
RESEARCH PAPER

Methylation of SOCS3 is inversely associated with metabolic syndrome in an
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ABSTRACT
Epigenetic mechanisms, including DNA methylation, mediate the interaction between gene and
environment and may play an important role in the obesity epidemic. We assessed the relationship
between DNA methylation and obesity in peripheral blood mononuclear cells (PBMCs) at 485,000 CpG
sites across the genome in family members (8-90 y of age) using a discovery cohort (192 individuals) and a
validation cohort (1,052 individuals) of Northern European ancestry. After Bonferroni-correction
(PaD0.05 D 1.31 £ 10¡7) for genome-wide significance, we identified 3 loci, cg18181703 (SOCS3),
cg04502490 (ZNF771), and cg02988947 (LIMD2), where methylation status was associated with body mass
index percentile (BMI%), a clinical index for obesity in children, adolescents, and adults. These sites were
also associated with multiple metabolic syndrome (MetS) traits, including central obesity, fat depots,
insulin responsiveness, and plasma lipids. The SOCS3 methylation locus was also associated with the
clinical definition of MetS. In the validation cohort, SOCS3 methylation status was found to be inversely
associated with BMI% (P D 1.75 £ 10¡6), waist to height ratio (P D 4.18 £ 10¡7), triglycerides
(P D 4.01 £ 10¡4), and MetS (P D 4.01 £ 10¡7), and positively correlated with HDL-c (P D 4.57 £ 10¡8).
Functional analysis in a sub cohort (333 individuals) demonstrated SOCS3 methylation and gene
expression in PBMCs were inversely correlated (P D 2.93 £ 10¡4) and expression of SOCS3 was positively
correlated with status of MetS (P D 0.012). We conclude that epigenetic modulation of SOCS3, a gene
involved in leptin and insulin signaling, may play an important role in obesity and MetS.

Abbreviations: BMI, Body Mass Index; BMI%, Body Mass Index percentile; dBP, Diastolic Blood Pressure; EWAS,
Epigenome-Wide Association Studies; FG, Fasting Glucose; FI, Fasting Insulin; GWAS, Genome-Wide Association
Study; HC, Hip Circumference; HDL-c, HDL-cholesterol; HOMA-IR, Homeostatic Model Assessment of Insulin Resis-
tance; IGR, insulin to glucose ratio; LDL-c, LDL-cholesterol; LIMD2, LIM Domain-Containing Protein 2; NHANES III,
Third National Health and Nutrition Examination Survey; MetS, Metabolic Syndrome; PBMC, Peripheral Blood Mono-
nuclear Cells; QN, Quantilenormilzation; sBP, Systolic Blood Pressure; SOCS3, Suppressor of Cytokine Signaling 3;
SubQF, Subcutaneous Fat; T2DM, Type 2 Diabetes mellitus; TC, Total Cholesterol; TG, Triglycerides; TOPS, Take Off
Pounds Sensibly; VF, Visceral fat; WC, Waist Circumference; WHR, Waist to Hip Ratio; WHtR, Waist to Height Ratio;
ZNF771, Zinc Finger Protein 771
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Introduction

The prevalence of obesity has reached epidemic proportions
in many countries and continues to increase all over the
world.1,2 This increasing obesity is accompanied by an
alarming rise in the prevalence of various comorbidities,
including metabolic syndrome (MetS) and type 2 diabetes
mellitus (T2DM).3 These chronic diseases now constitute a
major burden on scarce healthcare resources and may even
reverse the gains in longevity that have occurred in all
countries in the last century.4 While the global rise in obe-
sity and its comorbidities is driven by environmental fac-
tors, genetic and epigenetic factors determine which
particular individuals are at highest risk5,6 and estimates of
the heritability of obesity and T2DM range from 40 to
80%.7,8 Identification of the genes and epigenetic

mechanisms that confer this increased risk can lead to bet-
ter understanding of physiologic pathways, targeted public
health efforts, personalized therapy, novel diagnostic tests,
and new drug targets.

