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Abstract: Hypoxia triggers complex inter- and intracellular signals that regulate tissue oxygen (O2)
homeostasis, adjusting convective O2 delivery and utilization (i.e., metabolism). Human populations
have been exposed to high-altitude hypoxia for thousands of years and, in doing so, have undergone
natural selection of multiple gene regions supporting adaptive traits. Some of the strongest selection
signals identified in highland populations emanate from hypoxia-inducible factor (HIF) pathway
genes. The HIF pathway is a master regulator of the cellular hypoxic response, but it is not the only
regulatory pathway under positive selection. For instance, regions linked to the highly conserved
Notch signaling pathway are also top targets, and this pathway is likely to play essential roles that
confer hypoxia tolerance. Here, we explored the importance of the Notch pathway in mediating
the cellular hypoxic response. We assessed transcriptional regulation of the Notch pathway, in-
cluding close cross-talk with HIF signaling, and its involvement in the mediation of angiogenesis,
cellular metabolism, inflammation, and oxidative stress, relating these functions to generational
hypoxia adaptation.

Keywords: hypobaric hypoxia; adaptation; Notch signaling; hypoxia-inducible factor

1. Introduction

Maintenance of an adequate oxygen (O2) supply is fundamental to cellular homeostasis
and is challenged by impaired cellular O2 availability (hypoxia). Adjustments involving
all points of the O2 cascade, from delivery to cellular usage, are crucial under hypoxic
conditions, including disease states that impact the heart, lungs, and circulation across
various life stages. Hypoxia can also be experienced upon exposure to high-altitudes,
where barometric pressure falls and so the partial pressure of O2 falls. Despite this hypoxic
stress, human populations have resided at altitudes above 3000 m in Tibet, Ethiopia, and
the Andes for thousands of years. Over this time, natural selection of multiple gene regions
and adaptive physiological traits has occurred [1–4]. Understanding the genetic variants
under selection in these populations, and in other species with multigenerational exposure
to hypobaric hypoxia, provides insight into mechanisms critical for tolerance and ultimately
survival in hypoxia in all contexts [5].

The hypoxia-inducible factor (HIF) pathway is essential in the cellular hypoxic re-
sponse. In normoxia, HIF-1α and HIF-2α are hydroxylated by the prolyl-hydroxylase (PHD)
enzymes and so are targeted for ubiquitination by the von Hippel–Lindau (VHL) protein
and degradation by the proteasome [6]. In conditions of low cellular PO2, HIF-1α/HIF-2α
are stabilized, forming heterodimers with the nuclear-localized HIF-1β, and bind hypoxia
response elements (HREs) in the promoter regions of hundreds of target genes [7,8]. Acti-
vation of the HIF pathway thus elicits a vast array of cellular responses in an O2-dependent
manner. This includes genes that mediate O2 delivery, such as erythropoietin (EPO) and
vascular endothelial growth factor (VEGF), which support O2 carriage and angiogenesis,
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respectively [9,10]. Beyond O2 delivery, the HIF pathway regulates cellular O2 utilization by
targeting a plethora of metabolic genes, with the effect of enhancing glycolysis and lactate
production [11] and attenuating fatty acid oxidation through suppression of peroxisome
proliferator-activated receptor α (PPARα) [12,13].

HIF pathway genes play a key role in hypoxia adaptation in high-altitude populations.
Genetic variation within the region of EPAS1 (encoding HIF-2α) and EGLN1 (encoding
PHD2) have been identified across numerous studies of high-altitude adaptation [3,14,15],
in addition to HIF-targeted genes such as PPARA [3] and non-HIF-related targets [2].

Whilst the HIF pathway is undoubtedly an essential mediator of the cellular response,
adaptation to hypoxia is polygenic. The interplay of HIF with other genes known to
be under selection, as well as those independent of the HIF pathway, are an important
area under investigation. One such example is the highly conserved Notch signaling
pathway, which functions in many different developmental and homeostatic processes,
mediating a strikingly diverse range of downstream signals [14]. In this review, we provide
a general overview of the Notch pathway and the studies that have identified NOTCH as a
target of hypoxia adaptation. We further delve into the mechanisms by which the Notch
pathway mediates cellular responses, and provide insight into its roles within the context
of high-altitude adaptation.

2. Canonical Notch Signaling

Evolutionarily, Notch signaling is a highly conserved pathway that mediates com-
munication between neighboring cells to regulate many developmental and homeostatic
processes in metazoans. Upon ligand-mediated activation, Notch receptors form a complex
that promotes transcription of target genes, leading to regulation of essential processes
including cell proliferation and differentiation.

Notch receptors are large single-pass transmembrane proteins composed of an N-
terminal extracellular subunit, a C-terminal transmembrane, and an intracellular subunit.
Canonical transmembrane Notch ligands belong to the Delta–Serrate–LAG2 (DSL) family.
Ligand binding to the extracellular region involves the DSL and amino-terminal domains,
which contact epidermal growth factor (EGF)-like repeats 11–12 [15,16]. This exposes the
cleavage site for S2 cleavage catalyzed by a disintegrin and metalloprotease (ADAM) family
of metalloproteases, rendering the transmembrane-intracellular fragment as a substrate
for S3 cleavage by the γ-secretase complex, which catalyzes intramembrane proteolysis,
resulting in the release of the Notch intracellular domain (ICD). The Notch ICD comprises
a membrane proximal RBP-Jk-associated molecule (RAM) region and an ankyrin repeat
domain (ANK), both of which interact with the DNA-binding protein CBF1/Suppressor
of Hairless/LAG1 (CSL; also known as RBPJ) and the coactivator Mastermind (MAM) to
form a transcriptional complex that promotes the expression of target genes [17–20]. The
Notch ICD also contains a nuclear localization sequence, located between the ANK and
C-terminal proline/glutamic acid/serine/threonine-rich (PEST) domain. Termination of
the active Notch ICD signal is mediated through ubiquitination of degron sites on the PEST
domain and subsequent degradation by the proteasome [19]. A simplified overview of
canonical Notch signaling is presented in Figure 1.

The output from canonical Notch signaling is enormously diverse and cell-context-
dependent, operating in both physiological and pathological states. Activation of Notch
signaling can promote cell growth and cancer development in some contexts, but cell death
and tumor suppression in others [14]. Studies applying chromatin immunoprecipitation
analysis provide insight into the wide array of genes regulated by Notch pathway signal-
ing [21,22]. Notch ICD/CSL target genes include those related to cell-fate determination
(HES1 [23] and HEY1 [24]), proliferation (MYC [25]), growth arrest (p21 [26]), cancer stem
cell markers (CD44 [27], BMI1 [28]), and Notch signal potentiation (NOTCH3 [25]).
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Figure 1. A simplified view of canonical Notch signaling. Summary of the core signaling pathway 
created with BioRender.com. Canonical Notch ligands bind to the Notch receptors at epidermal 
growth factor (EGF) repeats 11–12 (dark green sections). Cleavage of the Notch receptor involves 
two proteolytic cleavage events, the first catalyzed by ADAM metalloproteases at the negative reg-
ulatory region (purple sections), the second by γ-secretase. This releases the Notch intracellular do-
main (NICD). In the nucleus, NICD interacts with DNA binding protein CBF1/Suppressor of Hair-
less/LAG1 (CSL; also known as RBPJ) and the coactivator Mastermind (MAM) to promote gene 
transcription. 

