from parts, i.e. the amino acids in proteins, and to-
kens in software languages. This conservation principle was derived by merging Hartley-Shan-
non information and statistical mechanics [13–16]. It will be described more fully below, but it
is important to note that the operation of the Conservation of Information is independent as-
ymptotically of scale and of the meaning of the parts from which components are assembled.
The irrelevance of token (here amino acid) meaning is an important part of Hartley-Shannon
theory, indeed Hartley specifically defined information as “the successive selection of signs, re-
jecting all meaning as a mere subjective factor” [13].

In the context of proteins, this latter point eliminates from the analysis any consideration of
the different physicochemical properties of the amino acids. This irrelevance of the physico-
chemical properties of the amino acid side chains is highly counter-intuitive, since they are the
foundation of our understanding of protein structure and function. Nevertheless, we will here
present evidence that Conservation of Information guides the global properties of a system of
proteins regardless of the disparate physicochemical properties of individual amino acids and
of the domain of life in which the proteins have evolved.

Does Information Theory Globally Constrain Protein Evolution?

PLOS ONE | DOI:10.1371/journal.pone.0125663 May 13, 2015 2 / 23

Competing Interests: The authors have declared
that no competing interests exist.



The unique amino acid count and the Conservation of Information
In the Conservation of Information two parameters emerge by which global properties are cat-
egorized [12]. The first is both intuitively obvious and easily accessible, and for proteins is sim-
ply ti, the length in amino acids of the ith protein. The second parameter is less intuitive from a
biological viewpoint and is consequently a little more difficult to explain and also to extract
from protein databases. This is ai, a count of the unique amino acids used in building the ith

protein, which will be defined below. In this notation, the information content of the ith protein

is logðaiÞti ¼ tilogai, or the log of the total number of possible orderings and considering amino
acid properties as irrelevant.

The concept of the unique amino acid count of a protein is illustrated in Table 1 using se-
quences contrived for this purpose, and can be seen to be wholly independent of the physico-
chemical properties of the amino acids. The unique count is simply the number of distinct
amino acids including those that are post-translationally modified (PTM) that occur in the se-
quence of a protein, in other words the protein’s alphabet. Repetitions of an amino acid in the
same sequence are not counted and are marked as italicized in Table 1 because they appeared
earlier in the sequence. The modification of amino acids by glycosylation merits specific men-
tion here because the chemical structures of the glycosyl moieties that can be added as PTM to
amino acids are both numerous and diverse. Each family of glycan, e.g. “Asparagine N-linked
high mannose” contains a large number of structural variants [17] (www.unicarbkb.org). Thus,
each distinct carbohydrate structure within the family would contribute 1 to the unique amino
acid count of a protein in which it was present.

To illustrate the concept of the unique amino acid count with sequences taken from nature,
two small proteins, one from a virus and the other from a mollusc [18] are shown in Table 2
along with their sequences in their single letter abbreviations for compactness. Biologically,
these two proteins are very different. They have different lengths, (23 and 45 amino acids

Table 1. The unique amino acid count defined for seven peptide sequences, including PTM amino
acids. Italicised amino acids are repetitions in the same sequence. Abbreviations: Ala, Alanine; Ser, Serine;
Tyr, Tyrosine; Ile, Isoleucine; pSer, phosphoserine; pTyr, phosphotyrosine; (Ser-O-GlcNAc), N-Acetylgluco-
samine-O-linked Serine

Unique amino acid count Length Sequence

3 3 Ala-Ser-Tyr

3 6 Ala-Ser-Tyr-Ala-Ser-Tyr

4 7 Ala-Ser-Ile-Tyr-Ala-Ser-Tyr

4 9 Ala-pSer-Tyr-Ala-Ser-Tyr-Ala-Ser-Tyr

5 6 Ala-pSer-Tyr-Ala-Ser-pTyr

5 6 Ala-pSer-Tyr-Ala-(Ser-O-GlcNAc)-pTyr

6 7 Ala-pSer-Tyr-Ala-(Ser-O-GlcNAc)-pTyr-Ser

doi:10.1371/journal.pone.0125663.t001

Table 2. Sequence of two small proteins.

Protein Sequence

VG22_BPT2 (from Phage T2) KAEEEVEKNK EEAEEEAEKK IAE

PHI_MYTCA (from the California mussel) AKAKRSPRKK KAAVKKSSKS

KAKKPKSPKK KKAAKKPAKK AAKKK

doi:10.1371/journal.pone.0125663.t002
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respectively); they are built using different amino acids, (they have only 3 amino acids in com-
mon, alinine (A), lysine (K) and valine (V)); they have very distinct structures and functions.
However, from the perspective of information theory, they share a fundamental organizing
property: each is composed of exactly 6 unique amino acids. These are AEIKNV and AKPRSV
respectively, and this number is the unique amino acid count of the protein. It does not matter
if an amino acid is present once or more often in the sequence. If it is present at all, then it con-
tributes a count of 1 to the unique amino acid count. This property is obviously independent of
any physicochemical properties of the amino acids since the ordering of amino acids or num-
ber of any particular amino acid (provided there is at least 1 of that amino acid) is not consid-
ered in the Conservation of Information.