Epigenetic mechanisms mediate the interaction between
gene and environment, altering gene expression and induc-
ing long-term changes in phenotype and disease susceptibil-
ity. DNA methylation is one of the most extensively studied
epigenetic mechanisms and plays an important role in the
process of development and differentiation.9 There is evi-
dence from both human and animal sources that prenatal
and early childhood experiences alter DNA methylation at
multiple loci and that these changes are associated with
future risk of chronic diseases like obesity, insulin resis-
tance, and diabetes.10 Obesity is also associated with global
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changes in DNA methylation in peripheral blood mononu-
clear cells (PBMCs)11 while caloric deprivation can also
alter the methylation state of PBMCs.12,13 Methylation of
DNA from peripheral blood (and from buccal cells14) is fre-
quently used as a surrogate for tissue DNA methylation
because some patterns of DNA methylation have been
shown to be common across multiple tissues.15 In addition,
PBMCs may themselves be a target tissue in obesity and
MetS because of their role in inflammation (and the role of
inflammation in obesity and its comorbidities).16 DNA
methylation is also an important biological phenotype in
clinical practice because its easy availability means it has
the potential to be used for diagnostic and prognostic pur-
poses whereas other target tissues are usually inaccessible in
everyday clinical practice.

Several epigenome-wide association studies (EWAS) of
DNA methylation in PBMCs in relation to obesity and MetS
traits have been conducted in various populations and have
revealed links between DNA methylation, obesity, and T2DM.
11,17-19 Most of these EWAS consist of unrelated adult cohorts,
but the use of family-based cohorts that include children and
multiple generations has additional advantages. For example,
we can use a statistical model that takes their relatedness into
account and family-based cohorts that include large extended
families living in the same region diminish the influence of the
population structure and of systematic differences in environ-
mental exposures that otherwise arise due to group differences
in diet and geographical location.

Body mass index (BMI) is commonly used as the primary
measure of adiposity in adult studies because it is an excellent
and easily available surrogate for other measures of adiopos-
ity.20-23 But because the range of BMI values that is considered
normal is different at different ages in childhood, BMI percen-
tile (BMI%) rather than absolute BMI is the appropriate mea-
sure for use in children. If we want to use the same measure of
fatness in children as well as adults, then it makes sense to use
BMI% in adults as well. There are no widely used BMI% calcu-
lators for use in adults, but Dr. Steven Halls has produced a cal-
culator24 that uses the same NHANES III data as was used in
the pediatric calculator. This calculation of BMI% in adults cap-
tures the same information (degree of fatness) that is captured
by the standard Centers for Disease Control and Prevention
(CDC) BMI calculator in children and in a mixed population
of adults and children; BMI% can then be used to interrogate
the entire cohort using a single measure comparable across all
age groups.

We have assembled a unique family-based cohort compris-
ing several large extended families of Northern European
descent that has been extensively phenotyped for obesity-
related traits. To identify genomic regions whose methylation
status is associated with obesity and MetS traits, we conducted
an EWAS of PBMC DNA methylation with BMI% in 192 of
these subjects. After assessing the relevance of the obesity-asso-
ciated candidate epigenetic sites with MetS traits in the discov-
ery sample, we extended our investigation into an independent
sample cohort of 1,052 subjects. We then performed functional
analysis of the prioritized epigenetic site for its relevance with
local gene expression using a sample of 330 subjects, a subset of
the validation cohort.

Results

Discovering genome-wide epigenetic CpG loci for obesity
in adults, children, and adolescents

The discovery cohort consists of a total of 192 subjects, who are
members of 7 families, with 28% of the subjects being 18 y and
younger at ascertainment. The average age of the cohort is 36.2
(§18.8) y and 55% are females.23 As previously described, we
implemented a rigorous epigenetic data cleaning procedure,
aiming to retain only the informative CpG probes for down-
stream analyses.25 A total of 381,693 autosomal CpG sites passed
our quality control criteria (see Materials and Methods) and
were entered into our statistical pipeline for association tests
against overall degree of fatness measured by BMI%.

In our genome-wide query, we tested each epigeneticmarker for
association with BMI% in linear mixed models that included the
random effect of kinship using SOLAR26 by using methylation sta-
tus represented by M values (see Materials and Methods). Our
models also accounted for the fixed effects of age, sex, age £ sex,
age2̂, age2̂ £ sex, and blood cell subtype proportions. Fig. 1 shows
the genome-wide CpG methylation association plot with BMI% in
our cohort. We identified 3 loci where methylation status was asso-
ciated with BMI% with genome-wide significance after correction
for multiple testing (Bonferroni PaD0.05 D 1.31 £ 10¡7). These
CpG sites are cg18181703, located in body of the suppressor of
cytokine signaling 3 (SOCS3) gene (PD 1.02£ 10¡8); cg04502490,
located in the 30 untranslated region of the zinc finger protein 771
(ZNF771) gene (PD 2.70£ 10¡8); and cg02988947, located in the
transcription start site of the LIM domain containing 2 (LIMD2)
gene (PD 6.43£ 10¡8).