The output from canonical Notch signaling is enormously diverse and cell-context-
dependent, operating in both physiological and pathological states. Activation of Notch 
signaling can promote cell growth and cancer development in some contexts, but cell 
death and tumor suppression in others [14]. Studies applying chromatin immunoprecipi-
tation analysis provide insight into the wide array of genes regulated by Notch pathway 
signaling [21,22]. Notch ICD/CSL target genes include those related to cell-fate determi-
nation (HES1 [23] and HEY1 [24]), proliferation (MYC [25]), growth arrest (p21 [26]), can-
cer stem cell markers (CD44 [27], BMI1 [28]), and Notch signal potentiation (NOTCH3 
[25]). 

Despite this diversity in outputs, the cascade to activation and downstream signaling 
is relatively simple, involving the receptor–ligand interactions described to release the bi-
oactive Notch ICD, with no intermediates from which signal amplification can occur. 
There is also limited diversity within the pathway components, with mammals possessing 
four Notch paralogues (Notch1–4) and various ligands in the Delta-like (DLL1, DLL3, and 
DLL4) and jagged pathways (Jagged1, Jagged2). Drosophila melanogaster possesses one 
Notch receptor and two ligands, the transmembrane proteins Delta and Serrate [14]. The 
plethora of downstream signals is therefore derived from regulatory mechanisms includ-

Figure 1. A simplified view of canonical Notch signaling. Summary of the core signaling pathway
created with BioRender.com. Canonical Notch ligands bind to the Notch receptors at epidermal
growth factor (EGF) repeats 11–12 (dark green sections). Cleavage of the Notch receptor involves
two proteolytic cleavage events, the first catalyzed by ADAM metalloproteases at the negative
regulatory region (purple sections), the second by γ-secretase. This releases the Notch intracellular
domain (NICD). In the nucleus, NICD interacts with DNA binding protein CBF1/Suppressor of
Hairless/LAG1 (CSL; also known as RBPJ) and the coactivator Mastermind (MAM) to promote
gene transcription.

Despite this diversity in outputs, the cascade to activation and downstream signaling
is relatively simple, involving the receptor–ligand interactions described to release the
bioactive Notch ICD, with no intermediates from which signal amplification can occur.
There is also limited diversity within the pathway components, with mammals possessing
four Notch paralogues (Notch1–4) and various ligands in the Delta-like (DLL1, DLL3,
and DLL4) and jagged pathways (Jagged1, Jagged2). Drosophila melanogaster possesses
one Notch receptor and two ligands, the transmembrane proteins Delta and Serrate [14].
The plethora of downstream signals is therefore derived from regulatory mechanisms
including ligand-expression patterns, pathway crosstalk, tissue topology, and the nuclear
environment [14]. An example of a regulatory mechanism is the post-translational modifi-
cation of the Notch receptor through addition of N-acetylglucosamine to O-fucose residues
located in certain EGF repeats by Fringe family glycosyltransferases [29]. This modification
alters relative affinity of ligand–Notch binding [30], leading to activation of Notch in re-
sponse to Delta-like ligands, but suppression of downstream signaling for Serrate/Jagged
ligands [31].

The cellular context for Notch signaling assessed in this review is hypoxia. Whilst in-
teractions between the Notch pathway and the cellular hypoxic response are extensive [32],
much of this interaction is related to cancer pathogenesis. Here, we considered Notch sig-
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naling in hypoxia through the lens of high-altitude adaptation. We begin by summarizing
the evidence to show that genetic regions encoding Notch pathway proteins are under
positive selection in hypoxia-adapted populations, and highlight research showing that
this pathway is critical for conferring hypoxia tolerance.

3. Notch under Positive Selection

In humans, natural selection of Notch has taken place in highland native Andean
and Tibetan populations. Investigations using locus-specific branch-length testing of
single-nucleotide polymorphism (SNP) data have revealed positive selection for NOTCH1,
alongside numerous HIF pathway candidate genes, in Andeans living above 3600 m [33].
Examination of the chromatin accessibility and transcriptional landscape in Tibetans re-
siding at 3680 m, performed using human umbilical vein endothelial cells (HUVECs),
identified two structural variants within the upstream regulatory element of NOTCH1
(chr9:139420177-139429697, 67,694 bp) [34]. These variants, including a 200 bp duplication
in chr9:139422831-139423031 and a 1200 bp duplication in chr9:139429296-139430493, were
suggested to increase the accessibility of this regulatory element, and so to affect NOTCH1
expression [34]. This finding was made alongside the identification of active regulatory
elements cooperating to downregulate expression of EPAS1, encoding HIF-2α [34].

Positive selection of Notch signaling has also been identified in highland populations
of some nonhuman species. For example, in Tibetan chickens, whole-genome resequencing
identified NOTCH2 as being under positive selection [35], whilst transcriptomic and pro-
teomic analyses revealed enrichment of Notch signaling, specifically differential expression
of NOTCH2 [36]. In the Tibetan pig, transcriptome analysis revealed differential expression
in RBPJ (CSL), coding a crucial component of the Notch ICD transcriptional complex [37].
In a Tibetan yak, ADAM17 was identified as under selection [38]. NOTCH1 is a substrate
for this metalloprotease, and it has been linked to regulation of ligand-independent Notch
signaling [39]. The Notch1 pathway function is upregulated in an ADAM17-dependent
manner in liver cancer stem cells [40]. However, its relevance in physiological condi-
tions remains controversial, and unlike ADAM10, is reported to be dispensable for Notch
activation [41].

These findings are in line with studies highlighting the importance of the Notch system
in conferring hypoxia tolerance, a concept explored extensively in Drosophila melanogaster.
Through generations of laboratory selection, a hypoxia-tolerant strain of Drosophila has been
generated that is capable of survival in normally lethal O2 levels (4% O2) [42]. Examination
of gene-expression profiles revealed upregulation of components in the Notch signaling
pathway [42–44] alongside downregulation of genes encoding glycolytic, tricarboxylic acid
(TCA) cycle, and β-oxidation enzymes [42]. The broad suppression of metabolic targets
was coordinated by the Notch target transcriptional suppressor hairy, the mammalian
homologue of which is HES (hairy and enhancer of split-1). Binding elements for hairy
were located on the genes shown to be downregulated, with binding specifically occurring
in hypoxia. Loss-of-function hairy mutants abolished the metabolic gene suppression,
reducing hypoxia tolerance [42]. The importance of Notch signaling in this response
was confirmed through application of a γ-secretase inhibitor, which significantly reduced
survival and life span in hypoxia [44].

This evidence, summarized in Tables 1 and 2, suggests Notch signaling is an important
factor in hypoxic adaptation. However, the downstream effects of variants under positive
selection at high-altitude are yet to be explored. To gain insight into potential avenues of in-
terest when considering Notch genotype–phenotype interaction at high-altitude, we delved
into the current understanding of Notch involvement in the cellular hypoxic response from
the point of gene transcription, including interplay with the HIF pathway, to regulation
of angiogenesis and vascular tone, metabolism, inflammation, and oxidative stress. The
interplay of Notch with established hypoxia response pathways is summarized in Table 3.
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Table 1. Notch under selection at high-altitude.

