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Canonical free-energy barrier of particle
and polymer cluster formation
Johannes Zierenberg1, Philipp Schierz1 & Wolfhard Janke1

A common approach to study nucleation rates is the estimation of free-energy barriers. This

usually requires knowledge about the shape of the forming droplet, a task that becomes

notoriously difficult in macromolecular setups starting with a proper definition of the cluster

boundary. Here we demonstrate a shape-free determination of the free energy for

temperature-driven cluster formation in particle as well as polymer systems. Combined with

rigorous results on equilibrium droplet formation, this allows for a well-defined finite-size

scaling analysis of the effective interfacial free energy at a fixed density. We first verify the

theoretical predictions for the formation of a liquid droplet in a supersaturated particle gas by

generalized-ensemble Monte Carlo simulations of a Lennard-Jones system. Going one step

further, we then generalize this approach to cluster formation in a dilute polymer solution.

Our results suggest an analogy with particle condensation, when the macromolecules are

interpreted as extended particles.
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T
he formation of equilibrium droplets from a supersaturated
gas is a long-standing subject of interest, being an
essential phase transition in nature1–3. More importantly,

the underlying mechanism is relevant for a multitude of
nucleation-like processes from statistical mechanics to material
science. These include crystallization in colloidal suspensions4,5

and cluster formation in protein solutions5,6, as well as domain
formation in so-called phase-change materials7–9 and glassy
solids10. It is even connected to field theory11 and nuclear
reactions12. The formal framework of free-energy calculations is
straightforward, for example, in terms of reaction coordinates in
phase space, but the application in computer simulations is
diverse with an ongoing demand for further methodological
developments13. A seminal application was the parameter-free
estimate of crystal nucleation rates from equilibrium free-energy
barriers4. It seems natural that the estimation of nucleation
barriers becomes increasingly difficult when considering more
complex systems, such as polymer or protein solutions5.

The rate of nucleation R is related by classical nucleation
theory1,3 to the free-energy cost bDF of a nucleus on top of the
nucleation barrier:

R¼ke�bDF ; ð1Þ

with the inverse temperature b¼ 1/kBT and the Boltzmann
constant kB. The kinetic prefactor k includes the kinetic details of
the nucleation process, such as diffusion and nucleus-attachment
rates. The free-energy barrier may be related to the suppression in
the equilibrium probability distribution. Physically relevant
barriers for liquid-vapour condensation are supposed to be in
the range of 20kBT to 100kBT (see, for example, ref. 14). The
typical setup for the study of free-energy barriers is at fixed
temperature by variation of the density or degree of super-
saturation or directly in the grand canonical ensemble. The
barrier is then associated with the suppression in the droplet-size
probability distribution4 and is clearly temperature depen-
dent15,16. This usually requires estimating the droplet size and
interface, a task that introduces systematic uncertainties and
strongly depends on the droplet definition. Instead, the free-
energy barrier may be directly related to the volume of the critical
nucleus and the pressure difference17, exploiting a thorough
understanding of the underlying phenomenon in a clever way. In
this context, the problem can be reduced to conformational phase
space, knowing that canonical expectation values typically do not
depend on the kinetic energy.

In the following, we address the question of how to easily
obtain dependable results on nucleation barriers without invoking
elaborate thermodynamic reasoning or estimating nucleus shapes.
This opens the door to more complex systems with nucleation-
like mechanisms such as self-assembly and aggregation, where the
nucleus shapes are a priori unknown. Importantly, we consider a
setup at fixed density with varying temperature—an intuitive
approach from a condensed matter perspective. We focus on
aggregation of polymers in a dilute setup18–20 guided by
the canonical case of droplet formation in a particle gas.
For the canonical case, we analyse a two-dimensional free-
energy landscape and identify the energy as a suitable reaction
coordinate. This allows us to formulate the problem in the
microcanonical ensemble of either fixed total energy E or fixed
potential energy Ep. The first is the usual textbook definition,
while the latter has been frequently applied in recent computer
simulation studies. This enables us to directly discuss the effect of
kinetic energy when changing between the two formulations
E2Ep. If kinetic energy matters, only the first one allows a direct
physical interpretation.