Clearly the number of possible choices is fundamentally important to information theory
and the unique amino acid count of a protein must therefore be drawn not only from the 20 ca-
nonical amino acids encoded in the DNA plus the additional two amino acids (pyrrolysine and
selenocysteine) that can also be specified by the DNA [19, 20], but as in our simple example
(Table 1), also from the PTM amino acids, of which thousands have now been described [21,
22]. The only large-scale database for which reliable annotation of PTM amino acids is avail-
able is SwissProt, and for this reason (which will be expanded upon below in a separate section)
it has been used in this study.

We will use ti to represent the length in amino acids of the ith protein and ai, its unique
amino acid count. These two parameters (ti, ai) form a dual by means of which important
largely evolution-independent properties can be identified.

Using this pairing for the two proteins above, VG22_BPT2 = (23,6) and PHI3_MYTCA =
(45,6). In information theory then, the protein VG22_BPT2 is entirely reduced to the pair of
numbers (23,6)—all other information is discarded. Since no other information is necessary to
demonstrate the Conservation of Information, then by definition it can have little if anything
to do with which specific amino acids are present, how often they occur or in what order. As
we will see, the distributions of (ti, ai) pairs for every protein considered together, have collec-
tive properties inferred by the Conservation of Information which by construction are also in-
dependent of which particular amino acids are present, how often they occur or in what order.
Reduced to its simplest terms, these properties are global and independent of physicochemical
properties in the same way that the general gas equation operates regardless of the specific gas
under consideration.

Conservation of Information: predictions for a system of proteins
The theory is developed in full in [12] and will only be touched upon here. In essence it merges
Hartley-Shannon Information theory along with a variational method in statistical mechanics
to find the most likely distribution of unique token counts ai (unique amino acids here)
amongst M components (proteins here) with ti tokens (total amino acids), where i = 1,..,M,
whilst conserving both the total number of tokens (amino acids here) T and the total Hartley-
Shannon Information Content I, which are respectively defined as

T ¼
XM

i¼1

ti ð1Þ

I ¼
XM

i¼1

tilnai ð2Þ
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Using the method of Lagrange multipliers, the most likely distribution turns out to be
given by:-

ti
T
¼ a�b

i

QðbÞ ð3Þ

where Q(β) is a normalisation constant. This can be interpreted as a probability [23] and we
therefore interpret the marginal probability pi � ti/T of appearance of a component with ai
unique amino acids as given by Eq (3). This is scale-independent and does not depend on what
the tokens (amino acids here) actually mean in accordance with the underlying model of Hart-
ley-Shannon information. This is intimately associated with the Conservation of Information
since this is one of the constraints under which it appears and this is prediction P1. The distri-
bution is a power-law and we note that such distributions are found in many physical and bio-
logical systems and have been widely studied [10, 23–29].

A further consequence is that the lengths of proteins ti in amino acids are uniformly distrib-
uted for a fixed amino acid count, [12]. This leads to the conclusion that the average length of a
protein is constant for a fixed amino acid count as stated in prediction P2.

Although not pointed out in [12], it can be easily checked by substitution that Eq (3) has a
dual solution:-

ai
A
¼ t�1=b

iPM
i¼1 t

�1=b
i

ð4Þ

where

A ¼
XM

i¼1

ai ð5Þ

Interpreting ai/A as a probability as before indicates that the lengths of proteins ti in amino
acids are also distributed as a power-law (which is prediction P3) and that the unique amino
acid counts ai are conditionally uniformly distributed implying by symmetry that the average
unique amino acid count is constant for a fixed ti, (which is prediction P4).

It might be asked what is the relationship between this development of theory and the actual
occurrence of amino acids in the SwissProt database as shown in Table 3. Fundamental to
Hartley-Shannon information is the irrelevance of the meaning of the signs (here amino acids)
and since the information content of a protein is based on any amino acid being chosen at any
position, it might be thought that there is a built-in assumption of equal probability of occur-
rence of each of the amino acids at a given position. However, the above development is an er-
godic theory—it covers all possible system re-arrangements of total size T and total
information content I. The system of proteins in SwissProt is just one possible arrangement
which has evolved under constraint by the power-law equilibrium position described above.
This is exactly analogous to tossing a fair coin 100,000 times and recording the result as just
one possible arrangement of all those that might occur. Only in rare cases will an equal number
of heads and tails result even though that is the equilibrium position for all possible results of
tossing a coin 100,000 times. When only one arrangement is available, we are limited to looking
for the footprint of the conservation principle as we do here.

Finally, we note that prediction P4 indicates the unique amino acid count as a real-valued
variable whereas in a protein it is of course an integer. The average value is only a statistical
model that nevertheless (as we shall show) displays an extraordinary linearity at integral values,
just as it does at those points which do not correspond to integer values.

Does Information Theory Globally Constrain Protein Evolution?
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0.1 The SwissProt protein sequence database
The essential trade-off in current protein sequence databases is between quality and quantity.
The highest quality of curation is achieved manually, but manual curation is a strong constraint
on quantity because it is so much slower than machine annotation. As a result, SwissProt [18]
with its emphasis on manual curation is much smaller than for example, TrEMBL, but it has
several advantages for our analysis; it is probably as accurate as can currently be achieved be-
cause of the strong emphasis on manual curation, and its PTM documentation is the best avail-
able through its association with Selene [22].