Subjects/
Species

Highland/Hypoxic
Location

Altitude
(m) Data Format Test for Natural

Selection

Positively
Selected Notch
Gene/Region

Reference

Human,
Andeans
(n = 50)

Cerro de Pasco,
Peru (Quechua)
La Paz, Bolivia

(Aymara)

4300
3600

SNP genotype,
Affymetrix, Inc.

Gene Chip Human
mapping 500 k

array

Locus-specific branch
length for SNP loci NOTCH1 [33]

Human,
Tibetans
(n = 131)

Lhasa, Tibet 3680

Chromatin
accessibility

landscape through
paired ATAC-seq

and RNA-seq,
obtained from

primary HUVECs

Variant interpretation
model by paired
expression and

chromatin accessibility
methodology to identify
active selected regulatory

elements

NOTCH1
regulatory

element
[34]

Chicken,
Tibetan
(n = 9)

Xiangcheng
County, Tibet 3500 Whole genome

resequencing

Aligned to reference
genome using SOAP2,

detected short InDel and
structure variants

NOTCH2 [35]

Pig,
Tibetan
(n = 2)

Diqing Tibetan
autonomous

prefecture, Yunnan
province

3500
Lung tissue whole-

transcriptome
microarrays

Differential gene
expression, regulatory
and phenotypic impact

factor analysis

RBPJ (CSL) [37]

Yak,
Tibetan
(n = 1)

Huangyuan
County, Qinghai

province
3700

Short
oligonucleotide

analysis

Whole-genome shotgun
assembly ADAM17 [38]

Table 2. Notch involvement in hypoxia tolerance in laboratory experiments.

Species %O2
Duration of

Hypoxia Exposure Data Format Test for Natural
Selection

Positively Selected
Notch Gene/Region Reference

Drosophila
(n = 100) 5% O2 1 week

P-element
insertion line

screen

Genomewide
screening of

P-elements related
to eclosion rate,

rtPCR on selected
P-element targets

Dip1, CG14782,
mRpS18B, Mys45A,
CG6230, Drp1, Rep2,
osa, CG8116, Atg1,

CG33169, Chro, pzg,
polo, lqf, Scrib, Alh, tna,

CG14185, ci

[43]

Drosophila
(n = 200,

derived from
27 parental

strains)

6% and
4% O2

3 weeks for Notch
mutants

Whole genome
re-sequencing

Aligned to
reference genome

using MAQ,
identified loci with

high-confidence
allelic differences
and regions with
allelic frequency

differences

Fixed SNPs/indels:
Notch, Delta, Fringe,

Sgg
Hairless, HDAC4, Fur2,
Bon, IP3K2, Nej, Pcaf,

Change in gene
regulation:

E(spl) Cluster Genes,
Aph-1, Nct, Ser.

[44]

Chicken,
Tibetan (n = 9) 13% O2 11 days

Transcriptomic
and proteomic

analysis of
embryos

Differentially
expressed protein. NOTCH2 [36]
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Table 3. Notch involvement in physiological responses to hypoxic exposure.

Hypoxic
Physiological

Response

Related
Signaling

Factors
References Notch Pathway

Interplay
Effect of Notch

Interplay Model/Condition References

Modification
of gene

transcription

HIF-1α,
HIF-2α

Reviewed
in [6]

Notch ICD Recruitment of HIF to
HREs

Mouse myogenic
and embryonic
teratocarcinoma

cells, hypoxia
(1% O2)

[45,46]

DLL4, HEY2 Notch pathway
activation

Mouse myogenic
and embryonic
teratocarcinoma
cells and human

epithelial and
embryonic kidney

cells, hypoxia
(1% O2)

[46,47]

γ-Secretase
complex

Enhanced cleavage of
Notch ICD

Human epithelial
and breast cancer

cells, hypoxia (NiCl2
and 1% O2)

[48,49]

Factor
inhibiting HIF

(FIH)
[50]

Notch ICD Cellular differentiation

Mouse myogenic
and embryonic
teratocarcinoma

cells, hypoxia
(1% O2)

[45,46]

Mindbomb 1
and 2 Angiogenesis Zebrafish embryos [51]

DNA
methylation [52,53]

NOTCH1,
NOTCH3, DLL1

Notch pathway
expression

Rat hepatic stellate
cells and human

gastric cancer cells
[54,55]

CSL (or RBP-J)
Methylation-

dependent DNA
binding

Human leukemia
cells [56]

Angiogenesis HIF via VEGF Reviewed
in [57]

Notch via DLL4
and Jagged1

Differential VEGFR
expression for selection

of tip and stalk cells
Mouse embryo [58,59]

Increased
vascular tone

Pulmonary
vascular

remodeling
[60] Notch3

pathway

Smooth muscle cell
proliferation in small
pulmonary arteries Human and rodent

pulmonary
hypertension

[61]

Increased
intracellular

Ca2+

Reviewed
in [62]

Notch3
pathway

Upregulation of TPRC
channels and increased

expression of the
Ca2+-sending receptor

[63,64]

Loss of
insulin

sensitivity

Increased
plasma

glucose and
insulin

[65,66] Notch ICD via
FoxO1

Insulin resistance,
increased glucose-6

phosphatase
expression

Mouse liver,
normoxia [67]

Upregulated
glycolysis HIF via PDK [68]

Notch via
PI3K/AKT ser-
ine/threonine

kinase

Increased glucose
uptake, and

upregulation of
glycolytic genes

Human breast
cancer cells and

Drosophila
[69,70]

Notch via p53
Glycolytic dependency,

suppressed
mitochondrial activity

Human breast
cancer cells [69]
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Table 3. Cont.

Hypoxic
Physiological

Response

Related
Signaling

Factors
References Notch Pathway

Interplay
Effect of Notch

Interplay Model/Condition References

Glutamine
metabolism HIF-2α [71] Notch1

pathway

Decreased glutamine
consumption and

expression of
glutaminase, ornithine
aminotransferase and

glutamine
dehydrogenase 1

Human
immortalized

leukemia cells and T
lymphocytes

[72]

Loss in mito-
chondrial
density

HIF via
PGC1α [73,74] HES1 Suppressed PGC1α Mouse adipocytes [75]

Suppressed
respiratory
complex I

HIF via
mir-210 [76] Notch1

pathway

Decreased complex I
activity and subunit

expression

Breast cancer and
immortalized
leukemia cells

[72]

Complex IV
subunit
switch

HIF [77] Notch1 via p53 Downregulated CIV Breast cancer [32]

Suppression
of

β-oxidation
HIF, PPARα [3,12,78] Notch1

pathway

Notch1 pathway
inhibition increased
PPARA and CPT1

expression

Mouse models of
Notch deficiency,
liver and adipose

[75,79]

Inflammation HIF, NF-kB [65,80–82] Notch ICD Interaction with NF-kB
subunit Human T cells [83]

Oxidative
stress

ROS via HIF,
NF-kB, Nrf2 [84–86]

Notch1 via Nrf2

Increased cell viability,
reduced ROS

formation, increased
antioxidant activities

Neonate rat
myocardial cells,

hypoxia–
reoxygenation

[87]