Results
Droplet formation free-energy barrier. We begin with the para-
digm of nucleation and dissolution, the equilibrium droplet
formation in a supersaturated particle gas21–29. The first-order
condensation–evaporation transition separates a homogeneous
gas phase from an inhomogeneous phase, where a single
macroscopic droplet of size ND is in equilibrium with the
remaining vapour21–26. In fact, the probability for intermediate-
sized droplets was shown to vanish23,24. In the vicinity of the
transition, the energy-dominated inhomogeneous condensed
phase coexists with the entropy-dominated homogeneous gas
phase. A transition between both phases may only occur by
energy variation upon nucleation or dissolution. In reality, this
of course refers to the total energy E. For systems where
the momentum phase space may be integrated out explicitly
(see Methods section), the problem simplifies in terms of
computability. We hence begin with an illustration in the
potential energy formulation (denoted by a hat, for example, F̂)
as a direct result of computer simulations before we go over to
comparing both energy approaches.

Figure 1a shows the free-energy landscape bF̂ Ep;ND
� �

of
droplet condensation–evaporation of Lennard-Jones particles
(see Methods section) at the finite-size transition temperature.
We define bF̂ Ep;ND

� �
¼� ln O Ep;ND

� �
e�bEp

� �
, where O(Ep, ND)

is a generalization of the (conformational) density of states to the
two-dimensional Ep–ND reaction coordinate space. For Ep fixed,
bF̂ Ep;ND
� �

resembles a parabola with a single local minimum.
The resulting transition path is shown as a black line and its
relative maximum along this path (around E0

p) is an estimate of
the transition free-energy barrier. Instead, however, one may
consider the projection along the droplet size4 or equivalently
along the energy, connected to the corresponding probability
distributions bF̂ðNDÞ¼� ln P̂bðNDÞ and bF̂ðEpÞ¼� ln P̂bðEpÞ.

We follow the latter approach and derive the free-energy
barrier from the suppression of transition states in the canonical
energy probability distributions (see Methods section) for both
reaction coordinates E and Ep. The probability distributions are
shown in Fig. 1b,d and are clearly asymmetric, with a narrow
peak for the gas phase and a broad peak for the droplet phase.
Methodologically, both ensembles are analogous so that we limit
in the following the notation to the case of total energy E. At the
equal-height inverse temperature beqh, Pbeqh

(E) has two peaks at
E± of equal height and in between a minimum at E0. The
resulting free-energy barrier is bDF¼ ln(Pbeqh

(E±)/Pbeqh
(E0)).

Equivalently, one may perform the analysis entirely in the
microcanonical frame30 and consider the enclosed area by the
microcanonical inverse temperature b(E) and the canonical
inverse temperature (see Methods section)

bDF¼
Z E�

E0
dE b Eð Þ�b½ �; ð2Þ

shown in Fig. 1c,e. Demanding areas of equal size yields the
equal-area inverse temperature beqa, which is in fact identical to
beqh (ref. 31).

We notice that the energy probability distributions Pb(E) and
P̂b Ep
� �

are related by a convolution involving the Maxwell–
Boltzmann distribution PMB(x) as PbðEÞ¼ P̂b�PMB

� �
(E) (see

Methods section). This in turn corresponds to a physical
smoothing, which diminishes the ratio between maxima and
minimum. As a consequence, we expect a lower barrier in the
total energy formulation due to the kinetic contribution.

Finite-size scaling of free-energy barrier. In the following, we
discuss the free-energy barrier of droplet formation in a particle
gas and a dilute polymer solution as a function of system size. We
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here extend the notion of droplet formation to the formation of
clusters or aggregates in polymeric systems. In particular, we
consider linear bead-spring polymers (see Methods section), each
consisting of 13 monomers. The resulting polymer cluster or
aggregate is coexisting with a polymer ‘gas’, see Fig. 2, a first sign
for the analogy to particle droplet formation.