PTM are an important factor in information theory because of their impact on the available
amino acid choices, i.e. the potential size of the unique amino acid count. Without PTM amino
acids, the unique amino acid count for any protein would be constrained to the genetically-en-
coded amino acids and thus the inclusion of PTM amino acids hugely expands the possible val-
ues of the unique amino acid counts for a protein and as a result greatly strengthen the
significance of the statistical analyses performed here. Even though the SwissProt database has
many fewer entries than e.g. TrEMBL, the dataset is certainly large enough to provide high lev-
els of significance, as will be shown by our analyses. Taking into consideration the strengths

Table 3. The amino acids (ignoring any post-translational modification) found in the protein se-
quences of SwissProt version 13-11, in increasing order of frequency. The total number of amino acids
here is 188,892,295.

Letter Amino Acid Occurrences

O Pyrrolysine (Pyr) (Extra) 29

Z Either Glutamic acid or Glutamine (Glx) 314

U Selenocysteine (Sec) (Extra) 327

B Either Aspartic acid or Asparagine (Asx) 344

X Unknown or ‘other’ amino acid (Xaa) 8665

W Tryptophan (Trp) 2096837

C Cysteine (Cys) 2569145

H Histidine (His) 4365997

M Methionine (Met) 4625115

Y Tyrosine (Tyr) 5521997

N Asparagine (Asn) 7131889

F Phenylalanine (Phe) 7446033

Q Glutamine (Gln) 7542048

P Proline (Pro) 9047014

T Threonine (Thr) 9860719

D Aspartic Acid (Asp) 10479769

R Arginine (Arg) 10635595

K Lysine (Lys) 10721971

S Serine (Ser) 11191510

I Isoleucine (Ile) 11476704

E Glutamic Acid (Glu) 12999633

V Valine (Val) 13225777

G Glycine (Gly) 13558574

A Alanine (Ala) 15774048

L Leucine (Leu) 18612241

doi:10.1371/journal.pone.0125663.t003

Does Information Theory Globally Constrain Protein Evolution?

PLOS ONE | DOI:10.1371/journal.pone.0125663 May 13, 2015 6 / 23



and weaknesses of each database we selected SwissProt (release 13-11) for this study, acknowl-
edging that only certain of the biases present in this dataset could be corrected for.

However, 3 particular possible sources of bias in SwissProt were identified and investigated
as follows.

• Methionine/ (N-formyl methionine) start codons. These amino acids, encoded at the N-termi-
nus of proteins, are removed by cells if N-terminal processing is required to produce the ma-
ture functional protein. It is reasonable to assume that all eukaryotes and archaea should
have methionine as the first amino acid of their proteins and that all bacterial proteins should
have N-formyl methionine as their first amino acid. The distributions actually found in Swis-
sProt are shown in Table 4. As can be seen the vast majority of proteins (527,843 out of
541,762) of all four domains of life have methionine (N-formyl methionine) as their first
amino acid as expected. Of the remaining 13,919, methionine occurs elsewhere in the se-
quence for 8,471 proteins, thus leaving the unique amino acid count unaltered since this de-
pends only on methionine occurring at least once somewhere in a eukaryotic or archaeal
protein sequence. This leaves only 5,448 out of 541,762 proteins (1%) for which the unique
amino acid count would be increased by 1 if methionine (N-formyl methionine for bacterial
proteins) was registered in the first position. This was treated by computing the (ti, ai) pairs
as they are found in SwissProt 13-11 and comparing the results with those obtained when
methionine (or N-formyl methionine for bacteria) was added as the N-terminal residue for
the 5,448 proteins missing methionine (N-formyl methionine). The effect of this addition on
the unique amino acid counts for all proteins is everywhere less than 0.4% and in most cases,
much smaller still. This was found to have a negligible effect on the results of the analyses,
(Table 5 M-fixed), where the power-law tail of the distribution of unique amino acid count
remains essentially unchanged and emphatically linear.

• Signal peptides. These are sequences (typically N-terminal stretches of up to approximately
30 amino acids) that direct proteins to the endoplasmic reticulum (in eukaryotes) and permit
membrane insertion of proteins or their entry to the secretory pathway. The signal peptide is
typically cleaved in the process and thus is missing from certain experimentally-derived pro-
tein sequences. Signal peptides are annotated in SwissProt, and the simplest way of assessing
how much of an impact they have on the size of proteins and the total unique amino acid
count, is to calculate all of the results both with and without the signal peptides included. All
541,762 proteins were processed, first each with its peptide sequences included and then each
with its peptide sequences excised. The effect is somewhat larger than that due to the selective
methionine insertion described above and reduces the protein counts by around 2.9% but
this still has a negligible effect on relative unique amino acid counts and the power-law tail,
(Table 5. No peptides). The effect of excising these peptide sequences was also checked on

Table 4. Distribution of methionine and N-formyl methionine (M) initiated proteins in SwissProt 13-11.

Domain Total proteins M-initiated N-formyl M initiated

Archaea 19,063 19,009 0

Bacteria 329,256 328,038 31

Eukaryota 177,020 164,798 85

Viruses 16,423 15,998 0

doi:10.1371/journal.pone.0125663.t004
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the protein length distributions and average protein lengths and found to be
similarly negligible.

• Ambiguities in the unique amino acid count. It is non-trivial to extract the unique amino acid
count from SwissProt even using the Selene PTM lists, and ambiguities in unique amino acid
counts proved the most difficult to model, necessitating Monte-Carlo methods to assess the
sensitivity. (The process used is described in detail in the Methods section.) The effects of
ambiguities in the unique amino acid count were estimated using this method and shown to
have a negligible effect on the analyses, (Methods and Table 5, Monte Carlo). This approach
differs from the treatment of the previous two sources of bias (above) in that it randomly per-
turbs the means by which the unique amino acid count is calculated within certain bounds
whereas the previous 2 methods actually modify the sequences appropriately in a non-ran-
dom way before calculating the unique amino acid counts.

