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Abstract

The Genetic Analysis Workshop 16 rheumatoid arthritis data include a set of 868 cases and 1194
controls genotyped at 545,080 single-nucleotide polymorphisms (SNPs) from the Illumina 550 k
chip. We focus on investigating chromosomes 6 and 18, which have 35,574 and 16,450 SNPs,
respectively. Association studies, including single SNP and haplotype-based analyses, were applied
to the data on those two chromosomes. Specifically, we conducted a generalized linear model with
regularization (rGLM) approach for detecting disease-haplotype association using unphased SNP
data. A total of 444 and 43 four-SNP tests were found to be significant at the Bonferroni corrected
5% significance level on chromosome 6 and 18, respectively.

Background
Genetic Analysis Workshop (GAW) 16 Problem 1
involves studies designed to investigate genetic risk
factors for rheumatoid arthritis (RA). The data are the
initial batch of whole-genome scans for the North
American Rheumatoid Arthritis Consortium (NARAC)
cases (n1 = 868) and controls (n2 = 1194). The HLA
region on 6p21 has been implicated by numerous
studies and there is consistent evidence that the DR
alleles contribute to disease risk [1]. The region on
chromosome 18q has also shown evidence for linkage to
RA in U.S. and French linkage scans [2,3]. Therefore, we
focused our association study on these two chromo-
somes.

Recent advances in molecular technology lead to the
availability of a large number of SNPs, and there are
increasing interest in association studies involving
haplotypes defined by several closely linked SNPs.
Haplotype association studies are being employed
more and more to investigate associations for complex
diseases [4]. The generalized linear model (GLM) is a
flexible framework that allows for the incorporation of
environment factors and interactions between covariates,
in which a logistic regression model can be used for
binary traits. When rare haplotypes are present, however,
the standard log-likelihood approach for GLM could
lead to large standard errors for the coefficients of such
haplotypes. In fact, the expectation maximization (EM)
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algorithm, usually employed for estimating such para-
meters, might not converge at all. Moreover, it would
lead to a large degrees of freedom in the haplotype test,
and therefore reduced power when there is a large
number of haplotypes in an association analysis. On the
other hand, GLM with regularization (rGLM) can
effectively combat these problems, and in particular, it
is applicable to the common disease/rare variant
scenario [5].

Methods
Data checking
As a quality control measure, we tested for Hardy-
Weinberg equilibrium (HWE) in the controls using an
exact test. There are 156 and 55 SNPs with HWE p-values
less than 1.4 × 10-6 and 3 × 10-6 on chromosome 6 and
18, respectively, which are significant (p > 0.05) after
Bonferroni correction. Moreover, there are 106 and 59
SNPs with monomorphism. We also checked for SNPs
with a large amount of missing data, but none of the
SNPs were removed based on the criterion of at least
50% missing rate, which was chosen to keep SNPs with a
reasonable amount of data in the preliminary step. Thus,
a total of 262 and 114 on chromosomes 6 and 18,
respectively, were removed either due to the lack of
polymorphisms or significant deviations from HWE in
the controls. All 2062 samples were used.

rGLM
To deal with the problems of large standard errors, non-
convergence, and reduced power associated with stan-
dard GLM likelihood approach, we adopted a statistical
learning method that effectively shrinks the coefficients
of unassociated haplotypes and reduces the variance of
the estimated regression coefficients. One frequently
used method for doing this is the use of the LASSO
penalty, which shrinks the coefficients of unassociated
variables to zeros [6]. This is implemented in the rGLM
software [5], which assumes HWE and was used in this
study.

rGLM applies the LASSO penalty to a logistic regression
model on unphased genotype data. In a case-control
study design, the complete data log-likelihood function
for individual i can be expressed as follows:
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where yi and Xi (missing) denote the trait value and
haplotype of individual i, respectively, and b and g are
the logistic regression coefficients and haplotype fre-
quency parameters. Using the LASSO penalty, the
complete penalized likelihood function is
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where l is the tuning parameter and m is the number of
haplotypes. This likelihood function can be maximized
by the EM algorithm. To determine the tuning parameter
l, it makes use of a recent result in Zou et al. [7], which
shows that the number of non-zero coefficients in a
LASSO regression is an unbiased estimate of the degrees
of freedom.

Other analyses
As a preliminary genome scan measure, single-SNP tests
were carried out using a genotype-based Fisher’s exact
test. In addition to the rGLM approach, hapassoc [8] was
also employed to test for association on haplotypes as a
standard GLM likelihood approach, in which an EM
algorithm was used to infer the haplotypes and
haplotype effects simultaneously.

Results
For each single SNP on chromosome 6 and 18, an exact
test was carried out based on genotype counts; the
p-values are shown in Figure 1. There are 424 and 16
statistically significant SNP associations at the Bonfer-
roni corrected level of 5% for chromosome 6 and 18,
respectively. It is interesting to note that on chromosome
6, except for 29 SNPs, all the remaining 395 are
distributed in a small region, from position 29463092
(7448th SNP: rs238869) to position 33955055 (9113th
SNP: rs10947463) (Figure 1, left panel), which covered
the HLA-DRB1 allele and most of the HLA region on
6p21. On chromosome 18, 16 significant SNPs were
found (Figure 1, right panel), which include SNPs that
overlaps with those found in previous studies [2,3].