The free-energy barrier is commonly assumed to be propor-
tional to the occurring interface. Here the surface of the droplet
@VD separates the liquid droplet from the surrounding gas and
consequently we expect bDF¼ s@VD, with the interface tension
s. For any non-fractal shape, the surface area is related to the
droplet volume VD as @VDpV2=3

D . Since nucleation shows no
sign of critical behaviour, this is a physically valid assumption.
However, at the condensation–evaporation transition VD itself
does not scale trivially with system size V. At a fixed temperature,
general arguments exploiting the equivalence to the Ising model
imply that droplet formation is triggered by insertion of particles
until a single macroscopic droplet of size VDpV3/4 coexists with
the surrounding vapour23–26. This result may be translated to a
fixed-density setup using Taylor expansions, where directly at the
finite-size transition temperature the analogue scaling VDpN3/4

was verified for both lattice and off-lattice particle models29.
Putting everything together and introducing an effective

interfacial free energy teff then yields to leading order
bDFpteffN1/2. It is common for the study of interface tensions
to consider logarithmic corrections32–35, dating back to early field
theoretic results11. The physical origin are translational
invariance as well as capillary waves at the interface. Altogether
we use for our final scaling ansatz

bDF¼teff N1=2� a ln N þ c; ð3Þ

where a and c are constants. This is the leading-order exponent in
equation (1). Neglecting the prefactor k for now, we obtain from
equation (3) to leading order the rate of equilibrium droplet
formation as RpNae� teff N1=2

. Thus for increasing system size the
probability that a single macroscopic droplet forms decreases
exponentially.

Figure 3a shows the free-energy barrier for droplet formation
in a particle gas as a function of system size for both reaction
coordinates E and Ep, obtained via equation (2). Both estimates
yield barriers up to about 42kBT, showing at close sight an almost
constant shift. Only the total energy E includes the kinetic
contribution, which is here reflected in a smaller barrier, whereas
the interfacial free energies are expected to be identical, teff¼t̂eff .
In fact, fits to equation (3) yield teff¼ 0.939(4) and t̂eff¼0:935ð4Þ,
each for NZNmin¼ 320 with goodness-of-fit parameter QE0.3,
for reaction coordinate E and Ep, respectively. This remains
consistent within error bars under variation of NminA[224, 1,280].
The accordance of data and fit is demonstrated in the inset. In
order to test the significance of the logarithmic corrections, we

Figure 2 | Polymer aggregate in a dilute solution. Illustration of a cluster

or aggregate of polymers in a dilute solution (N¼64 bead-spring polymers

with 13 monomers each; monomer density r¼ 10� 2). The snapshot stems

from the droplet phase (EpEE�p ).
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Figure 1 | Free-energy barrier of droplet formation. (a) Illustration of the free-energy landscape bF̂ðEp;NDÞ (colour map) as a function of potential energy

Ep and droplet size ND for N¼ 512 Lennard-Jones particles. The minimal free-energy path (black solid line) connects a droplet (EpEE�p ) and a gaseous

(EpEEþp ) phase, visualized by the snapshots at E�p . (b) The projection onto the reaction coordinate Ep yields the canonical potential energy probability

distribution P̂bðEpÞ, where the free-energy barrier bDF̂ is encoded in the ratio between maximum and minimum at b̂eqh. (c) Equivalently, bDF̂ is the (equal)

area size enclosed between the microcanonical inverse temperature b̂ðEpÞ and the accordingly defined transition temperature b̂eqa, where

b̂eqa¼b̂eqh¼1:72099ð3Þ. The analogous quantities are re-evaluated as a function of total energy E in panels (d,e) with beqa¼beqh¼ 1.71999(3).
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considered in addition a restricted fit to bDF¼ teffN1/2þ c. We
obtain teff¼ 0.973(2) and t̂eff¼0:977ð2Þ for Nmin¼ 768 with
QE0.2 and QE0.1, respectively. However, the estimate of teff

gradually decreases with increasing Nmin. Thus the most probable
scenario remain small logarithmic corrections competing with a
constant shift. The leading scaling behaviour was also observed in
ref. 17 directly as a linear function of the droplet surface. The
advantage of the present approach is that it avoids difficulties
and uncertainties coming from the ‘correct’ identification of the
cluster surface.