We proceeded therefore with the analysis of the whole SwissProt 13-11 database as is, (it
contains sequences for a total of 13,041 organisms, comprising 541,762 proteins) in the knowl-
edge that at least the identified potential sources of bias had a negligible effect on the results
presented below.

Predictions implied by Conservation of Information
The mathematical argument underlying these predictions, following [12], has been presented
above. In summary, these predictions assert that proteins, considered collectively and without
regard to species or domain of life, should show the following global properties

• P1) The distribution of numbers of proteins should asymptote to a power law in unique
amino acid count,

• P2) Proteins with a given unique amino acid count should have the same average length,

• P3) The distribution of protein lengths should asymptote to a power law,

Table 5. Analysis of the Impact of Potential Bias in the SwissProt dataset. Bias was assessed in terms of impact on the fit statistics for power-law behav-
iour in the tail of the unique amino acid count distribution, which is addressed in detail in the following sections as prediction P1, (see also Fig 1A). Datasets
Psub (ai = 20 to 30), Pexp (ai = 20 to 31) and Pall (ai = 20 to 37), were analyzed as extracted from SwissProt and are described in Methods. The fit statistics for
the power-law tail were then compared with the equivalent fit statistics on datasets corrected for potential bias in treatment of the initiating methionine (M-
fixed), inclusion or exclusion of signal peptides (No peptides) and Monte-Carlo exploration of the ambiguity of unique amino acid counts as described in Meth-
ods. The fit statistics are remarkably resilient with respect to all three different possible sources of bias, and the robust linearity of the power-law tail in all con-
ditions is emphasized by the high values of the adjusted R2.

Dataset Slope Std. error Adj R2 F DF p

Psub -24.139 0.6466 0.962 251 9 (7.028) × 10−08

Pexp -22.914 0.2238 0.995 2027 9 (6.526) × 10−12

Pall -16.342 0.5040 0.974 588 15 (1.908) × 10−13

Pexp M-fixed -22.917 0.2242 0.995 2021 9 (8.488) × 10−12

Pall M-fixed -16.343 0.5041 0.974 588 15 (1.911) × 10−13

Pexp No peptides -29.378 0.1986 0.997 2317 7 (4.367) × 10−10

Pall No peptides -19.901 0.2040 0.996 2638 11 (1.873) × 10−14

Pexp Monte Carlo -22.984 0.2287 0.995 1954 9 (7.754) × 10−12

Pall Monte Carlo -16.355 0.5050 0.973 587 15 (1.940) × 10−13

doi:10.1371/journal.pone.0125663.t005
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• P4) Proteins with a given range of lengths should have the same average unique amino acid
count,

• P5) The distributions are scale-independent and should be present in subsets of the data.

In the following sections we examine to what extent these 5 predictions are supported. The
results demonstrate that these predictions hold to a very high degree of significance, (the largest
p-value we found in any of our analyses, including those modelling the possible sources of bias
described earlier was 7.028 × 10−8), strongly supporting the proposition that Conservation of
Information is a principle that guides the global structure of the system of proteins
analyzed here.

Methods

Statement of Reproducibility
The complete means to reproduce all of the results of this paper including all source code, R
graphics scripts, R statistics scripts, shell scripts, makefiles along with detailed build and opera-
tional instructions are available for public download at http://leshatton.org/ following the rec-
ommendations in [30].

Software compliance
The analysis software is a mixture of perl, C and R scripts for statistical analysis and plotting.
The C source code is compatible with the current ISO C standard ISOC2011:9899 and the perl
scripts run on all recent versions of perl, (version v5.16.2 was used). Only one CPAN (http://
cpan.org) package is used, LWP::UserAgent to download the appropriate version of SwissProt,
in this case version 13-11, and this was already embedded in the download example script sup-
plied on the SwissProt site.

In principle this can all be assembled and run in a Windows environment but the whole of
this project was implemented and carried out using Linux systems, specifically a standard
Open SuSE12.3, (http://opensuse.org/) release, although any modern Linux installation will
suffice since no special components were used.

Downloading and unpacking
The SwissProt dataset was downloaded in the appropriate FLAT file format using a script sup-
plied at http://uniprot.org/faq/28#downloading. The format used was ‘txt’ and the complete set
of protein sequences were downloaded for SwissProt release 13-11. The supplied script down-
loads a single SwissProt distribution file uniprot_sprot.dat of size 2.7Gb. This file was then un-
packed into four domains, archaea, bacteria, eukaryota and viruses by parsing the OC line in
the distribution and their individual species by parsing the ID line using a hand-crafted
perl program.

This produced a .fasta file for each species containing all the proteins for that species. In all,
195 archaean species, 2807 bacterial species, 7475 eukaryotic species and 2564 viral species
were extracted, totalling 13,041 species and comprising a total of 541,762 proteins.

For example, the FT lines and the protein sequence itself are shown in this format for the
bacterial taxon AMISM in Table 6.