Identified obesity-related epigenetic loci are associated
with multiple metabolic syndrome traits

We next tested the association of these top 3 loci with phenotypes
related to body composition, insulin responsiveness, and plasma
lipids. We used the waist to height ratio (WHtR) as a measure of
central adiposity because this measure corrects for the wide range
of heights seen in our multi-generational cohort. We also assessed
the relationship of DNA methylation with subcutaneous fat mass
(SubQF), visceral fat mass (VF), and fasting plasma levels of glu-
cose (FG), triglycerides (TG), LDL-cholesterol (LDL-c), and HDL-
cholesterol (HDL-c). For the adults we also assessed the relation-
ship to the homeostatic model assessment of insulin resistance
(HOMA-IR) as a measure of insulin resistance. As shown in
Table 1, CpG site cg18181703 at SOCS3 is significantly associated
with WHtR (P D 1.50 £ 10¡8), SubQF (P D 0.0001), VF
(PD 0.001), HOMA-IR (PD 0.002), and TG (PD 0.0004) (signifi-
cance PD 0.0056 when accounted for multiple phenotype testing).
Themethylation state at cg18181703 was also nominally associated
with FG (P D 0.006) and HDL-c (P D 0.006). We found that
ZNF771 CpG site cg04502490 was significantly associated with
WHtR (PD 0.001), HOMA-IR (PD 0.0004), and TG (PD 0.003).
The methylation state at this site was also nominally associated
with SubQF (P D 0.019) and FG (P D 0.016). We found that
cg02988947 at LIMD2 was significantly associated with WHtR
(PD 1.26£ 10¡6), HOMA-IR (PD 0.0004), and TG (PD 0.002).
The methylation state at this site was also nominally associated
with SubQF (PD 0.008), VF (PD 0.017), and FG (PD 0.023).
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SOCS3 association with multiple MetS traits was validated
in an independent cohort

We then assessed the relationship of the methylation states of
these 3 CpG sites with the status of subjects having MetS or not,
using the Adult Treatment Panel III (ATPIII) criteria for diagno-
sis of MetS.27 As shown in Table 1, methylation of the ZNF711 or
LIMD2 CpG sites is not significantly associated with MetS status
in our cohort. However, CpG site cg18181703 in the SOCS3 gene
is significantly associated withMetS status (PD 0.012).

We next tested the relationship between methylation at
SOCS3 CpG site cg18181703 and obesity and MetS traits in an
independent validation cohort consisting of 1,052 individuals
from 90 families (Table 1). The average age of this cohort is 39
(§19) y with 20% of the subjects being 18 y and younger at
ascertainment and 59% of the cohort being females. Overall,
the prevalence of BMI% greater than 85th percentile in children

and adolescents is 44% and in adults is 35%. In addition, 31.1%
of the adult cohort met the ATPIII definition of having MetS.

Using pyrosequencing technology, we were able to replicate
the significance of the association of CpG methylation at
cg18181703 with BMI% (PD 1.75£ 10¡6) (Table 3). It is signifi-
cantly associated with several other MetS traits including WHtR
(P D 4.18 £ 10¡7), HDL-c (P D 4.57 £ 10¡8), and TG
(PD 0.0004). As shown in Table 3, except for HDL-c, on average,
lower methylation states at cg18181703 were found to be associ-
ated with higher measures of MetS traits. We then tested for asso-
ciation between methylation states at cg18181703 and the status
ofMetS (binarymeasure of ATPIII definition yes or no). Remark-
ably, we observed highly significant association between the
methylation state at cg18181703 and the MetS status in our large
cohort (PD 4.01£ 10¡7) (Table 3), suggesting the epigenetic sta-
tus at this site of gene SOCS3 is strongly inversely associated with
the presence of MetS. As shown in Fig. 2, on average, individuals

Figure 1. Strength of associations of genome-wide autosomal CpG methylation status with BMI% in our TFSE cohort. Manhattan plot shows the significance level of each
CpG locus with BMI-percentile. Each gray dot represents an individual CpG site. The red one depicts the genome-wide significance threshold after Bonferroni correction
for multiple testing, PaD0.05 D 1.31£ 10¡7. Probes with associations of nominal significance (P< 0.05) are shown. Genes and associated CpG sites that exceed the signifi-
cance threshold are labeled.

Table 1. TOPS Family Study of Epigenetics (TFSE) Cohort Characteristics.