For the cluster formation in a dilute polymer solution shown in
Fig. 3b, the situation remains qualitatively similar. Fits to
equation (3) yield teff¼ 1.06(3) and t̂eff¼1:03ð3Þ, each for
Nmin¼ 16 with QE0.2, for reaction coordinate E and Ep,
respectively. Note that this is on the same scale as for droplet
formation of particles in Fig. 3a. Compared with the particle case,
the system sizes are, however, much smaller, making quantitative
predictions for the polymer case less reliable. Still, the overall
behaviour supports the hypothesis that cluster formation in a
dilute polymer solution shows a strong analogy to droplet
formation in a particle gas.

We observe that considering the kinetic contribution results in
a shifted barrier. For the considered examples and relevant system
sizes, the shift is about bDF̂�bDF � 0:5 . . . 1, that is, of the
order Oð1Þ. This additive contribution, while much smaller than
the leading behaviour, leads to a multiplicative relation between
the nucleation rates Rpe� bDFEe�ðbDF̂� 1Þ � 3e�bDF̂

p3R̂.
Neglecting the momentum phase space thus underestimates the
rates. In common situations, however, the deviations between
experiment and simulations are of the order of several

magnitudes, such that the effect of the kinetic contribution may
be considered subleading.

Finite-size scaling of transition temperature. The evaluation of
the free-energy barrier via equal areas provides us with a defi-
nition of the finite-size transition temperature. At fixed density,
we showed for the condensation–evaporation transition29 that the
transition temperature, obtained from specific-heat peaks, scales
as inverse power of the critical droplet radius RDpV1=3

D pN1/4.
The same is expected for all other transition temperature
definitions. Figure 4 shows the equal-area definition together
with a fit including higher-order corrections of the form

beqaðNÞ¼b0þ aN � 1=4þ bN � 1=2þ cN � 3=4; ð4Þ

for cluster formation in both particle gas and polymer solution. In
the case of particle condensation, least-square fits for Nmin¼ 192
yield b0¼ 1.436(2) and b̂0¼1:436ð2Þ each with QE0.5, for
reaction coordinate E and Ep, respectively. The excellent fit results
show that the empirical, yet physically motivated, higher-order
corrections describe the finite-size scaling very well. In addition,
the strong finite-size deviations open a possibility to study finite-
size scaling in experiments on the nanoscale (for a conversion, see
Methods section). The finite-size transition temperature of
the largest system (N¼ 2,048) is beqa� 1:61948ð2Þ, which still
deviates from the thermodynamic limit by O(10%).

It is worth noting that typical canonical finite-size transition
temperatures, for example, the peak location of the specific heat,
do not depend on the kinetic contribution to the partition
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function. In the canonical expectation values, the kinetic prefactor
simply cancels. Here, however, we observe a finite-size difference
in the transition temperature depending on whether we consider
the kinetic contribution or not. Of course, the thermodynamic
limit coincides. This is illustrated in the inset of Fig. 4a with a
finite-size scaling of the transition temperature difference
b̂eqaðNÞ�beqaðNÞ. It shows a prominent power law scaling of
the form �N � 3=4, which interestingly is the same scaling as the
inverse transition droplet volume. The finite-size difference arises
from the convolution of an asymmetric energy probability
distribution with the Maxwell–Boltzmann distribution, compare
Fig. 1 and equation (8) in Methods section, which manifests in
the geometric differences of the microcanonical inverse tempera-
ture and the enclosed areas in equation (2). It appears that
correlations between the ensemble definitions account for
compatible leading-order scaling corrections in equation (4),
which further supports this ansatz and explains the observed
difference.

