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Abstract

Emerging single-cell technologies profile multiple types of molecules within individual
cells. A fundamental step in the analysis of the produced high-dimensional data is their
visualization using dimensionality reduction techniques such as t-SNE and UMAP. We
introduce j-SNE and j-UMAP as their natural generalizations to the joint visualization of
multimodal omics data. Our approach automatically learns the relative contribution of
each modality to a concise representation of cellular identity that promotes
discriminative features but suppresses noise. On eight datasets, j-SNE and j-UMAP
produce unified embeddings that better agree with known cell types and that
harmonize RNA and protein velocity landscapes.
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Background

Single-cell RNA sequencing has enabled gene expression profiling at single-cell resolution
and provided novel opportunities to study cellular heterogeneity, cellular differentiation
and development. Emerging single-cell technologies assay multiple modalities such as
transcriptome, genome, epigenome, and proteome at the same time [1-3]. The joint
analysis of multiple modalities has allowed to resolve subpopulations of cells at higher
resolution [4, 5], has helped to infer the “acceleration” of RNA dynamics [6] and to extend
time periods over which cell states can be predicted [7], and has linked dynamic changes
in chromatin accessibiliy to transcription during cell-fate determination [8]. A funda-
mental step in the analysis of high-dimensional single-cell data is their visualization in
two dimensions. Arguably the most widely used nonlinear dimensionality reduction tech-
niques are t-distributed stochastic neighbor embedding (t-SNE) [9] and uniform manifold
approximation and projection (UMAP) [10]. Currently, these techniques are applied to
each modality one at a time [1, 8, 11], and separate views of the data need to be reconciled
by manual inspection. Here, we generalize t-SNE and UMARP to the joint visualization of
multimodal single-cell measurements. While t-SNE and UMAP seek a low-dimensional
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Fig. 1 Overview of the joint embedding in JVis. Metrics d (left) and d” (right) measure the dissimilarity of
different cellular phenotypes of individual cells, such as the expression of surface proteins (left) and mRNA
(right). t-SNE and UMAP learn a low-dimensional embedding of cells that preserves the distribution of
similarities that are quantified based on d or d” alone, which renders certain cell types indistinguishable to
either modality. In this example, blue and red cells cannot be distinguished based on their measured surface
proteins, and green and black cells overlap in transcriptomic space. In JVis we generalize t-SNE and UMAP to
learn a joint embedding that preserves similarities in all modalities at the same time. We integrate d and d’ in
a convex combination of KL divergences (j-SNE) or cross entropies (j-UMAP) between corresponding
similarities in low and high-dimensional space. An arrangement of cells that minimizes this convex
combination with simultaneously learned weights takes into account similarities and differences in both
mRNA and surface protein expression to more accurately represent cellular identity (middle)

embedding of cells that preserves similarities in the original (e.g., gene expression) space
as well as possible, we propose j-SNE and j-UMAP that simultaneously preserve similari-
ties across all modalities (Fig. 1). Through Python package JVis, they will allow to combine
different views of the data into a unified embedding that can help to uncover previously
hidden relationships among them. At the same time, our joint embedding schemes learn
the relative importance of each modality from the data to reveal a concise representation

of cellular identity.

Results and discussion

In j-SNE, we want to learn a joint embedding &£ of cells for each of which we have
measured multiple modalities. Analog to t-SNE [9], we want to arrange cells in low-
dimensional space such that similarities observed between points in high-dimensional
space are preserved, but in all modalities at the same time. Generalizing the objective
of t-SNE, we aim to minimize the convex combination of KL divergences of similari-
ties in the original high-dimensional (distribution P) and similarities in the embedding
low-dimensional space (distribution Q) for each modality k:

CE) =Y wKL (P(k) ||Q> +2 3 axlogay, (1)
k k

where coefficients « of the convex combination represent the importance of individual
modalities towards the final location of points in the embedding. We add a regular-
ization term (with regularization parameter 1) that prevents the joint embedding from
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being biased towards individual modalities. In j-UMAP, we generalize UMAP to mul-
timodal data analogously, minimizing a convex combination of cross entropies instead
of KL divergences. We jointly optimize the location of points in the embedding and the
importance coefficients « of modalities through an alternating optimization scheme: We
fix coefficients o and find the best point locations by gradient descent, and in turn find
optimal coefficients « for fixed locations by solving a convex optimization problem. Our
approach is described in detail in Additional file 1: Supplementary Methods.