Notch1 via
JAK2/STAT3

Activated
mitochondrial SOD

expression and
decreased ROS

production

Rat myocardium,
burn injury [88]

4. Gene Transcription
4.1. Notch and HIF Cross-Talk

A multitude of evidence has demonstrated involvement of the Notch pathway in
the transcriptional response to hypoxia, both up- and downstream of Notch ICD activa-
tion [32]. Upstream, the expression of Notch ligands Jagged2 [89,90] and Delta-like Ligand
4 (DLL4) [91] are upregulated in hypoxia. Downstream of Notch ICD activation, hypoxia
induces expression of NOTCH1 and targets such as HES1, as shown initially in human
neuroblastoma cells cultured in 1% O2 [92]. Examination of mouse myogenic (C2C12)
and neural precursor (P19) cells revealed a Notch1-dependent block on differentiation
in hypoxia (1% O2), accompanied by the upregulation of Notch target genes HES1 and
HES2 [46]. This effect was reversed with the use of an γ-secretase inhibitor, indicating
Notch cleavage was essential for maintaining the undifferentiated cell state in hypoxia [46].
Direct interaction between HIF and Notch signaling was shown to be crucial in mediating
this hypoxic cellular response.

An interaction interface between HIF-1α and Notch1 ICD was identified on the N-
terminal region of HIF-1α, yet hypoxia-dependent activation of Notch signaling was
shown to require the C-terminal region of HIF-1α [46]. Elsewhere in the Notch system,
HIF-1α and HIF-2α interact with the promoters of Notch ligand DLL4 and Notch targets
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HEY1 and HEY2 [46,47]. HIF-1α also interacts with the γ-secretase complex, leading to
enhanced cleavage of the Notch ICD, and so Notch activation. The HIF- γ-secretase complex
interaction occurs via the promoter region of subunit APH-1A in HeLa cells [48], but via
the enzymatic component PS1 in breast cancer cells [49].

HIF–Notch interaction is bidirectional, as the Notch system has also been shown
to mediate various components of the HIF pathway. Notch ICD activation increased
recruitment of HIF-1α to the HRE-containing region of hypoxic-responsive genes GLUT1,
EPO, and VEGF [45,46]. Notch ICD activation also upregulates HIF-2α at the transcriptional
level, coinciding with increased expression of target genes VEGF and AREG, yet this
interaction did not involve the HIF-2α proximal promoter [93]. In human medulloblastoma
and breast cancer cell lines, the Notch-mediated upregulation of HIF-2α was accompanied
by downregulation of HIF-1α, which the authors postulated may drive the potential
transition from shorter-term HIF-1α supported responses to hypoxia to the more sustained
responses characterized by HIF-2α signaling [93].

Cross-talk between the Notch and HIF pathways extends to regulators of HIF signaling,
including interaction between factor inhibiting HIF (FIH)-1 with Notch ICD [46]. FIH is
an asparaginyl hydroxylase that acts at residue 803 of HIF-1α to block HIF coactivator
binding [50]. FIH-1 hydroxylates the Notch ICD at two conserved asparagine residues
(N1945 and N2012) [45,94], binding with a higher affinity than it does to HIF-1α [45]. This
binding negatively regulates Notch ICD activity, abrogating the Notch-mediated repression
of neuronal and myogenic differentiation [45]. Interaction with FIH extends to other
components of the Notch system, including E3 ubiquitin ligases Mindbomb 1 and 2 required
for Notch activation [51,95], whilst in zebrafish, FIH mediates the antiangiogenic function
of Mindbomb via VEGF-A [51]. Finally, an interaction was demonstrated between Notch 3
and the HIF pathway regulator VHL in breast carcinoma cells [96].

These studies indicated that the transcriptional response to hypoxia involves close
interaction between the HIF and Notch pathways. The actions of both are therefore
considered throughout the remainder of this review.

4.2. Epigenetic and Post-Transcriptional Modifications

In hypoxia, both epigenetic events and post-transcriptional modifications, including
splice variation and the action of microRNAs, are crucial in the regulation of HIF and Notch
signaling systems.

4.2.1. Methylation

Epigenetic processes have been described as a central hub that connects environmental,
physiological, and genomic inputs [97]. DNA methylation is an epigenetic modification that
regulates chromatin organization and gene expression. The major site for DNA methylation
in mammals is the cytosine-rich CpG dinucleotide, specifically at the 5′ position of the
cytosine ring, mediated through the action of DNA methyltransferases (DNMTs). Whilst
the vast majority of CpG sites across the human genome are methylated, interspersed
among these are regions containing a high-density sequence of CpGs, or CpG islands, that
often cluster within the promoter [98]. Hypomethylation of CpG islands most often en-
hances transcription-factor binding to activate gene expression, whereas hypermethylation
often prohibits transcription-factor binding, leading to a quiescent chromatin state [99].
Global methylation status can be inferred through examination of long interspersed nuclear
element-1 (LINE1) methylation, with decreased methylation being associated with genomic
instability and cancer risk [100]. At high-altitude (above 4000 m), LINE1 methylation was
greater in native Andean Quechua, compared with those of European ancestry [52,53].
In the lowlanders, this may be linked to increased reactive oxygen species (ROS) pro-
duction (discussed below), as oxidative stress is associated with impaired methylation
capacity [101].

Epigenetic silencing through methylation occurs in genes crucial to HIF expression and
stabilization. An Andean Quechua resident at 4388 m showed decreased EPAS1 methylation
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in comparison with those residing at sea level [52], whereas altitude exposure (4240 m) in
subjects of European descent was associated with increased EPAS1 methylation [53]. In line
with the lowlander response, increased methylation of EPAS1 has been observed in human
renal tubule epithelial cells, occurring through the action of DNMT3a. This prevented the
activation of HIF-2α and expression of downstream target genes, limiting the proliferative
capacity of these differentiated cells under hypoxia [102]. Hypermethylation has also been
observed on a CpG island within the 5′ region of VHL in human renal carcinoma, leading
to inactivation [103].

Methylation affects the binding of HIF to its target genes, as the consensus core HRE
contains a CpG dinucleotide, and upon methylation, HIF-1 DNA binding is abolished [104].
Indeed, HIF-induced expression of EPO is reliant upon a methylation-free HRE [104,105].
Methylation of CpGs within the EPO promoter impair transcriptional activation and block
association of nuclear proteins, and this was suggested to act in concert with the CpG island
in the 5′-untranslated region (UTR), which recruited methyl-CpG binding to the promoter,
together silencing the EPO gene [106]. At high-altitude, EPO methylation decreased in
subjects of European ancestry with ascent from 1400 m to 4240 m, thus facilitating increased
expression in support of the erythropoietic response [53]. Alterations in other HIF targets
included increased methylation of PPARA with increasing altitude, potentially suppressing
fatty acid oxidation capacity [53].

Notch signaling is itself also closely regulated through DNA methylation [107]. Ex-
pression of NOTCH1 and NOTCH3 were methylation-dependent in hepatic satellite cells
(HSC) [54], whilst the transcription factor downstream of the Notch receptor RBP-J (or
CSL) binds DNA in a methylation-dependent manner [56]. DNA methylation also impacts
Notch ligands, with hypermethylation of the DLL1 promoter silencing expression in gastric
cancer cells [55]. Treatment with a methylation inhibitor 5-aza-2′deoxycitidine resulted in
increased DLL1 expression and activation of the Notch cascade, including the downstream
target HES1 [55]. However, methylation is not always linked to expression of Notch path-
way genes, as exemplified by JAG2, whereby methylation pattern of the promoter did not
correlate with expression [108].