For polymer aggregation in Fig. 4b, fits of equation (4)
yield b0¼ 0.64(2) and b̂0¼0:64ð2Þ for Nmin¼ 14 (guided by
the inset) each with QE0.8, for reaction coordinate E and Ep,
respectively. Qualitatively, the fit ansatz describes the data already
well when including the smallest system sizes. Also the finite-size
ensemble deviation in the inset shows a clear N� 3/4 trend for
NZ14. Again, this is an indication for the analogy between
cluster formation in polymer solutions and droplet formation in a
particle gas.

Discussion
We have presented a shape-free approach to the estimation of
canonical free-energy barriers in equilibrium droplet formation.
The finite-size scaling is dominated by the predicted N1/2

behaviour but we identified additional logarithmic corrections
from precise numerical estimates. Somewhat surprisingly, the
absolute free-energy barrier is sensitive to the consideration of the
kinetic contribution. It is well known that the restriction to the
conformational phase space does not influence finite-size
transition points determined from canonical expectation values.
These are evaluated on the level of the canonical partition
function. The free-energy barrier and the associated equal-height
or equal-area transition temperature, however, are determined
from the energy probability distribution. Here the two formula-
tions are related by a convolution with the Maxwell–Boltzmann
distribution, which explains the finite-size differences. At the
same time, the probability distributions are the integrands of the
respective partition functions. In the end, this boils down to the
trivial fact that equality of integrals does not imply equality of the
integrands. This may become relevant once theoretical predic-
tions and experimental measurements become precise enough.
Still, a restriction to the conformational phase space retains
intensive parameters in the thermodynamic limit. As a numerical
advantage, considering the total energy as reaction coordinate
leads to less fluctuations in the microcanonical partition function
and canonical probability distribution, since the underlying
convolution is a smoothing procedure of physical origin.

We provided evidence that the derived finite-size scaling of
canonical droplet formation is applicable to cluster formation in
dilute polymer solutions as well, despite the a priori non-trivial
shape of the polymer cluster. This is a clear indication of an
analogy between particle condensation and polymer aggregation.
In particular, we showed that polymer clusters are in equilibrium
with non-attached (free) polymers: an inhomogeneous or mixed
phase of aggregate and solute polymers. This is intuitively clear
when the polymers are interpreted as extended particles. The
leading-order corrections then follow from the interplay between

energy minimization by forming a local cluster and entropy
maximization by retaining freely movable constituents. Of course,
additional corrections should follow from the explicit geometry
and internal behaviour of the constituents.

It is expected that the energy remains a suitable reaction
coordinate for general nucleation-like mechanisms. In this case,
generalized ensemble methods may unfold their full power.
Moreover, our approach at fixed density provides the possibility
for experiments to perform heating–cooling studies in order to
probe transition rates. The presented results for polymer
aggregation suggest that this approach may be generalized to
studies of protein cluster formation6. In a wider scope, it may
also find potential application for temperature-driven self-
assembly36,37, crystallization in phase-change materials7–9 and
glassy solids10, dislocation nucleation38 or the study of surface
nanobubbles and nanodroplets39. Of course, experimental
observations commonly include the formation of multiple clus-
ters. Reasons for this include heterogeneities or impurities acting
as nucleation seeds. We suppose that this leads to a local quasi-
equilibrium on the respective length scales. Here a proper
combination of the canonical droplet formation with the effect of
nucleation seeds40 seems to be a fruitful approach to a systematic
understanding. With further developments, simulations may
provide reliable estimates for finite-size systems and meet
experiments on the nanometer scale.