As proof of concept, we first demonstrate the ability of JVis to integrate modalities with
different signal strengths. scRNA-seq, for example, often allows a finer mapping of cell
states than single-cell ATAC-seq [12]. We used JVis to compute a joint embedding of
accessible chromatin and gene expression measured simultaneously by SNARE-seq [11]
in 1047 single cells from cultured human cell lines BJ, H1, K562, and GM12878. Simi-
lar to the conventional t-SNE and UMAP embeddings of transcriptomes or chromatin
state alone, our joint j-SNE and j-UMAP embeddings clearly separate cells into four dis-
tinct clusters (Additional file 1: Fig. S1). Even when randomly shuffling gene expression
measurements between cell lines B] and H1 in a toy experiment, JVis employs chromatin
accessibility to disentangle mixed mRNA measurements and separate all four cell lines
(Fig. 2a—c and Additional file 1: Fig. S2).

To examine the effectiveness of the joint optimization scheme underlying JVis, we
devise a simulation study following a similar strategy as [13]. We used Splatter [14] to
simulate joint gene and ADT counts based on model parameters estimated from a real
CITE-seq data set [15] in which mRNA and surface protein (ADT) expression were mea-
sured in human peripheral blood mononuclear cells (PBMC). We added a third modality
that is obtained from gene expression measurements that are randomly shuffled between
a random subset of cells. We generated eight synthetic multimodal data sets that vary in
the relative abundance of (five) cell types, number of cells, and in the number of genes
(Additional file 1: Table S1). In contrast to its conventional counterparts, j-SNE and j-
UMAP learn weights for each modality from the data that reflect their relevance to the
final embedding. Additional file 1: Figs. S3 and S4 show that these weights distinguish
informative from noisy modalities. With an increasing amount of perturbation of the third
modality, i.e., an increasing number of cells with shuffled gene expression, JVis assigns a
lower weight to the corresponding modality. The rate of weight decrease (and the simulta-
neous increase mostly in ADT weight) is higher for data sets with a larger number of cells
and, as expected, depends on the regularization coefficient A. For X close to 0, weights
essentially include a single most informative modality (here ADT, see Additional file 1:
Table S2) (Additional file 1: Fig. S5 and Supplementary Methods). Higher penalties asso-
ciated with non-uniform weights result in a weaker adjustment of weights by the joint
optimization scheme. The absolute adjustment of weights associated with cross entropy
terms in j-UMARP is less pronounced than the adjustment of weights associated with KL
divergences in j-SNE. Finally, in Additional file 1: Fig. S6 we show that weights computed
by JVis are robust with respect the precise subset of cells sampled in an experiment.

We measure the positive effect the learned weights have on the accuracy of the final
embedding using the Silhouette score [16] that measures how well separated cell types
are in the embedding, and metric KNI that we introduce as the fraction of k-nearest
neighbors in the embedding that are of the same type, averaged over all cells. A high KNI
value indicates homogeneous neighborhoods of cell types, while a random mixing of cells
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Fig. 2 Comparison of cell types and protein acceleration in unimodal and multimodal embeddings. First row:
Visualization of perturbed SNARE-seq measurements. Accessible chromatin (ChrAcc) and gene expression
was measured simultaneously in single cell from human cell lines BJ, H1, K562, and GM12878. Gene
expression measurements were randomly shuffled between cell lines BJ and H1 (MixRNA). a Conventional
t-SNE embedding of cells based on shuffled gene expression alone. b j-SNE visualization of shuffled gene
expression and (unchanged) chromatin accessibility. € j-UMAP visualization of shuffled gene expression and
(unchanged) chromatin accessibility. Second row: t-SNE/j-SNE visualizations of CBM cells. Cluster labels were
identified by Specter. Embeddings were computed from RNA measurements alone (d), protein expression
(ADT) alone (e), or jointly from both (f). Third row: Protein acceleration in ECCITE-seq (ctrl) data set projected
into transcriptom-based t-SNE (g), and joint MRNA and surface protein based embeddings j-SNE (h), and
J-UMAP (i)

would cause low KNI values. We compared the performance of JVis to conventional t-SNE
and UMAP applied to the concatenation of modalities that were normalized by dividing
them by the Frobenius norm of the count matrix and to the embedding obtained when
assigning (fixed) uniform weights to each modality (¢; = 1/3 in (1)). Additional file 1:
Figs. S7-S10 demonstrate the benefit of borrowing information across modalities by the
joint optimization scheme implemented in JVis. Compared to the normalized concate-
nation and the (uniform) averaging approach, the distinction between meaningful and
noisy modalities in j-SNE and j-UMAP yields more accurate embeddings, across various
noise levels. For data sets containing 5000 cells the separation of cell types in the embed-
dings obtained with (fixed) uniform weights continuously decreased with increasing noise
levels. In contrast, the joint optimization scheme in j-SNE was able to retain a high accu-
racy on these data sets (Additional file 1: Figs. S7 and S9), especially for smaller penalties
assigned to non-uniform weights, i.e. small values of A. This is consistent with the sharper
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drop in the weight associated with the noise modality observed for data sets containing
5000 cells and small values of A (Additional file 1: Fig. S3). For j-UMAP, on the other
hand, computed weights were close to uniform (for A > 0.5) on data sets GpbmcN5k
and GpbmcN5kD1k (Additional file 1: Fig. S4) and thus yielded embeddings with simi-
lar accuracy as the uniform weighting scheme on these data sets (Additional file 1: Figs.
S8 and S10). The normalized concatenation approach works reasonably well on data sets
with 1000 cells and large number of genes (N1k), but its performance varies substan-
tially between different data sets and is even less accurate than its unnormalized version
on data sets with 5000 cells. On most data sets, concatenation-based approaches show a
sharp initial drop in accuracy for small levels of noise.