4.2.2. Alternative Splicing

Alternative splicing of pre-mRNA increases transcriptomic and proteomic diversity
by enabling the generation of multiple mRNA products from a single gene. Hypoxia
is reported to drive intron retention above other splicing methods [109], and this may
influence the fine tuning of both the HIF and Notch signaling systems.

Cassette exon skipping leads to several splice isoforms of HIF-1α [110–112], with
the majority of isoforms conferring downregulation of HIF function [113]. An example is
HIF-1α736, which lacks the C-terminal transactivation domain and displays a 3-fold lower
activity than the full-length HIF-1α [111]. Conversely, HIF-1α417, which results from the
skipping of exon 10, lacks a transactivation domain, yet promotes the nuclear translocation
of HIF-1β, amplifying transcription of EPO [112]. Splice variation can also impact on factors
interacting with HIF, such as peptidyl prolyl isomerase-1 (Pin1), a cis/trans isomerase that
binds and stabilizes HIF-1α. Specifically, PIN1 transcript variant 2, identified as a long
noncoding RNA, downregulated HIF-1α under hypoxia [114].

Multiple genes with characteristics of splice regulators display HIF1-α-dependent
expression patterns, of which C1QBP, HNRNPH3, JMJD6, and SF3B1 contain HREs within
their promoters [115]. In myocardial hypoxia, regulation of splice factor 3b subunit 1
(SF3B1) by HIF-1α was shown to mediate the splicing of ketohexokinase (KHK) pre-
mRNA, switching KHK-A for KHK-C. KHK-C displays a superior affinity for fructose,
and this switch enforced fructolysis, a metabolic shift crucial for pathological growth [115].
Hypoxia-induced alternative splicing also impacts the regulation of glycolysis through HIF-
1α-mediated splicing of glycolytic enzymes Hk1 and Pfkfb3 in myocardial hypoxia [115], as
well as differential regulation of lactate dehydrogenase (LDHA) variants through intron
retention in breast cancer cells [109]. In the context of both cancer [116] and myocardial
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infarction [117], a switch in the expression of pyruvate kinase isoforms occurs, with the
embryonic isoform PKM2 being re-expressed above the level of the adult isoform PKM1.
This was mediated through RNA binding proteins and sequence-specific splicing repressors
hnRNAP1 and hnRNAP2, and was linked to the promotion of aerobic glycolysis [116,117].
PKM2 acts in a positive feedback loop through interaction with PHD-3 to promote HIF-1α
transactivation and reprogram glucose metabolism [118].

Alternative splicing of components of the Notch signaling system has been investi-
gated extensively in the context of chronic lymphocytic leukemia (CLL), where Notch1
and 2, along with ligands Jagged1 and 2, are constitutively expressed [119]. Recurrent
‘noncoding’ mutations were clustered at the 3′-UTR region of NOTCH1 in ~2% of patients
with CLL or monoclonal B-cell lymphocytosis, with the most common being located at
chr9:139390152 [120,121]. These mutations were characterized by within-exon splicing,
and were predicted to remove the PEST domain of Notch1, constitutively activating down-
stream signaling [120]. In some instances, noncoding variants occurred alongside mutations
in the splicing factor SF3B1 [121], which increased Notch signaling through an alternate
splice variant of the Wnt pathway member DVL2 [122].

4.2.3. MicroRNA

MicroRNAs (miRs) are a class of noncoding RNAs with a functional ~20–22 nt se-
quence that targets mRNAs, thereby inducing translational repression or RNA degrada-
tion [123]. Again, this method of modification interacts with both the HIF and Notch
signaling systems.

HIF-1α enhances the induction of miR-210, the targets of which include regula-
tors of mitochondrial respiratory function, as shown through alterations in placental
metabolism [76], DNA repair, cell survival, and angiogenesis [124]. On the latter, induction
of miR-210 was linked to upregulation of the Notch1 protein, and in turn to stimulation
of angiogenesis following cerebral ischemia [125]. In the trophoblast, miR-210 represses
cytoplasmic polyadenylation element binding 2 (CPEB2), which is a negative regulator of
HIF-1α translation, thus forming a positive feedback loop of HIF-1α induction [126].

Encoded within intron 4 of the Notch1 locus is miR-4673. Transcription of miR-4673
altered cell cycle function in breast cancer [127] and neurogenic [128] cells, involving
indirect regulation of Notch function alongside β-catenin and p53, and this has been linked
to loss of mitochondrial membrane potential and ROS generation in human carcinoma cells
through targeting 8-oxoguanine DNA glycosylase 1 [129]. Proximal to the Notch1 locus is
miR-4674, which regulates angiogenesis through interaction with p38 VEGF signaling in
endothelial cells [130].

Cross-talk between epigenetic and post-transcriptional elements has also been noted.
For instance, methylation of miR-34a was linked to the expression of Notch pathway
genes (NOTCH1, NOTCH2, and JAG1) in cholangiocarcinoma cells [131], whilst changes in
methylation pattern are known to alter inclusion levels of alternatively spiced exons [132].

The evidence thus suggests that the Notch pathway plays a key role in the regulation
of transcriptional response to hypoxia at multiple levels. In addition, the Notch pathway
is known to mediate numerous processes linked to cellular and tissue remodeling upon
high-altitude exposure, including regulation of angiogenesis and vascular tone, metabolism,
inflammation, and oxidative stress.

5. Hypoxic-Induced Cellular and Tissue Remodeling
5.1. O2 Delivery
5.1.1. Erythropoiesis

In most nonadapted individuals, high-altitude exposure induces the generation of red
blood cells from hematopoietic stem cells (HSCs); i.e., erythropoiesis. Whilst this response
increases O2 carriage capacity, in excess it can result in high blood viscosity. This impairs
tissue blood flow and O2 delivery, and is a feature of chronic mountain sickness (CMS) [133].
In native highlanders, the erythropoietic response is variable. Andeans display elevated
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hemoglobin and hematocrit alongside a high prevalence for CMS [134,135]. The majority of
Tibetan highlanders, however, maintain hemoglobin and hematocrit at levels comparable to
those of populations living at sea level, and lower than many of their Andean counterparts
for any given altitude [134,136]. In line with this, Tibetans present lower blood oxygen
saturations [1] and are protected from the detrimental effects of polycythemia and a lower
prevalence of CMS [135].

An essential mediator of erythropoiesis in hypoxia is the increased production of
EPO from kidney interstitial cells, which binds erythroid progenitors in bone marrow,
stimulating their survival, proliferation, and differentiation. HIFs directly regulate EPO
expression and also impact iron metabolism in hypoxia [137,138]. In the Tibetan population,
the decreased hemoglobin phenotype has been linked to a variant in EGLN1, which pro-
motes HIF degradation [3,139], as well as putatively adaptive copies of EPAS1 and PPARA
loci [3], the latter being a HIF target. However, HIF is not the only regulator of erythro-
poiesis, which is a multistage process mediated through complex intracellular networks
involving coordinated gene expression by transcription factors, chromatin modifiers, and
miRNAs [140]. Genes related to different stages of erythropoiesis have been identified in
highland populations [141], such as SENP1, which has been associated with development
of CMS in Andeans [142,143].