Children and Adolescents (mean § SD) Adults (mean § SD)

Phenotype Girls (n D 111) Boys (n D 102) Female (n D 509) Male (nD 330)

Weight, kg 59.46 § 22.20 62.23 § 24.35 89.27 § 24.92 97.76 § 22.90
Height, cm 158.06 § 13.52 162.67 § 17.63 164.06 § 7.06 177.74 § 7.49
BMI% 67.25 § 29.08 70.17 § 29.28 67.37 § 27.68 68.68 § 27.10
BMI% > 85 41.4% 46.1% 35.0% 36.7%
Waist to Height Ratio 0.44 § 0.10 0.42 § 0.10 0.59§ 0.14 0.56 § 0.12
Waist to Hip Ratio 0.89 § 0.13 0.94 § 0.09 0.85§ 0.10 0.97 § 0.10
HOMA-IR 4.52 § 5.34 3.69 § 3.23 4.65§ 8.44 4.08 § 3.99
FG, mmol/l 82.16 § 12.92 83.31 § 9.13 88.39 § 31.73 92.40 § 35.27
HDL-c, mmol/l 47.61 § 15.35 45.42 § 16.29 42.75 § 14.62 38.65 § 15.24
LDL-c, mmol/l 89.02 § 29.60 89.52 § 29.53 129.31 § 41.34 130.78 § 48.53
TG, mmol/l 87.95 § 79.89 83.62 § 49.75 119.42 § 77.89 138.17 § 173.42
MetS, % NA NA 31.0% 31.8%
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with MetS have significant lower methylation levels at SOCS3
cg18181703 than those withoutMetS.

SOCS3 expression in peripheral blood cells is associated
with methylation and MetS states

We hypothesized that the methylation status of SOCS3 CpG
site cg18181703 alters the gene expression levels of SOCS3,
leading to an effect on obesity and MetS traits. We analyzed the
relationship between mRNA levels of SOCS3 and CpG
methylation at cg18181703 using the PBMCs of 330 individuals
of our family cohort. We found a significant correlation
(P D 0.0002933) between these 2, with higher methylation
being correlated with lower gene expression. We also tested the
effect of SOCS3 expression on MetS status and found they are
also significantly positively correlated (P D 0.0117), with higher
levels of SOCS3 expression in PBMCs of individuals with MetS.

Materials and methods

Study design, samples and phenotyping

The Take Off Pounds Sensibly (TOPS) Family Study of Epige-
netics (TFSE) is an ongoing project that aims to elucidate the
role of epigenetic mechanisms in the development of obesity,
MetS, and T2DM using related subjects in large extended pedi-
grees who have been recruited via the membership of the TOPS
weight loss club.25 In the current study, we used one cohort
(discovery cohort) for a genome-wide search for obesity DNA
methylation sites, and a larger independent cohort (validation
cohort) for validating the findings. All analyses accounted for
the relatedness of family members by conditioning the fixed

effects of methylation status on the expected genetic similarity
of relatives.26 The discovery cohort consists of a total of 192
subjects, who are members of 7 families, with 28% of the sub-
jects being 18 y and younger at ascertainment. The average age
of the cohort is 36.2 (§18.8) y and 55% are females.25 This
cohort is a good representation of the current general American
population for the prevalence of obesity and MetS traits, with
73% of the adults being overweight or obese (based on BMI),
52% with waist circumference above MetS thresholds
(>102 cm in men; >88 cm in women), 31.9% with evidence of
insulin resistance [based on the homeostatic model of assess-
ment (HOMA-IR) > 3.5],28,29 20.3% with hypertriglyceridemia
(>150 mg/dl), and 65.7% with HDL-c below MetS thresholds
(<40 mg/dL in males and <50 mg/dl in females). Overall,
23.7% of the adults of our cohort met the ATPIII definition of
having MetS.27

The second cohort for validation consists of 1,052 individu-
als from 90 families (Table 1). Details of their recruitment and
phenotyping procedures have been described previously.30

Briefly, each nuclear family was recruited through an obese
proband (BMI � 30) who was a member of TOPS Club with
the minimal requirement of the availability of 2 obese siblings,
a least one, preferably both, of the parents, and one never-obese
(BMI � 27) sibling and/or parent. A subsequent extension
included the ascertainment of all biologically related members
over the age of 18 including aunts, uncles, grandparents, and
adult children and their accompanying parent(s). Recently, this
cohort was further enhanced by the ascertainment of their chil-
dren and adolescent descendants (aged 6-18 y) with their
accompanying parent(s). Clinical phenotypes for all subjects
included weight, height, BMI, waist circumference (WC), hip
circumference (HC), WHtR, FG, fasting insulin (FI), insulin to
glucose ratio (IGR), HOMA-IR, TG, total cholesterol (TC),
LDL-c, HDL-c, systolic and diastolic blood pressure (sBP and
dBP), and pulse. Total abdominal fat, VF, and SubQF were
measured by computed tomography scans of the fourth lumbar
spine in adults,31 and by magnetic resonance imaging at the

Table 3. Pyrosequencing of SOCS3 CpG site vs. traits.