t-SNE and UMAP often produce embeddings that are in good agreement with known
cell types or cell types computed by unsupervised clustering [17, 18] of high-dimensional
molecular measurements such as mRNA expression. The simultaneous measurement of
multiple types of molecules such as RNA and protein can refine cell types and JVis seeks
to capture this refinement in their low-dimensional embedding. We compared unimodal
and multimodal embeddings of mRNA and surface protein (ADT) expression measured
in 4292 healthy human PBMCs [15] and in 8617 cord blood mononuclear cells (CBMC)
[2] using CITE-seq [2]. Cell type labels were inferred by methods Specter [4] or CiteFuse
[5], which have recently been introduced for the joint clustering of CITE-seq data.

Consistent with observations in [4, 5], t-SNE and UMARP visualizations of transcrip-
tomic data alone does not show a clear distinction of CD4+ T cells and CD8+ T cells in
the CBMC data set, while the embedding of protein expression mixes dendritic cells with
CD14+ cells (Fig. 2d—f, Additional file 1: Figs. S11, S12). In contrast, JVis makes use of
both modalities to compute a joint embedding that accurately separates CD4+ and CD8+
T cells as well as dendritic and CD14+ cells. Again, we confirm the visual interpreta-
tion quantitatively using the same metrics as above (Additional file 1: Table S2). The joint
embedding of mRNA and ADT by JVis yields substantially larger Silhouette scores than
the two unimodal t-SNE and UMAP emeddings.

Similarly, the joint embeddings of cells in the PBMC data set by JVis separate naive
and memory CD4+ T cell that are mixed in the ADT based t-SNE and UMAP embed-
dings as well as CD4+ and CD8+ T cells that are mixed in the mRNA based embeddings
(Additional file 1: Figs. S13, S14). Again, joint embeddings are more accurate in terms of
Silhouette scores than unimodal embeddings (Additional file 1: Table S2), even though
overall the additional information provided by RNA measurements is limited relative to
ADT counts on this data set.

RNA velocity [19] describes the rate of change of mRNA abundance estimated from the
ratio of mature and pre-mRNA. While RNA velocity points to the future state of a cell, the
recently introduced protein velocity [6] extends this concept and utilizes the joint mea-
surment of RNA and protein abundance to infer the past, present, and future state of a
cell. In [6], the authors used PCA and t-SNE to visualize RNA and protein velocity as well
as the resulting protein acceleration in six PBMC data sets that were generated using four
different technologies: CITE-seq, REAP-seq [20], ECCITE-seq [15] (data sets “CTCL’, a
cutaneous T cell lymphoma patient, and “ctrl’; a healthy control), and 10X Genomics (data
sets 1k and 10k). The authors observed strong velocity signals offered by the CITE-seq
and 10x Genomics technologies, while REAP-seq and ECCITE-seq yielded noisier accel-
eration landscapes. Both RNA and protein velocity, however, were projected into the same
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t-SNE embedding of transcriptomic measurements alone, rendering their interpretation
difficult. We therefore repeated the analysis of the six different data sets but projected
velocities into the joint embedding of both modalities computed by JVis. The noisy accel-
eration landscapes observed in [6] in the ECCITE-seq and REAP-seq data sets become
aligned across cell types in their joint embeddings by JVis (Fig. 2g—i and Additional file 1:
Figs. S15, S16). Consistent with the improved distinction of transcriptionally similar CD4
and CD8 T cells in the joint embeddings above, acceleration landscapes in all six data sets
are projected onto an embedding that more clearly separates CD4 and CD8 T cells com-
pared to the original ones proposed in [6] (Fig. 2g—i and Additional file 1: Figs. S15-S19).
RNA and protein velocities (without Bézier curve fitting for acceleration) for all six data
sets are shown in Additional file 1: Figs. $20-S25.