Notch signaling is crucial for regulating stem cells in various settings [144], including
embryonic hematopoiesis [145]. For example, disruption of NOTCH1 and downstream
signaling in the mouse embryo was shown to impair HSC formation [146,147]. However,
the involvement of Notch signaling in HSC homeostasis post development is less clear.
Multiple reports from gain-of-function experiments demonstrate increased Notch signaling
enhanced self-renewal of HSCs [148]. Notch is also expressed in human bone marrow
CD34+ hematopoietic precursors [149], and there is interplay between Notch and HSC
regulatory factors, including parathyroid hormone and stem cell factor (SCF). Parathyroid
hormone increased the levels of Jagged1 in the bone marrow, and hematopoietic cell growth
was abrogated through γ-secretase inhibition [150]. SCF-induced expression of Notch2 and
SCF-mediated expansion of primary erythroid precursors were linked to Jagged1 [151].
Blocking Notch2 signaling inhibited the proliferative effects of SCF [151]. However, evi-
dence also implies Notch activity is dispensable in the maintenance of HSCs, as shown
through blockage of canonical HSCs in adult bone marrow [152] and through low levels of
Notch receptors in purified HSCs [153]. The relevance of Notch signaling in the regulation
of erythropoiesis at high-altitude has not been explored, but warrants further investigation,
particularly given the role of Notch in maintaining cells in the stem/progenitor state in
hypoxia [46].

5.1.2. Angiogenesis

Adequate tissue perfusion is critical for maintaining O2 homeostasis. Adaptation of
the vascular system to hypoxia includes angiogenesis, a process requiring upregulation
of proangiogenic signals to mediate each stage of growth, from extracellular matrix re-
modelling to tube formation [154]. Examination of native highland human populations and
other species has shown angiogenic pathway genes to be under positive selection at high-
altitude. For instance, gene network analysis revealed selection of integrin subnetworks in
Tibetan and Sherpa populations [155], whilst assessment of SNP data revealed selection for
VEGF in Andean populations [33]. In the Tibetan chicken, whole genome re-sequencing
and comparative transcriptomic and proteomic analyses revealed strong selection for
VEGF [35,36], whilst genome wide analysis of the Tibetan sheep identified selection of
genes within the Ras/ERK signaling pathway [156]. At a tissue-specific level, assessment
of protein expression in placentas of Andean pregnancies revealed lower levels of the
antiangiogenic factor sFlt-1 (soluble fms-like tyrosine kinase) and a lower sFlt-1/placental
growth factor (PLGF) ratio, alongside higher uterine artery blood flow and birthweight
compared with European pregnancies at the same altitude (3600 m) [157]. This is in line
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with findings demonstrating graduated protection against reduced birthweight in high-
altitude pregnancies in Andean mothers compared to those with European ancestry [158].

A multitude of proangiogenic factors have been identified as HIF targets, includ-
ing VEGF, PLGF, and integrin [57]. HIF regulation of hypoxic proangiogenic signals has
been implicated during development and both adaptive physiological and pathological
states [57]. Notch signaling is also a key mediator of angiogenesis at all life stages, with
disruption to this pathway impacting trophoblast invasion [159] and embryo develop-
ment [160] through mature tissue function [161]. Angiogenic mediation via the Notch
system has, to date, largely focused upon interplay with VEGF and the effects on vascu-
lar integrity.

The initiation of blood vessel branching during angiogenesis, termed sprouting, re-
quires coordination of endothelial cell behavior with selection of a filopodia-rich leading tip
cell and following stalk cells. This process is mediated through a tight interplay between
the VEGF-A receptor VEGFR, the Notch ligands DLL4 and Jagged, and downstream Notch
signaling [59,162]. Key to the selection of tip and stalk cells are differential VEGFR1 and
VEGFR2 levels mediated via DLL4 [59]. High levels of DLL4 in endothelial tip cells activate
Notch in adjacent stalk cells to downregulate VEGFR expression, suppressing the tip phe-
notype and instead enabling formation of the stable vasculature [163,164]. DLL4–Notch
signaling is antagonized by Jagged1, which competes with DLL4 binding in cells expressing
Fringe family glycosyltransferases, promoting endothelial sprouting and tip formation [58].

The Notch system is therefore critical for mediation of vascular integrity and home-
ostasis. Indeed, gene inactivation of either Notch1 or DLL4 is embryonic lethal due to dereg-
ulation of angiogenesis and the loss of artery–vein specification [160,165]. Notch signaling
is also critical to the regulation of vascular function in numerous pathologies characterized
by tissue hypoxia, including tumor angiogenesis [166]. Blockade of Notch/DLL4 enhanced
hypoxia in mouse subcutaneous C6 tumors [167], and decreased tumor growth [167,168].
However, the effect of Notch blockade on tumor development is context-dependent, as
activation of the Notch system in endothelial cells promotes metastasis in the lung [169],
but represses metastasis in the liver [170].

To add to the complexity of angiogenic regulation, VEGF-A, alongside its receptors
VEGFR1 and VEGFR2, exhibit splice variation, with differing effects on bioavailability,
binding capacity, and downstream signaling [113,171]. For instance, activation of VEGF-
A121 induced a reduced rate of VEGFR2 phosphorylation, resulting in impaired motility
and sprouting in human endothelial cells [172]. Alternative splicing can also result in
soluble isoforms of VEGFR1, which are largely similar through exon 13, but differ in the
C-terminus, including sVEGFR1-i13. Regulation of sVEGFR1-i13 involves splicing factors
SRSF2 [173] and U2AF65 [174] alongside the NOTCH1 signaling system, with differential
regulation exhibited by the Jagged and DLL ligands [175].

5.1.3. Vascular Tone

Hypoxic exposure can lead to onset of pulmonary hypertension (PH). This disorder is
prevalent in high-altitude populations [176], although evidence suggests Tibetans may be
protected by displaying a lack of muscularization of pulmonary arteries and low hypoxic
pulmonary vasoconstriction [177]. Notch signaling has been linked to the onset of this
disorder, specifically via Notch3. Expression of Notch3 mRNA and Notch3 ICD were
increased in lung tissue obtained from PH patients, mice with hypoxia-induced PH, and rats
with monocrotaline-induced PH [61]. In mice, PH was prevented via homozygous deletion
of Notch3 and administration of a γ-secretase inhibitor [61]. Expression of both Notch3 and
target Hes-5 were confined to vascular smooth muscles within small pulmonary arteries,
and were required for cell proliferation and development [61]. Notch3 signaling was
associated with increased vascular resistance, characteristic of PH, through regulation of
intracellular Ca2+, achieved via enhancing store-operated Ca2+ entry through upregulation
of canonical transient receptor potential (TRPC) channels [63] and increased expression of
the Ca2+-sending receptor [64].
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Another pathology associated with vascular control and Notch signaling is pre-
eclampsia, a major cause of maternal and fetal morbidity and mortality [178] that increases
in prevalence at high-altitude [179,180]. This multisystem pregnancy disorder is character-
ized by hypertension, proteinuria, and placental hypoxia and dysfunction that is attributed
to the shallow implantation and defective spiral artery remodeling [181]. Specifically,
HIF-1α promotes invasion of human trophoblast cells and angiogenesis via Notch1, with
upregulation of proangiogenic factors including endothelin receptor type B (ETBR) via acti-
vator of transcription 3 (STAT3) and VEGF [159]. This signaling was disrupted in patients
with pre-eclampsia, with downregulation of placental HIF-1α, Notch1, and ETBR [159].