Extracting unique amino acid counts in Selene
In spite of its pivotal role in the Conservation of Information, extracting the unique amino acid
counts proved somewhat difficult with the Selene datasets. The problem can be described as
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follows. Let X be the unique amino acid count in a protein before PTM, P be the number of
PTM in the protein, and Y be the unique amino acid count after PTM in the protein. The best
available value of P is derived from proteins in the set Pexp and X can be extracted simply and
unambiguously from the headers in the FLAT format files in SwissProt. Unfortunately, Y is not
so readily available. It might be thought simplistically that

X þ P ¼ Y ð6Þ

In other words, the PTM simply supplement the existing unique amino acid count for a par-
ticular protein. This would assume however that PTM has no effect on the original unique
amino acid count, but it is possible to construct sequences for which this would not be true.
For example, if an amino acid occurs once in a protein sequence and is post-translationally
modified, the unique amino acid count remains the same, violating Eq (6), (it would give X
+ 1 = X). Given that we wish to use Pexp as the definitive source for P for each protein, it was
important to estimate how often Eq (6) is violated to estimate the magnitude of any resulting
error. We therefore wrote specialist software included in the reproducibility deliverables to ex-
tract a controlled subset of PTM for each protein, Psub say, from the SwissProt database from
which X, P (taken from Psub) and Y could be directly measured for each protein against Eq (6).

This was done as follows.
The length in amino acids and the unique amino acid counts (X) for each protein was ex-

tracted from the FT and SQ records of the.fasta file format shown above. The modified residue

Table 6. Example FT and SQ records from an extracted .fasta file.

FT PEPTIDE 1 14 Amythiamicin A/B.

FT /FTId = PRO_0000368029.

FT PEPTIDE 1 12 Amythiamicin C/D.

FT /FTId = PRO_0000368030.

FT MOD_RES 3 3 N4-methylasparagine.

FT MOD_RES 12 12 Cyclo[(prolylserin)-O-yl] cysteinate; in

FT form C.

FT MOD_RES 12 12 Cysteine methyl ester; in form D.

FT MOD_RES 14 14 Proline amide; in form A and form B.

FT CROSSLNK 1 11 Pyridine-2,5-dicarboxylic acid (Ser-Ser)

FT (with C-10).

FT CROSSLNK 1 10 Pyridine-2,5-dicarboxylic acid (Ser-Cys)

FT (with S-11).

FT CROSSLNK 1 2 Thiazole-4-carboxylic acid (Ser-Cys).

FT CROSSLNK 3 4 5-methylthiazole-4-carboxylic acid (Asn-

FT Cys).

FT CROSSLNK 5 6 Thiazole-4-carboxylic acid (Val-Cys).

FT CROSSLNK 8 9 Thiazole-4-carboxylic acid (Val-Cys).

FT CROSSLNK 9 10 Thiazole-4-carboxylic acid (Cys-Cys).

FT CROSSLNK 11 12 Thiazole-4-carboxylic acid (Ser-Cys).

FT CROSSLNK 12 13 Oxazoline-4-carboxylic acid (Cys-Ser); in

FT form A.

FT UNSURE 4 4 C or T.

SQ SEQUENCE 14 AA; 1365 MW; 3EB862761A777DC8 CRC64;

SCNCVCGVCC SCSP

doi:10.1371/journal.pone.0125663.t006
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sites including the non-standard amino acids ‘U’ for selenocysteine [19] and ‘O’ for pyrrolysine
[20], were then extracted from the FT header lines and the corresponding sites modified. For
reasonable tractability, this was restricted to single sites only, (start and end column identical)
and further restricted to FT records containing the FASTA keywords MOD_RES, LIPID, CAR-
BOHYD and DISULFID. No more than one modification was allowed per site. This yielded P
and the unique amino acid count was then recalculated after (Y). The extracted lengths of the
sequences were checked where there was overlap [31] and a number of proteins were also se-
lected and manually checked for accuracy on the residues to confirm the results obtained by
the software.

The results are shown in Table 7 which shows that the vast majority of PTMmodifications
(> 99%) using the controlled Psub subset increase the unique amino acid count in line with Eq
(6). In order to estimate the potential impact on using the more comprehensive Selene PTM
classification Pexp, it was assumed that the same distribution would hold for this also. To stress
test this assumption, a Monte-Carlo model was carried out using P taken from Pexp and ran-
domly perturbed by the distribution defined by Table 7 to calculate Y. The result of this sug-
gested that breaches of Eq (6) had a negligible effect on the results shown earlier, (Table 5,
Monte Carlo).

It is perhaps worth noting that in spite of the extensive database of documented PTM
amino acids [21, 22, 32], the largest unique amino acid count found in our Psub subset was 30
whilst the largest in the Pexp dataset is only 31, (compared with 37 for the non-experimentally
verified Selene dataset).

As a result, the Pexp dataset was used as the definitive source of PTMmodifications assum-
ing that Eq (6) remained true. By merging the sequence extracted from the SQ records as above
with the PTMs annotated in the Selene file byidexperimental.txt from http://selene.princeton.
edu/PTMCuration/, the unique amino acid counts were then extracted.

It should also be noted that this paper identifies a close analogy between the information
properties of software [12] and those of proteins. To add further substance to the methodology
here, the software written to analyse the former (which is also available in full at http://
leshatton.org/ and is written in ISO C 2011:9899) was redesigned from scratch in a different
programming language, perl, to reduce the risk of common mode software failure in the meth-
ods of analysis [33]. The information properties extracted for these two very different regimes
were nevertheless identical. Both sets of analysis software are freely downloadable for open and
thorough scrutiny of the overall methodology.