Methods
Microcanonical ensembles. Recently, there has been some ambiguity with the
definition of a ‘microcanonical ensemble’ in computer simulations41. This is a
crucial aspect relevant for physical interpretations that appears to be unwittingly
softened in the past decade. The microcanonical ensemble (NVE) describes an
isolated system in which the number of constituents N, the volume V and the total
energy E are conserved. Here the transfer of potential energy Ep into kinetic energy
Ek and vice versa is a valid and relevant mechanism, where E¼Ekþ Ep. The
microcanonical (Boltzmann) entropy is defined as S(E)¼ kB ln G(E), with the
partition function GðEÞ¼

RR
DxDp d E� EpðxÞþ EkðpÞ

� �� �
, where Dx denotes

the integration over state space and Dp over momentum space.
The other common definition is the conformational microcanonical

ensemble (NVEp), describing instead a system with fixed potential energy Ep.
The conformational microcanonical entropy is Ŝ Ep

� �
¼kB lnO Ep

� �
, where

O Ep
� �
¼
R
Dx d Ep� EpðxÞ

� �
is the density of states or the conformational

microcanonical partition function. The consequences are drastic: a (physical)
interpretation of energy transfer from potential to kinetic energy is no longer valid.
This is natural for spin systems, where a kinetic contribution is not defined in the
first place (but may be exploited for numerical purposes42). On the contrary, it is
particularly relevant for situations in soft condensed matter, for example, for
particles and polymers, where interpretations of energy transfer become natural.
However, there are good reasons for this choice: O(Ep) is a fundamental property of
statistical mechanics. It encodes the full information about the conformational
space and allows for identification of (structural) phase transitions30,31,43,44.
Furthermore, it may be exploited for reweighting techniques and flat-histogram
Monte Carlo methods18,45,46.

The relation between G(E) and O(Ep) is given by a convolution with the kinetic
energy contribution (see, for example, ref. 47): If momenta and positions are
independent, one may separate the kinetic energy contribution Ek¼

P
i

p2
i =2m,

explicitly perform the momentum integration and obtain for N particles in three
dimensions48

GðEÞ¼ ð2pmÞ
3N
2

G 3N
2

� �
Z 1
�1

dEpO Ep
� �

E� Ep
� �3N � 2

2 Y E� Ep
� �

; ð5Þ

where G(3N
2 ) is the Gamma function. We define O(Ep)¼ 0 8 EpoEp,min in order to

extend the integral over the full energy range (�N, N). In this way, the total
energy surface entropy S(E) appears as a (weighted) potential energy volume
entropy. Notice that, since all O(Ep)Z0, the classical NVE entropy increases with E
and the microcanonical inverse temperature kBb(E)¼ @S(E)/@E cannot become
negative, opposed to its conformational counterpart kBb̂ Ep

� �
¼ @Ŝ Ep

� �
=@Ep. This

may be an interesting aspect for a recent debate on the correct definition of entropy
when connected with the phenomenological thermodynamic entropy, for example,
in refs 49–51 and references therein.

Numerically, we determine the microcanonical inverse temperatures as follows.
In the conformational microcanonical ensemble, we have direct access to an
estimate of ln O(Ep) (see below) such that b̂(Ep) is obtained by a numerical
five-point derivative. In the full microcanonical ensemble, we may estimate the
inverse temperature in terms of microcanonical expectation values for N
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independent particles

Oh iE¼
R

dEp O Ep
� �

O Ep
� �

E�Ep
� �3N� 2

2 Y E�Ep
� �

R
dEp O Ep

� �
E�Ep
� �3N� 2

2 Y E�Ep
� � ; ð6Þ

where the explicit prefactor in equation (5) cancels. Then we may express
b Eð Þ¼@ lnG Eð Þ=@E¼ 3N � 2

2 h 1
E�Ep
iE .

Canonical ensembles. The canonical ensemble is defined in terms of the partition
function Zb ¼

R R
DxDp e� bE , where each phase-space point is weighted with the

Boltzmann factor according to the total energy. Again, the kinetic part may be
explicitly integrated for generic systems. Each degree of freedom contributes with a
Gaussian integral, and one obtains for N particles,

Zb¼ 2pm=bð Þ3N=2Ẑb; ð7Þ

where Ẑb¼
R
Dx e� bEp is the partition function of the conformational canonical

ensemble. Both partition functions may be expressed as integrals in terms of the
respective energies, namely, Zb¼

R
dE GðEÞe�bE and Ẑb¼

R
dEp O Ep

� �
e�bEp .