5.2. Cellular Metabolism

Hypoxia is a particular stressor on metabolic homeostasis, and specifically oxidative
metabolism. In hypoxia, metabolic adjustments are required to sustain mitochondrial
ATP production in the face of a reduced O2 supply and increased oxidative stress [12,65].
Metabolic remodeling is thus an essential component of the hypoxic cellular response [78,182].
This can be observed through proteomic [183,184] and metabolomic [12,166,168] analy-
ses, which have demonstrated significant remodeling of metabolic pathways and tissue
metabolites upon ascent to high-altitude.

Metabolic remodeling in the face of hypoxic exposure broadly includes modulation of
insulin sensitivity, glycolysis, mitochondrial oxidative phosphorylation, and lipid oxidation.
HIF is a well-established regulator of the metabolic hypoxic response, acting as a metabolic
switch to optimize mitochondrial respiratory function [68,185]. Notch signaling is also a
key modulator of metabolic homeostasis [186], with activation being associated with raised
mitochondrial membrane potential alongside increased ATP/ADP and NADH/NAD
ratios [72]. Whilst much of the evidence supporting this has been obtained in normoxia or
in the context of cancer, it involves a multitude of metabolic targets and systems known to
influence metabolic remodeling at high-altitude.

5.2.1. Glucose Homeostasis and Insulin Sensitivity

Hypoxic exposure impacts glucose handling via modulation of insulin sensitivity,
which is in turn influenced by factors including ethnicity [187] and pathologies associated
with nutrient excess and chronic inflammation [188]. The response in hypoxia appears to be
dependent on degree and duration of exposure. Loss of insulin sensitivity has been reported
with prolonged exposure to extreme altitude [65,66] and intermittent hypoxia [189], whereas
shorter duration of moderate hypoxia improved insulin sensitivity in obese subjects [190].
Notch signaling has been linked to regulation of glucose uptake by liver and adipose tissue,
with overactivation of the Notch system impairing insulin sensitivity [67,75,79]. In the liver,
Notch signaling occurred in concordance with the transcription factor forkhead box protein
O1 (FoxO1) via the Notch ICD, with Notch1 gain-of-function promoting insulin resistance
and glucose-6-phosphatase expression in a FoxO1-dependent manner [67]. Notch activity
in endothelial cells has been linked to the regulation of muscle insulin uptake via caveolae
genes, with sustained Notch signaling lowering insulin sensitivity and increasing blood
glucose; however, inhibition resulted in improved insulin sensitivity and improved glucose
regulation [191].

5.2.2. Glycolysis

Downstream of glucose uptake, hypoxia is commonly reported to enhance anaer-
obic glycolysis and increase the production of extracellular lactate, which can itself be
transported into cells for use as metabolic substrate. This effect has been observed upon
high-altitude exposure in lowlanders [192], whilst enhanced capacity for lactate production
was observed in Sherpa skeletal muscle through higher lactate dehydrogenase (LDH) en-
zyme activity [12]. Increased reliance upon glycolysis is a common observation in hypoxic
animal models [193] and in pathological contexts, such as tumors or ischemic injury [194].
HIF mediates this response through upregulating genes that encode glycolytic enzymes [11],
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alongside a shunting of pyruvate toward lactate production through the upregulation of
pyruvate dehydrogenase kinase [68,185]. Notch also mediates glycolytic function through
two distinct mechanisms. The first involves hyperactivated Notch signaling via the phos-
phatidylinositol 3-kinase (PI3K)/AKT serine/threonine kinase pathway to upregulate
glycolytic targets such as the enzyme hexokinase and glucose transporter 1, as seen in
breast cancer cells [69] and Drosophila [70]. The second mechanism involves hypoactivated
Notch signaling, leading to reduced p53 levels, which enhanced glucose uptake at the
expense of suppressed mitochondrial activity [32]. The ability of the Notch pathway to act
as a metabolic switch for glucose flux has further been demonstrated in macrophages, in
which M1 macrophage activation was reliant on Notch1-dependent induction of pyruvate
dehydrogenase phosphatase 1 expression, pyruvate dehydrogenase activity, and glucose
flux into the TCA cycle [195].

5.2.3. Glutamine Metabolism

In hypoxia, the shift toward greater lactate production leads to the lack of reduced
carbon for a functional electron transport chain, fatty acid synthesis, and ultimately cell
proliferation [196]. An alternative carbon source is therefore sought in the form of glu-
tamine [196,197]. Through an HIF-2α-dependent mechanism, reductive metabolism of
glutamine to the TCA cycle intermediate α-ketoglutarate is redirected toward de novo
lipogenesis via formation of the fatty acid palmitate [71]. This pathway has been impli-
cated in high-altitude exposure, with increased expression of skeletal muscle glutamine
synthetase [184]. Through proteomic analysis, activation of the Notch system was associ-
ated with decreased glutamine consumption alongside downregulation of three glutamate
catabolism enzymes: glutaminase, ornithine aminotransferase, and glutamate dehydroge-
nase 1 [72].

5.2.4. Mitochondrial Network and Respiration

Suppression of mitochondrial function with hypoxic exposure can occur through
multiple mechanisms, including regulation of the mitochondrial network. For instance,
expression of mitochondrial biogenesis factor peroxisome proliferator-activated recep-
tor gamma coactivator 1 alpha (PCG1α) declined in human skeletal muscle following
prolonged exposure to extreme high-altitude [74], occurring alongside a loss of muscle
mitochondrial volume density, particularly within the subsarcolemmal population [74,198].
PGC1α is mediated both by HIF [73] and also Notch, as the proximal promoter region of
PGC1α contains a binding site for the Notch target HES1. Binding of Hes1 suppressed
Pgc1α expression in mouse adipocytes, whilst deficiency of Notch1 led to elevated Pgc1α
protein levels [75].

Specific alterations of the respiratory chain induced by hypoxic exposure include
suppression of complex I, demonstrated in hypoxic rat heart [199], human skeletal mus-
cle [184], and placenta [76]; whilst complex IV is altered through an HIF-mediated switch
of subunits to optimize respiratory efficiency [77]. The Notch system should be consid-
ered in this context, as hypoactive Notch induces a decrease in complex I activity and in
expression of the complex IV subunit COXII through p53 signaling in breast cancer [32].
Conversely, Notch1 hyperactivation has also been associated with downregulation of com-
plex I subunits NDUFS1 and NDUFV2, as assessed through proteomic analysis of human
immortalized leukemia cells (K562) [72].