Trait Beta (SE) P

BMI% ¡0.15 (0.031) 1.75 £ 10¡6

WHtR ¡0.16 (0.031) 4.18 £ 10¡7

HOMA-IR ¡0.04 (0.032) 0.24
FG ¡0.02 (0.031) 0.60
HDL-c 0.17 (0.031) 4.57 £ 10¡8

LDL-c ¡0.01 (0.034) 0.85
TG ¡0.11 (0.031) 3.59 £ 10¡4

MetS ¡0.18 (0.034) 4.01 £ 10¡7

SOCS3 expression ¡0.20 (0.051) 2.93 £ 10¡4

SOCS3 expression/MetS 0.16 (0.065) 1.17 £ 10¡2

Table 2. Top BMI% CpGs with other MetS traits and MetS itself.

cg18181703 cg04502490 cg02988947
SOCS3 (body) ZNF771 (30UTR) LIMD2 (TSS1500)

CpG chr17: 73866216 chr16: 30337212 chr17: 59132545

Phenotype P-value
BMI% 1.02 £ 10¡8 2.70 £ 10¡8 6.43£ 10¡8

Waist to Height 1.50 £ 10¡8 0.001 1.26£ 10-6

WHR 0.02 0.011 0.042
SubQ 0.0001 0.019 0.008
VF 0.001 0.072 0.017
HOMA-IR 0.002 0.0004 0.0004
FG 0.006 0.016 0.023
HDL-c 0.006 0.43 0.055
LDL-c 0.154 0.611 0.293
TG 0.0004 0.003 0.002
MetS 0.012 0.057 0.35

Figure 2. Boxplot of methylation b values at cg18181703 (SOCS3, body) against
presence or absence of metabolic syndrome. The middle lines show the medians
of the data, while the boxes show the 25th to 75th percentiles. The whiskers extend
to include 99% of the data while circles represent outliers. The b values at this
probe in individuals with and without MetS were significantly different
(P D 4.01£ 10¡7) when accounted for age, sex, and interactions of the two.
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same level in children and adolescents; circulating levels of adi-
ponectin and leptin were measured by a double antibody equi-
librium radioimmunoassay (Millipore Corporation, Billerica,
MA); and TNF-a, interleukin-1beta (IL-1b), and interleukin-6
(IL-6) levels, which were measured as previously described.32

ATPIII criteria were used to identify adults with MetS.
Because our cohort includes children from ages 6 to 18 and the

normal distribution of BMI values varies by age in children, we
used BMI% rather than absolute BMI as the primary measure of
body fatness in our cohort. BMI values were converted to BMI%
using the CDC’s BMI% calculator for children33 for subjects 2
through 19 y of age. For adults, we calculated the BMI% using a
percentile calculator based on the sameNHANES III data.24,34

Informed consent was obtained from all participating subjects
in addition to their parents/legal guardians for subjects less than 18
y of age. All study procedures for adults, adolescents, and children
were approved by the Institutional Review Boards of the Medical
College of Wisconsin (HRRC#325-94 and HRRC#013-00) and
Children’s Hospital ofWisconsin (CHW04/87), respectively.

Illumina HumanMethylation450 data production

Genomic DNA was isolated from peripheral blood after an over-
night fast on the same day when each subject was assayed for obe-
sity and MetS phenotypes; thus, the CpG methylation states
profiled from these samples reflect the epigenetic status associated
with that individual’s current state of body composition and
metabolism. One microgram of human genomic DNA was
sodium bisulfite–treated for cytosine (C) to thymine (T) conver-
sion using the EZDNAMethylation kit (Zymo Research) accord-
ing to the manufacturer’s guidelines. The converted DNA was
purified and prepped for analysis on the Illumina HumanMethy-
lation450 microarray following the manufacturer’s guidelines.
The Illumina HumanMethylation450 microarray measures the
methylation levels of more than 485,000 methylation sites. It
includes CpG sites surrounding the transcription start sites
(¡200 bp to ¡1,500 bp, 50UTRs, and exon 1) of 99% of RefSeq
genes, CpG sites within non-coding RNAs, intergenic regions
identified in genome-wide association studies, as well as CpG
islands/shores/shelves and open sea of the genome. CpG annota-
tions (chromosomal location, reference gene, etc.) were identified
using genome build NCBI36/hg18 using the Illumina manifest
1v2.GenomeStudio software; the Methylation Module (Illumina)
was used to generate final reports containing signal intensities
and detection P-values excluding X and Y chromosomes. No
background subtraction or control normalization was applied
with GenomeStudio.