Statistical analysis
All statistical analysis was carried out using R (http://r-project.org/) scripts included in the re-
producibility deliverables. The analysis requirements were relatively simple and only the

Table 7. A check on the non-independence of PTM counting on the unique amino acid count carried
out on Psub as described in Methods, Extracting unique amino acid counts in Selene.

(X+Psub)-Y Number Percent

0 537999 99.31%

1 3545 0.65%

2 208 0.04%

3 9 0.00%

4 0 0.00%

5 1 0.00%

doi:10.1371/journal.pone.0125663.t007
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following statistical functions were used:- lm() for linear modelling and prop.test() for multi-
proportion testing. In each case, the relevant statistic, adjusted R-squared or chi-squared was
quoted along with the p-value. No p-value was found in any of the tests exceeding 7.028 × 10−8

indicating that the probability of finding a more unlikely dataset by chance was
exceedingly small.

Results

The distribution of number of proteins asymptotes to a power law in the
size of the unique amino acid count (P1)
Fig 1A shows the log-log cumulative distribution plot of the number of proteins against the
size of their unique amino acid count ai for the dataset Pexp, the set of proteins extracted from
Selene that have experimentally verified PTM [32]. On such a plot, a power-law relationship

appears linear [10]. The distribution shows a well-developed power-law tail a�b
i , where β is the

slope, for unique amino acid counts between 20 and 30 inclusive—the linearity of the relation-
ship is emphatic, with adjusted R2 = 0.995, β = −22.914 and p = (6.526) × 10−12), Table 5. These
data are drawn globally from all domains of life and illustrate behavior that is therefore inde-
pendent of all properties of proteins except for the size of their unique amino acid counts.

Proteins with a fixed unique amino acid count have the same average
length (P2)
To show this in its simplest form, for each of the 13,041 species considered in this analysis, the
number of proteins np in each species was extracted along with their total length lp. The average
length of proteins in a species is then given by lp/np. Conservation of Information predicts that
the lengths of proteins are uniformly distributed for a fixed unique amino acid count, so the av-
erage length, lp/np should be constant across all species and a plot of lp against np for each spe-
cies in the analysis should therefore be linear with a slope of lp/np. This allows us to measure
the quality of the linearity again by linear modelling using the adjusted R2 and associated p-
value.

Fig 1B and 1C demonstrate the linearity of lp/np for all the proteins in SwissProt where each
datapoint corresponds to a species. (Fig 1C is an expanded view of the plot for those species
with fewer than 500 proteins in the database). Strictly speaking, P2 refers to a specific unique
amino acid count but the linearity is extremely well established, (adjusted R2 = 0.967, p<
(2.2) × 10−16, calculated for the full data set as in Fig 1B), even though all proteins with unique
counts between 1 and 30 were included. To assess the linearity over all possible sub-ranges of
unique amino acid count, the adjusted R2 was computed on an (x,y) grid as shown in Fig 2A.
For example, the point x = 15, y = 25 shows that for all proteins with a unique amino acid
count between 15 and 25, the adjusted R2 value was in excess of 0.9 as it is across most ranges.
The lower part of this plot shows the number of contributing species for the same sub-ranges
of unique amino acid count. As can be seen, the value of adjusted R2 remains high until the spe-
cies count is low, indicating the robustness of this result.

We note observationally that the average length of proteins changes with the unique amino
acid count as can be seen in Fig 2B by following the diagonal across the upper surface from left
to right, where the average length is plotted here on an (x,y) grid of ranges of unique amino
acid count. As can be seen, there is a subtle and increasing relationship between the average
protein length and the unique amino acid count. The lower part of Fig 2B shows the corre-
sponding number of contributing species.
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This is relevant to Fig 1C where there is some evidence of fine structure. This is partly due
to the fact that all proteins with fixed unique amino acid counts between 1 and 30 are displayed
for numerical strength and partly because there is evidence that eukaryota and viruses both
show larger departures from the equilibrium position defined by Conservation of Information
than the archaea and bacteria, which we ascribe to evolutionary pressures, [34–38]. Conserva-
tion principles act as constraints at the global level rather than straitjackets at the local (in this
case evolutionary) level. The fine structure observed in Fig 1C also has relevance to the rela-
tionship of average protein length to unique amino acid count. Although the data are not
shown here, the fine structure in Fig 1C is interpreted as resulting partially from the fact that
that eukaryota and viruses both show larger departures from the equilibrium position defined
by Conservation of Information than the archaea and bacteria, and partially from the inclusion
in the display (for numerical strength) of all proteins with unique amino acid counts between 1
and 30.

Fig 1. Unique amino acid distribution and average protein length. A Cumulative distribution function of unique amino acid count occurrence in proteins.
The analysis encompassed all archaeal, bacterial, eukaryotic and viral proteins that were combined into the experimental PTM Pexp subset [22]. B A plot of
number of proteins against total length of those proteins for each species in SwissProt for unique counts from 1-30 amino acids. Each data point is one of the
13,041 species analysed C An expanded plot of the data in the bottom left hand corner of Fig 1B for species with less than 500 proteins, showing sub-
structure.

doi:10.1371/journal.pone.0125663.g001
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Fig 2. Adjusted R2 and average protein length distribution with unique amino acid count. A A plot of
the adjusted R2 against the range of unique amino acid counts. Each point on the surface corresponds to the
R2 match of all species for those proteins which fall in the unique amino acid count specified. The lower part of
the plot contours the number of contributing species. B A plot of the average protein length for all species
against the range of unique amino acid counts. The lower part of the plot contours the number of
contributing species.

doi:10.1371/journal.pone.0125663.g002

Does Information Theory Globally Constrain Protein Evolution?