The corresponding canonical energy probability distributions are defined as
Pb(E)¼G(E)e� bE/Zb and P̂b Ep

� �
¼O Ep
� �

e�bEp=Ẑb .
We may now relate the two energy probability distributions by starting with the

definition of Pb(E) and inserting equations 5 and 7:

PbðEÞ¼
Z 1
�1

dEpP̂b Ep
� � b

3N
2

G 3N
2

� � E� Ep
� �3N � 2

2 e�b E� Epð ÞY E�Ep
� �

: ð8Þ

We identify the latter part of the integrand as the N-particle Maxwell–Boltzmann
distribution PMB(x) and may write equation (8) as a convolution
PbðEÞ¼ P̂b�PMB

� �
ðEÞ.

Lennard-Jones particles. We consider a system of Lennard-Jones particles in a
dimensionless periodic box of length L with fixed density r¼N/L3¼ 10� 2. Mutual
avoidance and short-range attraction are modelled by the 12–6 Lennard-Jones
potential VLJ rð Þ¼ 4E s=rð Þ12 � s=rð Þ6

� �
with E¼ 1 and s¼ 2� 1/6 such that

rmin¼ 1. For computational efficiency, the potential is cutoff at rc¼ 2.5s and
shifted by �VLJ(rc). System sizes range up to N¼ 2,048, which is competitive with
state-of-the-art Molecular Dynamics simulations such as well-tempered metady-
namics52. For the chosen density r¼ 10� 2, a system with 2,048 particles requires a
box of linear dimension L0E59 r0min ¼ 59� 21/6 s0 . For argon, s0E3.4 Å such that
L0E22.5 nm is on the nanoscale. Of course, for a comparison to an experimental
setup one should include both the explicit geometric constraints and the full
Lennard-Jones potential.

Bead-spring polymers. The considered dilute polymer solution is modelled by
N linear bead-spring polymers, consisting of 13 monomers each, again in a
dimensionless periodic box with monomer density r¼ 13N/L3¼ 10� 2. Bonds are
modelled between neighbouring monomers by the FENE potential VFENE(r)¼
� (KR2/2)ln[1� (r� r0)2/R2] with K¼ 40, R¼ 0.3 and r0¼ 0.7. Non-bonded
monomers interact with the same Lennard-Jones potential as above but with
s¼ r0 2� 1/6 such that rmin¼ r0

18–20. The total number of monomers is 13N, which
yields 3� 13N total momentum degrees of freedom in equation (5) and successive
relations. The bounded bond length [r0�R, r0þR] from the FENE potential
formally introduces constraints on these degrees of freedom. However, for practical
applications in ordinary temperature ranges this effect is negligible and reweighting
to the full microcanonical and canonical ensemble is feasible41.

Multicanonical Monte Carlo simulations. Parallel multicanonical Monte Carlo
simulations53–58 allow us to efficiently sample the suppressed states, by iteratively
adapting an auxiliary weight function W(Ep) to yield a flat histogram H(Ep). The
final weight function is related to the density of states up to a multiplicative factor:
O(Ep)pH(Ep)/W(Ep). This gives direct access to microcanonical estimates and
canonical expectation values at any temperature. Using equation (5), this even
provides an estimate of G(E). Monte Carlo updates for the particle case include
short- and long-range particle displacements. For updates of the polymer
configurations, we employed local single-monomer shifts, bond-rotation and
double-bridging moves, as well as long-range polymer displacements We measure
the conformational (potential) energy Ep and the number of particles in the largest
cluster ND as in ref. 29. Error bars are obtained by the Jackknife method59,60.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request. The computer code required to
generate the data as well as the analysis scripts that lead to our conclusions are
available from the corresponding author upon reasonable request.
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