Because single-SNP tests may be less powerful than
haplotype-based tests in many situations, we carried out
a two-step haplotype analysis. To reduce the computa-
tional demand for genome-wide analysis, in the first step
we performed a logistic regression with the LASSO
penalty using glmpath [9] using all SNPs assuming an
additive model between SNPs and a co-dominant model
for each SNP. The missing values were replaced by the
most frequent genotypes for the corresponding SNPs. As
a result, there were 986 and 249 ‘tag’ SNPs selected on
chromosome 6 and 18, respectively. We note that these
so called ‘tag’ SNPs are not the conventional kind that
can be considered as the ‘proxy’ for those not selected.
Instead, they are tagged due to their likely association
with the disease.

In the second step, based on the selected ‘tag’ SNPs, a
four-SNP sliding window was taken to implement the

BMC Proceedings 2009, 3(Suppl 7):S32 http://www.biomedcentral.com/1753-6561/3/S7/S32

Page 2 of 4
(page number not for citation purposes)



haplotype approaches, rGLM and hapassoc. Due to the
existence of rare haplotypes, 64% (out of the total of
1229 four-SNP tests on both chromosomes) of the tests
using hapassoc did not converge, whereas rGLM did not
encounter such a problem. As shown in Figure 2, for
those tests that hapassoc was able to run, analyses
yielded 309 and 16 significant results for chromosome 6
and 18, respectively. On the other hand, using the
number of nonzero coefficients as an estimate of the
degrees of freedom [7], the rGLM gave, for chromosomes
6 and 18, respectively, 444 and 43 significance test
results. Indeed, rGLM was able to identify additional
significant tests through alleviating the problem of non-
convergence. For example, on chromosome 18, all of the
16 significant results identified by hapassoc were
included in those found by rGLM. Furthermore, rGLM
uncovered 27 additional ones from among the 64% of

tests that hapassoc failed to converge. We plotted the
minimum frequencies of the significant four-SNP win-
dows (Figure 3), which shows that the distribution of
haplotype frequencies among the significant results
identified by rGLM indeed contains rarer haplotypes
than the distribution representing the frequencies of
those identified by hapassoc, reaffirming the value of
rGLM for detecting rare variants.

Discussion
We focused on scanning the SNPs on chromosomes 6
and 18 in our analysis based on evidence from prior
studies. For chromosome 6, both single-SNP and
haplotype-based approaches identified numerous asso-
ciated SNPs/haplotypes around the HLA region, solidify-
ing the importance of the HLA region for autoimmune

Figure 2
rGLM vs. hapassoc. The Venn diagrams for the results
from rGLM and hapassoc. A, significant hapassoc tests; B,
significant rGLM tests. Left panel and right panel are for
chromosomes 6 and 18, respectively.

Figure 1
Single SNP association. The -log p-values for a whole genome analysis by genotype-based exact tests on chromosome 6 and
18. The statistically significant associations at nominal level (yellow line) and at Bonferroni corrected level (red line) are
also indicated.

Figure 3
Frequency distributions of haplotypes. Histograms of
minimum haplotype frequencies (after negative logarithm
transformation) of the significant 4-SNP tests identified by
rGLM and hapassoc. X-axis denotes the center of each bar
and the bar width is 0.2.
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diseases and confirming results from previous studies.
Despite many common findings, each of the haplotype-
based approaches identified more than 100 four-SNP
windows that do not contain any of the significant SNPs
selected by single-SNP analysis. This may be explained
by the increased power of haplotype analysis, but further
investigation is needed.

It is challenging to run whole-genome haplotype-based
analysis with only phased-unknown SNP data. To reduce
dimensionality, one of the most frequently employed
approaches is to find tagging SNPs before embarking on a
haplotype-based analysis. We attempted to use the haplo-
view software for such as task. However, the amount of SNP
reduction was not sufficient for the subsequent haplotype
analysis to be practically feasible – less than 20% of the
SNPs were excluded on each chromosome using haploview.
On the other hand, the penalized regression approach as
described earlier was able to accomplish this task, leading to
the identification of about 3% of SNPs as ‘tags’. This
remarkable reduction makes our haplotype-based analysis,
as well as other computationally intensive approaches for
genome-wide studies, possible. However, the loss of
information needs to be investigated further.

Using a penalized approach, rGLM shows a good power
for detecting the effects of rare haplotypes [5]. Compared
to the usual unpenalized GLM, rGLM is powerful and
does not encounter the problem of non-convergence.
However, the permutation procedure as proposed in
Guo and Lin [5] can be too computationally intensive
for obtaining p-values for studies on a genome-wide
scale. Instead, we only obtained p-values by permutation
and also by chi-square approximations (two different
ways, one conservative and one liberal) on a selected
subset to gauge whether chi-square approximation will
give reasonably good results in this application. We
found that for SNP combinations that give small
p-values (say uncorrected p < 0.01), all three methods
lead to the same conclusion. Because our interest is in
identifying significant haplotypes, we feel that our
approximation method for computing the p-value is
reasonable. However, further research on the appropri-
ateness of such an approximation procedure and
whether this will lead to the same type I error rate for
hapassoc and rGLM is warranted.
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