PLOS ONE | DOI:10.1371/journal.pone.0125663 May 13, 2015 14 / 23



The distribution of protein lengths asymptotes to a power law (P3)
A plot of the occurrence of proteins against their length (defined as the total number of amino
acids in their sequence) is shown in Fig 3A. Successively larger random samples of proteins
were taken from the full SwissProt database (Pall) showing the emergence of the final distribu-
tion as increasing amounts of data are plotted. The fully populated distribution (slice 12) when
plotted as a log-log cumulative distribution function, Fig 3B, demonstrates emphatically the
predicted power-law tail, (between ti, proteins of total length between 300 and 10,000 amino
acids inclusive, the adjusted R2 = 0.997, with p< (2.2) × 10−16).

Proteins with a fixed length have the same average unique amino acid
count (P4)
Since in general few proteins will have a particular length, we must choose a range of lengths
which encompasses sufficient qualifying proteins whilst preserving the nature of the prediction.
As was the analogous case with P2, to show this prediction in its simplest form, for each of the
13,041 species in SwissProt and a fixed range of lengths, the number of proteins np in each spe-
cies was extracted along with the sum of their unique amino acid counts la. If the unique amino
acid count is distributed uniformly as predicted, the average unique amino acid count la/np
should be constant across all species and a plot of la against np for each species should be linear.
Fig 3C illustrates this relationship between average unique amino acid count and protein length
for all proteins of length between 100 and 500 amino acids. In spite of this relatively wide range
of qualifying protein lengths, the linearity is truly extraordinary, (adjusted R2 = 0.999, p<
(2.2) × 10−16), emphasizing once again the important organizing role that the unique amino
acid count plays in the structure of proteins, completely independently of the physicochemical
nature of those amino acids or the domain of life in which the proteins have evolved. This anal-
ysis is extended on a grid over protein length ranges between 50 and 2000 amino acids in Fig
4A and the adjusted R2 plotted for each range. It is again remarkable that across most of this
grid, the adjusted R2 exceeds 0.998.

It is very clear from Figs 3C and 4A that, in so far as the set of proteins in SwissProt is repre-
sentative, an archaean protein of, for example length 100 amino acids, has the same average
unique amino acid count as a bacterial, eukaryotic or viral protein of the same length empha-
sizing the taxonomy-independent properties of the unique amino acid count. By extension,
longer proteins of any species will on average have a larger unique amino acid count indepen-
dently of their taxonomy.

The dependence of the unique amino acid count on the protein length is shown in Fig 4B
where it is plotted on a grid of ranges of protein length. Looking along the plane of the upper
surface from left to right, the unique count is observed to increase gently with protein length.

The distributions are scale-independent and are present in subsets of
the data (P5)
It might be thought that power-law behavior is an emergent property but in fact the scale-inde-
pendence of the underlying mathematics predicts that it is a persistent property present
throughout a system as it grows, [12]. Fig 5A simulates this by taking 100 random selections of
the SwissProt protein length data ranging from 1% of the data (on the inside), to 100% (on the
outside), which are shown demonstrating the essentially self-similar behavior devolving from
this scale-independence.
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Fig 3. Power-law distribution of protein lengths. A The emergence of the protein length distribution with randomly increasing subsets of data from the full
SwissProt database. B The length distribution of all proteins plotted as a log-log cumulative distribution function illustrating the emphatic power-law tail. C A
plot of number of proteins against total length of their unique amino acid counts for each species in SwissProt for protein lengths from 100–500 amino acids.
Each data point is a species.

doi:10.1371/journal.pone.0125663.g003
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Fig 4. Average unique amino acid count distribution. A A plot of the adjusted R2 against protein length for the match between number of proteins and their
total unique amino acid count for all species. Each point on the surface corresponds to the R2 match of all species for those proteins whose lengths fall in the
specified length range. The lower part of the plot contours the number of contributing species. B A plot of the average protein length for all species against the
range of unique amino acid counts. The lower part of the plot contours the number of contributing species.

doi:10.1371/journal.pone.0125663.g004

Fig 5. Persistency and PTM occurrence rate. A Cumulative distribution function plots of length distribution for increasingly large random subsets of the
proteins present in SwissProt illustrating that power-law behaviour is persistent. B The percentage of proteins which contain PTM amino acids, and the
number of proteins, as a function of unique amino acid count.

doi:10.1371/journal.pone.0125663.g005
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Discussion

Global conservation constraints allow evolutionary departures from
equilibrium
We conclude that the outcome of experimental tests of predictions derived from the Conserva-
tion of Information strongly suggests that this principle constrains the global structure of the
system of proteins examined, and by implication sets boundaries on the structure of proteins
within which natural selection can act. However, these global constraints do not preclude the
presence of local effects, as manifest in differences between taxa and substructure within the
data. These have been noted by others and merit discussion here in the light of our findings.

First we note the presence of fine structure in the distribution of average protein lengths.
Previous reports have considered average protein (or gene) lengths from a taxonomic perspec-
tive, observing a) constancy within domains of life but departures across them [34, 35, 39]; b)
evolutionary effects from functional constraints [40]; and c) length distributions in different
phylogenetic groups measuring specific correlations with individual named amino acids, [31].