The noisy acceleration landscapes reported in [6] for the REAP-seq and ECCITE-seq
data sets might be a result of the larger number of measured surface proteins (44 and 49
antibodies versus 13 and 17 antibodies in CITE-seq and 10X, respectively) that provide a
finer distinction of subpopulations of cells. In fact, we observed lower agreement between
RNA and protein based clusterings for the ECCITE-seq data set shown in Fig. 2 (ARI
0.21), compared to the clusterings obtained from the two modalities in the CITE-seq data
set that agree well (ARI 0.82). Since protein acceleration is computed from both RNA
and protein abundances, their joint embedding can help to reduce visualization artifacts
that arise when protein velocities are projected into a purely transcriptome based t-SNE
embedding as in [6].

The complexity of Barnes-Hut based t-SNE is O(nlogn), where n is the number of
input cells [21]. Although no theoretical complexity bounds have been established for
UMAP, its empirical complexity is O(n'1%) [10]. Since in addition the alternating mini-
mization in j-SNE and j-UMAP requires only a few iterations of (conventional) t-SNE and
UMAP calculations to converge to its final estimation of modality weights (Additional
file 1: Fig. S26), JVis is expected to scale well to large data sets. For example, it took JVis
less than 5 minutes to compute an embedding of the 10,000 cells contained in the largest
data set used in this study (10x 10k). Memory usage and running time of j-SNE and j-
UMAP shown in Additional file 1: Figs. S27 and S28 as a function of number of cells with
2 and 4 simulated modalities demonstrate practicability of both approaches in the analy-
sis of larger and more complex multimodel data sets. The scalability of our approach to
large data sets can be further improved by combining it with the recently proposed FFT-
accelerated Interpolation-based t-SNE method [22], that scales linearly with the number
of cells.

Conclusions

t-SNE and UMARP are routinely used to explore high-dimensional measurements of sin-
gle cells in low-dimensional space. We have introduced method JVis that generalizes
t-SNE and UMARP to the joint visualization of single-cell multimodal omics data. We have
demonstrated that JVis combines multiple omics measurements of single cells into a uni-
fied embedding that exploits relationships among them that are not visible when applying
conventional t-SNE or UMAP to each modality separately. Higher expected levels of
noise in the measurements can be counteracted by smaller regularization coefficients A
that allow to downweight noisy modalities. Not surprisingly, projecting RNA and pro-
tein velocities into the joint embedding of both modalities yielded less noisy acceleration
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landscapes compared to embeddings of mRNA measurements alone. We therefore antic-
ipate that JVis will aid in the meaningful visual interpretation of data generated by
emerging multimodal omics technologies such as CITE-seq [2] and SHARE-seq [23], the
latter allowing to combine RNA velocity with chromatin potential.

Methods

A formal description of our generalizations j-SNE and j-UMAP as well as the algorithm
to solve the underlying optimization problem can be found in Additional file 1: Supple-
mentary Methods. The maximal number of iterations in our alternating optimization
approach was set to 10 in all experiments (maxIter=10). Guided by the results of our
simulation study and by visual inspection of known cell types, we set the regularization
parameter A to 3 for j-SNE and to 1 for j-UMAP in all experiments.

To simulate mRNA and ADT counts for each cell in data sets listed in Additional file
1: Table S1, we followed the strategy proposed in [13] and ran Splatter [14] with model
parameters estimated from a real PBMC CITE-seq data set [15]. In particular, the same
number of genes and antibodies were used, and ADT counts were simulated based on
estimated dropout rate, library size, expression outlier, and dispersion across features.
We added a third modality by duplicating gene expression measurements and randomly
permuting expression vectors between a variable size random subset of cell. The larger
the subset of cells, the larger the artificially introduced level of noise in this third modality.
For the runtime and memory experiments, we generated a fourth modality by applying
the same strategy to ADT counts, shuffling measurements between 40% of cells.

We measured the accuracy of an embedding using two different metrics. We introduce
the k-nearest neighbor index (KNI), which denotes the fraction of k-nearest neighbors in
the embedding that are of the same type. We used k = 10 if not specified otherwise and
computed the average across all points. Different values of k yielded consistent results
(Additional file 1: Figs. S29-S32). In addition, we used the Silhouette score [16] that ranges
between —1 and 1 to measure how much cell types overlap (score 0) or how well separated
(score 1) they are. We used the Adjusted Rand Index (ARI) [24] to measure the agree-
ment between RNA and protein based clusterings. Clusterings of cells were computed
using the Louvain algorithm [17] where the resolution parameter is tuned to match the
number of annotated cell types. Following best practice [25], we used standard prepro-
cessing of the input data including log-transformation of the expression matrix followed
by principal component analysis (PCA) and applied j-SNE and j-UMAP as well as their
conventional counterparts to 20 or 50 principle components. In all protein velocity exper-
iments, preprocessed data was taken from the original study [6], no further preprocessing
was performed. We computed protein acceleration using the protaccel Python package
introduced in [6].
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