5.2.4.1. β-Oxidation

Hypoxic exposure is associated with suppressed β-oxidation capacity [12,193], a re-
sponse modulated by HIF through repression of the fatty-acid-activated transcription
factor peroxisome proliferator-activated receptor α (PPARα) [12,78,194], with changes
to its downstream targets including the mitochondrial transporter carnitine palmitoyl
transferase (CPT) [12,193]. A putatively advantageous PPARA haplotype has been iden-
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tified in Tibetans [3], and this was associated with metabolic adaptation in Sherpas at
high-altitude [12].

Notch signaling has profound effects on the regulation of β-oxidation, although these
are likely to be cell-context dependent. Notch1 deficiency has been associated with in-
creased expression of Ppara and Cpt1 in liver [79] and adipose tissue [75]. Disruption of
Notch signaling has been linked to browning of white adipose tissue, with higher metabolic
rate dependent on increased uncoupling protein 1 expression and resistance to obesity
induced by a high-fat diet [75]. Similarly in the liver, abrogated Notch signaling was
associated with enhanced β-oxidation capacity, resulting in decreased hepatic lipid accu-
mulation [79]. Notch signaling is positively correlated with fatty liver disease [200] and
stimulation of lipogenesis has been linked to Notch-dependent stabilization of mammalian
target of rapamycin complex 1 (mTORC1) [84]. The interaction with mTORC1 is bidirec-
tional, as mTORC1 stimulated via excess amino acid consumption upregulates Notch1
signaling through STAT3 [201]. In leukemia cells, Notch activation was associated with
increased levels of the β-oxidation enzyme mitochondrial enoyl-CoA hydratase [72].

5.3. Inflammation

Tissue hypoxia is known to augment inflammatory signaling. For instance, sustained
exposure of lowlanders to high-altitude (6–8 weeks, >5300 m) led to a sharp rise in circulat-
ing interleukin (IL)-6, a target of the immune system regulator nuclear factor (NF)-kB [65].
NF-kB is of particular interest given its cross-talk with HIF [202]. This interaction involves
amplification of NF-kB signaling through HIF binding Toll-like receptors [80] and en-
hanced HIF transcriptional activity through direct binding of the NF-kB precursor IkBα to
FIH [81]. ROS-mediated upregulation of HIF-1α was shown to be dependent on NF-kB, and
transfection experiments revealed an unidentified NF-kB binding element on the HIF-1α
promoter [82]. HIF–NF-kB cross-talk has been implicated in diseases in which chronic
hypoxia occurs concurrently with chronic inflammation, including cancer [203].

Regulation of NF-kB also involves complex cross-talk with Notch signaling at multiple
points of each pathway [204,205], with physical interaction between the N-terminal portion
of Notch ICD and NF-kB subunit p50 [83]. Cooperation of Notch with other immune
system regulators includes interaction between Notch1 and transforming growth factor-β
(TGFβ) in the maintenance of regulatory T cells through the transcription factor Foxp3 [206].
Indeed, Notch signaling is an important regulator of both the innate and adaptive immune
responses and regulates immune cell development and function. This includes determina-
tion of cell lineage in developing lymphocytes and regulation of T- and B-cell differentiation
and function [207], with Notch inactivation leading to accumulation of B cells in the thymus
and blocking of T-cell development [206,208].

As with all aspects of Notch signaling, Notch regulation of immune system function
is context-dependent [205]. In endothelial cells, Notch1 ICD activity in human carcino-
mas and melanoma orchestrated tumor progression and metastasis through increasing
expression of chemokines and the adhesion molecule VCAM1, which promotes neutrophil
infiltration and tumor cell adhesion [169]. In luminal endothelial cells derived from the
aorta of coronary artery disease patients, upregulation of Notch pathway components at
atherosclerotic lesions resulted in upregulation of inflammatory signaling, including IL-6
and ICAM1 and induction of endothelial cell senescence [209].

5.4. Oxidative Stress

ROS production is a key element of the cellular hypoxic response, involving multiple
cellular sources, including mitochondrial complexes I and III. ROS signaling affects a multi-
tude of downstream pathways, including HIF-1α, NF-kB, and nuclear factor erythroid-2
related factor 2 (Nrf2), with the latter being a regulator of genes that modulate oxidative
stress, including GSTA2 and NQO1 [85,86,210,211]. An imbalance between ROS production
and antioxidant capacity leads to oxidative stress, resulting in production of lipid and
protein oxidation products. Markers of oxidative stress have been reported in lowland
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subjects ascending to high-altitude, leading to increased circulating isoprostanes [65] and in-
creased skeletal muscle oxidized/reduced glutathione and sulfoxide/total methionine [12].
Of note, no such change was observed in an adapted Sherpa population following the
same ascent profile [12]. Increased oxidative stress has been demonstrated in Andeans at
high-altitude compared to lowlanders in normoxia [212,213]. This included elevated levels
of circulating ascorbate free radicals alongside depressed antioxidants, an effect that was
more pronounced in sufferers of chronic mountain sickness [212,213].

Notch signaling is an important modulator of oxidative stress. In the rat heart, Notch1
signaling via Nrf2 decreased ROS production and increased antioxidant activities to exert
myocardial protection in ischemia–reperfusion injury [87]. Myocardial Notch signaling also
acts via the Janus kinase 2 (JAK2)/signal transducer and STAT3 to activate mitochondrial
superoxide dismutase expression and decrease ROS production [88]. In hepatocytes, Notch–
STAT3 cross-talk has also been demonstrated, again in the context of ischemia–reperfusion
injury, attributed to HES5-dependent STAT3 activation [214]. Conversely, ROS production
has been linked to the regulation of Notch signaling function via NADPH oxidase 1,
impacting cell proliferation and postmitotic differentiation [215].

6. Future Directions

Further investigation into the downstream effects of the specific NOTCH variants un-
der selection in highland populations could reveal novel insights into mechanisms crucial
to adaptation to hypoxia. A vast range of methodology exists to enable identification of
specific variants and investigation into functional mechanisms [216]. In the identification
of variants under selection, whole-genome sequencing provides the opportunity to ob-
tain greater resolution of large-scale genome datasets alongside insight into noncoding
regions. The functional mechanisms of Notch signaling in hypoxia are clearly complex,
from the point of transcriptional regulation to a multitude of downstream pathways. Ap-
plication of systemwide omics techniques would enable the molecular intricacies of this
cross-talk to be captured, from the transcriptome and epigenome to the proteome and
metabolome [192,217]. The application of these approaches in human subjects is crucial
for providing insight into the genotype–phenotype association, whilst insight into direct
causal links can be probed through genome-editing technologies [216].

7. Conclusions

Positively selected genetic regions that include Notch pathway components have
been identified in highland populations, whilst Notch signaling has also been attributed
to hypoxia tolerance. Together, this suggests that the Notch pathway is a key player
in the complex interaction of regulatory pathways mediating hypoxic adaptation. The
implications of Notch genetic variants under selection at high-altitude are, however, largely
unexplored and warrant further investigation. Crucially, the Notch system exhibits close
cross-talk with multiple elements of the HIF pathway, and is known to mediate numerous
processes that are linked to cellular and tissue remodeling upon high-altitude exposure.
Unravelling the intricacies of the high-altitude-selected Notch variant genotype–phenotype
interaction will thus require a multisystem approach that spans from the transcriptome to
the proteome and metabolome.
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