The length data for all four domains represented in SwissProt are shown as Fig 6A–6D for
proteins up to 1000 amino acids, and confirm in principle previous reports [34, 35, 39]. For ar-
chaea and bacteria, average protein length is very highly conserved. For archaea, Fig 6A, the av-
erage length is 295 amino acids (adjusted R2 0.997, p< 2.2 × 10−16). For bacteria, Fig 6B, the
average length is 314 amino acids (adjusted R2 0.997, p< 2.2 × 10−16), the same quality of fit as
for the archaea. Turning to the eukaryota, Fig 6C, there appears more substructure than is the
case with the archaea and bacteria, (adjusted R2 0.941, average length 435 amino acids, p< 2.2
× 10−16). If the data for the eukaryotic species with> 1,000 proteins in SwissProt are included
in the analysis, the average protein length for eukaryota increases to 522 amino acids. Fig 6D
similarly shows fine structure imposed on a generally linear relationship for viral proteomes,
(adjusted R2 0.927, average length 345 amino acids, p< 2.2 × 10−16). This is the worst (but nev-
ertheless convincing) of the linear fits and we note that viruses present an extreme case of evo-
lutionary diversification; the hosts on whose biochemical machineries they depend range
across all domains of life, and viral proteomes range in size from around 10 proteins for the
smallest viruses such as poliovirus to over 1,000 proteins for the huge pandoraviruses [36].

Given these strong correlations and highly significant p-values, we interpret these results as
strong evidence of a global tendency to constant average length (the equilibrium position) that
constrains the effects of the local evolutionary pressures that are visible in the fine structure.

Second, the presence of local evolutionary departures from the global distribution raises a
further interesting question. The amino acid repertoire of life is made up of the 22 amino acids
which can be specified by the DNA supplemented by the thousands of PTM amino acids. Is
there any evidence to suggest that shorter proteins, which are necessarily associated with a
smaller unique amino acid count, are under greater evolutionary pressure to supplement the
DNA-specified amino acids with PTM amino acids? In other words, is there a relative over-
abundance of PTM amino acids in smaller proteins (i.e. those with lower unique amino-acid
counts)? The SwissProt dataset analyzed here suggests that this is indeed the case as can be
seen in Fig 5B. A multi-proportion test on unique amino acid counts (6,7,8) and (14,15,16)
sampling the lower and middle ranges respectively, emphatically rejects the null hypothesis
that the proportions are the same (chi-squared = 3158, p< (2.2) × 10−16).

Incompleteness is a significant concern in protein curation
It is important to note that there is considerable debate about the undercounting of PTM
amino acids, particularly with respect to the frequency and extent of glycosylation. Several
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Fig 6. Average protein lengths in the Four Domains of Life and complete distribution. A Average length of proteins for archaean species. B Average
length of proteins for bacterial species. C Average length of proteins for eukaryotic species. D Average length of proteins for viral species. E The length
distribution of all proteins in the analyzed SwissProt database, release 13-11.

doi:10.1371/journal.pone.0125663.g006
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studies suggest that glycosylation is very common, occurring perhaps in the majority of pro-
teins across all domains of life [37, 38]. This position has consolidated with recent advances in
techniques (primarily liquid chromatography and mass spectrometry) for the experimental de-
tection of glycopeptides in both their sensitivity and capacity for high-throughput analysis
[41–44]. As noted by Thaysen-Andersen and Packer [42] these advances are enhancing “the
depth and coverage of the glycoproteome” and “. . ...it is clear that only the top of the glycopro-
teome ‘iceberg’ is covered to date.” Furthermore, experimental validation of in silico predic-
tions of PTM is still necessary [45]. We conclude that the degree to which protein PTM occurs
is likely to be significantly under-counted, and that the full extent and diversity of glycosylation
in particular remains to be uncovered.

This will be an interesting challenge for models based on information theory as data im-
proves in both completeness and accuracy. However, despite this and other measurement
problems in protein databases, the fact that the operation of Conservation of Information is
still clearly evident in the degree of significance reported for each of the above predictions P1)
—P5), points to the robustness of this conservation principle. The extraordinary linearity of
the average unique amino acid count across all species (P4) as evidenced by Fig 3C is
particularly noteworthy.

The distribution of Post Translational Modifications
The likely undercounting of PTM amino acids in the databases could pose a problem for this
analysis if the full (and presently unknown) distribution of PTM was very different from that
represented in Pexp. While we cannot answer this question definitively, to gain a better perspec-
tive on the distribution of PTM the actual recorded PTMs for Pexp and Pall were compared (Fig
7A and 7B). These make clear that the additional but non-experimentally verified PTM in
Pall [32], act in a self-similar way to those experimentally verified in Pexp in that no particular
protein length appears to be favored by the inclusion of sites inferred but not verified experi-
mentally. This self-similar behaviour of increasing discovery is very similar to the scale inde-
pendent properties of the power-law behaviour shown in Fig 5A.

Fig 7. PTM distributions. A The distribution of PTMs against the length of a protein for Pexp. B The distribution of PTMs against the length of a protein for Pall.

doi:10.1371/journal.pone.0125663.g007
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Implications of this Study
The results presented here strongly suggest that the global properties (and therefore evolution)
of the system of proteins investigated are constrained within structural bounds set by a conser-
vation principle derived from information theory. The suggestion that such a conservation
principle, regardless of natural selection, shapes the structural properties of the system of pro-
teins is counter-intutive but nevertheless supported by the analyses presented here.
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