Genomic CpG methylation data QC and processing

For initial quality control preparation of the Infinium HumanMe-
thylation450 data, we used the Lumi:QN C BMIQ pipeline
described previously.35 Raw signal intensities and detection P-val-
ues of 22 autosomal chromosomes were extracted from GenomeS-
tudio and loaded into Lumi. Next, quality control of the data
resulted in removal of CpG sites with detection P-value � 0.01 in
more than 5% of the samples (471,473 sites left). All samples had at
least 99% CpG sites with detectionP-value� 0.01; thus, no samples
were removed. Recently, multiple groups have reported that this

array contains cross-reacting probes that cannot be distinguished
between multiple chromosomal positions and that therefore need
to be excluded from downstream analysis.36 Furthermore, studies
including ours (Y.Z., unpublished data) have shown that a signifi-
cant proportion of genomic CpG loci are common polymorphic
locations where both C or G or the dinucleotides are changed to a
different code, thus abolishing the ability of being methylated in
that genome. Considering the inaccuracy these single nucleotide
polymorphismsmay cause in the quantification ofmethylation sta-
tus of these CpG sites, we therefore excluded all known polymor-
phic CpG sites.

Color-bias adjustment (Col.Adj) and quantilenormilzation
(QN) were performed on signal intensities as implemented in
Lumi. Briefly, the QN works on total signal intensity, assuming
that the distributions of the pooled methylated and unmethy-
lated probes are similar for different samples. Intensities were
then used to generate Beta values. Within Lumi, ‘b’ values are
defined as follows:

bD Im
IU C Im Ca

Where IM and IU represent the fluorescence intensity originat-
ing from methylated or unmethylated CpG locus, and a is a con-
stant. Beta Mixture Quantile dilation (BMIQ) was then performed
on b-values of QNed data to account for probe type bias. After
these steps, a total of 381,693 CpG sites for all 192 samples were
imported into data analysis. BMIQ’ed b-values were then con-
verted toM values for data analysis. Lumi definesM values as:

MD log2
Im Ca

Iu Ca

� �

All analyses were run using M-values, which are more statisti-
cally valid for analysis of differential methylation levels owing to its
more homoscedastic nature.37 Further, the quantitative genetic
analyses program SOLARwas used to normalize the DNAmethyl-
ation data at each CpG locus.38 CpG loci were initially normalized
by inverse-Gaussian (rank-normal) transformation, and then resi-
dualized by the covariates sex, age, age2̂, their interactions and cell
type composition. These residuals were again normalized by
inverse-Gaussian (rank-normal) transformation.

To estimate cell-type proportions we used the R minfi package,
and estimate CellCounts function.39,40 This method estimated the
proportions of 6 cell types (monocytes, granulocytes, CD8C T-cells,
CD4C T-cells, NK cells, and B cells) for each individual based on
their genome-wide methylation signatures, using an external refer-
ence inferred from sample profiles of cell-specificmethylation.41 For
each regression test, 5 of the 6 proportions were used as covariates.

Validation by pyrosequencing

The candidate DNA methylation regions were validated in a sec-
ond cohort of 1,052 individuals by bisulfite pyrosequencing. One
microgram of human genomic DNA was sodium bisulfite-con-
verted using the EZ DNA Methylation kit (Zymo Research)
according to the manufacturer’s guidelines. Pyrosequencing was
performed using the PyroMark MD system (Qiagen, Valencia,
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CA) according to themanufacturer’s protocol. Briefly, the PCRwas
performed with 10 mM primers, one of which was biotinylated for
later purification by streptavidin sepharose (VWR). The oligonu-
cleotide primers were purchased from IDT, and used for the ampli-
fied region of SOCS3: forward primer,
TAGTTGGGTGATTTTTTTATAGGAGTT; reverse biotinylated
primer, CCCCCAAAAAAACCTATTACATCTACT; and pyrose-
quencing primer, AGATGTTGAAGAGTGG. Sepharose beads
containing the PCR product were washed and purified using 0.2M
NaOH and the Pyrosequencing Vacuum Prep Tool (Qiagen). Five
microliters of the PCR products were sequenced and methylation
was quantified using the provided software (Qiagen).

Transcriptional profiling

Genome-wide transcriptional profiles of a subset of the cohort
were obtained as previously described,42 with modifications.
Briefly, 2.5 ml blood was collected from each individual into a
PAXgene� Blood RNA Tube (BD, Franklin Lakes, NJ) follow-
ing an overnight fast. Total RNA was isolated from each tube
using the PAXgene Blood RNA Kit (Qiagen) and antisense
RNA (aRNA) was synthesized using the MessageAmp II-Biotin
aRNA kit (Ambion, Austin, TX). A total of 1.5 mg aRNA was
hybridized to Illumina HumanWG-6 version 2 or version 3
chips (Illumina, San Diego, CA) and expression detected on the
Illumina� BeadArrayTM 500GX Reader. Illumina GenomeStu-
dio software (version 2010.3) was used for preliminary data
analysis with standard background normalization.

Statistical analysis

Analysis of epigenome-wide association of BMI%
The quantitative genetic analyses program SOLAR was used to
analyze DNA methylation differences associated with BMI%
phenotypes in the whole cohort. SOLAR is a software package
designed to perform tests of genetic and epigenetic association
in family data.38 BMI% and methylation measures were nor-
malized by inverse-Gaussian (rank-normal) transformation.
BMI% was residualized by the covariates sex, age, age2̂ and their
interactions. Analyses were performed for each CpG site sepa-
rately, where the phenotype was modeled as a linear function
of methylation with models that included the random effect of
kinship. Bonferroni correction for multiple testing, PaD0.05 D
1.31 £ 10¡7.

After finding the 3 CpG loci that are Bonferroni significant
with BMI%, further associations were done on these 3 loci with
other MetS phenotypes. These phenotypes include TG,
HOMA-IR, WHR, HDL-c, FG, WHtR, LDL-c, SUBQ, VF, and
MetS itself.

Gene expression analysis
Microarray data were available in 2 batches, one based on Ver-
sion 2 arrays (48,701 probes, 307 samples) and the other on
Version 3 (48,803 probes, 230 samples). To guard against possi-
ble batch effects and probe differences, each batch was analyzed
separately: The number of probe transcripts detectable at
P�0.05 by BeadStudio software was counted, a false discovery
rate (FDR) was computed across all probes, and transcripts
detectable at 5% FDR were retained. Expression levels were

log2 transformed and inverse-quartile normalized. Trans-
formed and normalized expression levels for probes that
mapped to the 1-LOD QTL regions were tested for association
with phenotypes of interest in models that included the random
effect of kinship. Gene-centric P-values were calculated by
combining independent P-values from the 2 microarray
batches and multiple probes using Stouffer’s weighted Z-score
method43 implemented in R.

Analysis of expression at SOCS3 transcript with cg18181703
Analyses were performed for methylation of cg18181703 in
which the expression of SOCS3 was modeled as a linear func-
tion of methylation with models that included the random
effect of kinship.

Discussion

The development of obesity and associated diseases such as
T2DM and MetS is the result of gene-environment interactions
that are partly mediated by epigenetic mechanisms, including
DNA methylation. We have conducted a family-based PBMC
epigenome-wide association study of body fatness (defined by
BMI%) and MetS, using subjects of Northern European ances-
try. In this study, we identified 3 loci whose methylation status
is significantly associated with obesity in our cohort, i.e.,
cg18181703, located in the body of SOCS3, cg04502490, located
in the 30UTR of ZNF771, and cg02988947, located in TSS1500
of the LIMD2 gene. All three loci are also associated with other
MetS phenotypes, with SOCS3 being associated with WHtR
HOMA-IR, FPG, HDL-c, TG, as well as with MetS (as defined
by ATPIII criteria).

Of these 3 genes, zinc finger protein 771 (ZNF771) and LIM
domain containing 2 (LIMD2) have not been previously identi-
fied as obesity- or MetS-related genes. ZNF771 encodes a tran-
scription regulator protein that is highly expressed in adipose
tissue44 and very little is known about the function of this gene,
but the fact that it is highly expressed in adipocytes makes it a
plausible candidate that requires further investigation. LIMD2 is
a gene that is expressed in multiple tissues including immune
cells, ovaries, liver, and pancreas.45 Little is known about its nor-
mal function in human biology, but similar and related proteins
play important roles in transducing signals from the cytoskeleton
to the genome and in cell motility and cell adhesion.46 LIMD2
itself has been found to be overexpressed in metastatic tumors48

and may play a role in the spread of tumor cells. While there are
no prior reports about a possible role in obesity or MetS, given its
expression inmultiple immunological cells as well as the liver and
pancreas, a role is certainly physiologically plausible.

CpG site cg18181703, located in the body of suppressor of cyto-
kine signaling 3 (SOCS3), was our most significantly associated
locus in the discovery cohort and this finding was replicated in our
larger validation cohort. While this site was the most statistically
significant, 4 other CpG sites in the same CpG island were also
nominally significant (data not shown) and consistent with the
finding in cg18181703, all 4 sites the methylation status was nega-
tively correlated with obesity. The suppressor of cytokine signaling
(SOCS) genes are a family of genes that negatively regulate these
cytokine signaling pathways and the SOCS3 gene is the most stud-
ied member of this group. It encodes a protein that suppresses
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cytokine signaling by interacting with protein kinases including
janus kinase 2 (JAK2). 47,48 Cytokine signaling is critical to multiple
important cellular processes, including cellular growth, metabolism
and apoptosis; proliferation and complete loss of the SOCS3 gene is
embryonically lethal in mice. In the context of obesity and meta-
bolic syndrome, SOCS3 is involved in regulating the activity ofmul-
tiple important cytokines, including insulin, leptin, growth
hormone, IL-6, prolactin, and interferons. Knockdown and knock-
out experiments indicate that IL-6 and leptin signaling in particular
are strongly affected by alterations in SOCS3 activity.49

Leptin signals the status of body fat stores and plays an impor-
tant role in the regulation of body weight via its actions on central
nuclei that control food intake and energy expenditure.50,51 In
addition to its crucial role in the central regulation of body weight
and adiposity, leptin also plays a role in insulin resistance, b cell
function,52 immune responses,53 and pubertal development,54 all
of which are important in the development of MetS and
T2DM.55,56 Leptin signals via LEPR-B, a cell surface receptor asso-
ciated with JAK2, which in turn is negatively regulated by SOCS3.
Suppression of SOCS3 activity leads to an increase in the effi-
ciency of signaling via the insulin and leptin receptors (increased
insulin and leptin sensitivity), making this gene an attractive can-
didate gene for obesity and insulin resistance related traits.

Evidence that SOCS3 may be involved in the development of
obesity and MetS has been seen in several previous studies. For
example, it has been reported that changes in the methylation
of SOCS3 in the murine brain alter the risk of developing MetS
phenotypes in mice that are equally obese but differ in the
methylation of this gene.57 Increased methylation leads to
decreased gene expression, which increases the response of crit-
ical hypothalamic nuclei to the action of leptin and protects
these mice against the development of MetS. A previous study
also showed that neuron-specific knockout of SOCS3 in the
murine brain leads to increased leptin sensitivity and makes
these mice resistant to obesity and MetS traits.58 Decreased
SOCS3 expression specifically in pro-opiomelanocortin neu-
rons also improves leptin and insulin sensitivity and protects
against diet-induced obesity.59 The role of SOCS3 in IL-6 sig-
naling may also be important in the development of MetS traits
as IL-6 and other inflammatory cytokines are also known to
play an important role in the development of MetS.60,61 SOCS3
has also been found to be associated with lipid levels and insu-
lin resistance in human GWAS and candidate gene studies.62,63

And two recent EWAS, conducted in Indian, Arab, and Cauca-
sian populations, have found that SOCS3 methylation is associ-
ated with BMI and T2DM, respectively.64,65

Our study provides strong evidence for a role of SOCS3 in
obesity and MetS and suggests a molecular mechanism for its
effects. As can be seen in our results, methylation of SOCS3 was
inversely correlated with gene expression and with the presence
of obesity and several MetS traits. This suggests that decreasing
methylation of CpG sites in SOCS3 leads to increased gene
expression that suppresses cytokine signaling, inducing insulin
and leptin resistance. Further physiologic and mechanistic
studies, possibly in cell culture and animal models, should help
to elucidate these signaling pathways in greater detail.

While our study examined the DNA methylation levels in
PBMCs, there are several studies showing that the levels of
DNA methylation in PBMCs tend to be broadly correlated

with levels in other target tissues. This may particularly be the
case in situations of long-term environmental exposures as well
as in the case of global stresses (like the alterations seen in
intrauterine growth restriction and long term exposures to
unhealthy diets and environmental toxins). Thus, while fine
scale alterations in DNA methylation are likely to be very dif-
ferent in different target tissues and to be responsive to short-
term alterations in internal physiology and external exposures,
the study of DNA methylation in PBMCs cells can still reflect
important long-term relationships between DNA methylation
and chronic diseases like obesity and MetS.

In summary, our results demonstrate that in a population of
Northern European origin, DNA methylation of the SOCS3
gene in PBMCs is significantly associated with obesity and
MetS. We also found that, in PBMCs, SOCS3 methylation was
associated with decreased gene expression, providing evidence
for a plausible mechanism of its role in obesity and MetS. Com-
bined with future mechanistic studies, our findings may lead to
innovative ways of early detection and diagnosis of people with
risk of developing MetS and may lead to the identification of
new molecular targets for reversing this process.
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