Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

O-Pivaloyl diphenylselenophosphinate

Grzegorz Cholewinski, Jaroslaw Chojnacki,* Jerzy Pikies and Janusz Rachon

Chemical Faculty, Gdansk University of Technology, Narutowicza 11/12, Gdansk PL-80233, Poland

Correspondence e-mail: jaroslaw.chojnacki@chem.pg.gda.pl

Received 23 January 2009; accepted 13 March 2009

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.006 Å; R factor = 0.057; wR factor = 0.147; data-to-parameter ratio = 19.0.

The title compound, C₁₇H₁₉O₂PSe, was obtained in the reaction of the diphenylmonoselenophosphinic acid ammonium salt with pivaloyl chloride. The P-Se bond length of 2.0769 (11) Å is normal, while the P–O bond length of 1.650 (3) Å is longer than in related O-alkyl and O-aryl derivatives. One phenyl ring is periplanar to the Se-P-C plane, while the dihedral angle between the two phenyl rings is ca 73° . The carbonyl group is in a synperiplanar position [torsion angle = $8.9 (6)^{\circ}$] to one of the methyl groups of the pivaloyl group. This is the first O-acyl derivative of diphenylmonoselenophosphinic acid characterized by X-ray structural analysis.

Related literature

Syntheses and the chemical properties of O-acyl monoselenophosphates have already been described by Rachon et al. (2005). For other monoselenophosphates, such as O-alkyl or O-aryl esters, see: Lepicard et al. (1969); Balakrishna et al. (2002, 2005); Mague et al. (2007). For details of the Cambridge Crystallographic Database, see: Allen (2002).

Experimental

Crystal data

$C_{17}H_{19}O_2PSe$
$M_r = 365.25$
Monoclinic, $P2_1/c$
a = 9.6212 (5) Å
b = 10.3914 (5) Å
c = 17.1087 (9) Å
$\beta = 99.618 \ (5)^{\circ}$

Data collection

Oxford Diffraction KM-4-CCD diffractometer Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) $T_{\min} = 0.588, T_{\max} = 0.760$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.057$	19
$wR(F^2) = 0.147$	Н
S = 0.97	Δ
3674 reflections	Δ

 $V = 1686.45 (15) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 2.32 \text{ mm}^-$ T = 120 K $0.22 \times 0.2 \times 0.12 \text{ mm}$

12450 measured reflections 3674 independent reflections 2596 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.06$

3 parameters -atom parameters constrained $\rho_{\rm max} = 2.18 \ {\rm e} \ {\rm \AA}^{-1}$ $\rho_{\rm min} = -0.65 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Comparison of the geometry of the title compound with related compounds (Å, °).

CSD refcode (Allen, 2002)	P-Se	P-O	Ph–Ph dihedral	Smaller torsion	Reference
	2.0769 (11)	1.650 (3)	72.64 (14)	7.0 (4)	This work
MPSEPO	2.080	1.619	82.62	4.15	Lepicard et al. (1969)
MUMFUV	2.072	1.624	80.93	13.32	Balakrishna et al. (2002)
	2.070	1.612	75.01	22.34	
RAMXEJ	2.089	1.596	78.65	8.84	Balakrishna <i>et al.</i> (2005)
	2.079	1.585	78.49	6.58	· · /
YIQOM	2.089	1.620	70.15	6.15	Mague <i>et al.</i> (2007)

Data collection: CrysAlis CCD (Oxford Diffraction 2008); cell refinement: CrysAlis RED (Oxford Diffraction 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

GC thanks the Gdansk University of Technology for financial support (internal grant No. 014668 t. 008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2163).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Balakrishna, M. S., George, P. P. & Mobin, S. M. (2005). Polyhedron, 24, 475-480

Balakrishna, M. S., Panda, R. & Mague, J. T. (2002). J. Chem. Soc. Dalton Trans. pp. 4617-4621.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Lepicard, G., de Saint-Giniez-Liebig, D., Laurent, A. & Rérat, C. (1969). Acta Cryst. B25, 617-624.
- Mague, J. T., Punji, B., Ganesamoorthy, C. & Balakrishna, M. S. (2007). Acta Cryst. E63, 04645.

Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

- Rachon, J., Cholewinski, G. & Witt, D. (2005). Chem. Commun. pp. 2692–2694.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2009). E65, o853-o854 [doi:10.1107/S1600536809009295]

O-Pivaloyl diphenylselenophosphinate

G. Cholewinski, J. Chojnacki, J. Pikies and J. Rachon

Comment

O-acyl monoselenophosphates were studied in a search for potential selenoacylating agents. *O*-pivaloyl-diphenylmonoselenophosphinate, $C_{17}H_{19}O_2PSe$, was obtained in the reaction of diphenylmonoselenophosphinic acid ammonium salt with pivaloyl chloride (Rachon *et al.*, 2005). The P—Se bond length is normal for a double bond, while the P—O bond is rather long when compared with the related *O*-alkyl and *O*-aryl derivatives (see Table 1). One phenyl ring is placed periplanar to the Se—P—C plane, while the dihedral angle between the two phenyl rings is relatively small. The carbonyl group is in a synperiplanar position [torsion angle = 8.9 (6)°] to one of methyl groups in the pivaloyl group.

This compound, together with *O-p*-chlorobenzoyl-diphenylselenophosphinate, reported in the following paper, are the first structures determined by X-ray diffraction of *O*-acyl derivatives of diphenylmonoselenophosphinic acid reported. Only four related *O*-alkyl and *O*-aryl derivatives were characterized by *x*-ray study so far: methyl diphenylselenophosphinate (Lepicard *et al.*, 1969), 1,4-bis(diphenyl(seleno)phosphinito)cyclohexane (Balakrishna *et al.*, 2005); 1,1'-methylene-bis(2-((diphenylphosphoroselenoyl)oxy)naphthalene) (Balakrishna *et al.*, 2002) and *O*-2-naphthyl diphenylselenophosphinate (Mague *et al.*, 2007).

Experimental

O-Pivaloyl diphenylmonoselenophosphinate was obtained in the reaction of diphenylmonoselenophosphinic acid ammonium salt with pivaloyl chloride with 43% yield (Rachon *et al.*, 2005, compound numbered as 2u, melting point 63-65 °C). Relevant ¹H, ¹³C, ³¹P NMR, MS and IR spectra were recorded and are consistent with the formula anticipated - see the supporting information for the article cited.

Refinement

Hydrogen atoms were placed in calculated positions and refined using a standard riding model. C–H bond lengths were set to 0.98 or 0.95 Å and $U_{iso}(H)$ were set to 1.5 or 1.2 $U_{eq}(C)$ for methyl or aromatic C–H groups, respectively.

The residual electron density peak is 0.84 Å from Se1, the deepest electron density hole is 1.24 Å from Se1.

Figures

Fig. 1. View of the title compound showing the atom-numbering scheme (50% probability displacement ellipsoids).

O-pivaloyl diphenylselenophosphinate

Crystal data	
C ₁₇ H ₁₉ O ₂ PSe	$F_{000} = 744$
$M_r = 365.25$	$D_{\rm x} = 1.439 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 337(2) K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 9.6212 (5) Å	Cell parameters from 5361 reflections
<i>b</i> = 10.3914 (5) Å	$\theta = 2.0 - 32.4^{\circ}$
c = 17.1087 (9) Å	$\mu = 2.32 \text{ mm}^{-1}$
$\beta = 99.618 (5)^{\circ}$	T = 120 K
$V = 1686.45 (15) \text{ Å}^3$	Fragment, colourless
Z = 4	$0.22 \times 0.2 \times 0.12 \text{ mm}$

Data collection

Oxford Diffraction KM-4-CCD diffractometer	3674 independent reflections
Radiation source: Mo Ka radiation	2596 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\text{int}} = 0.06$
T = 120 K	$\theta_{\text{max}} = 27^{\circ}$
ω scans (0.75° width)	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008)	$h = -12 \rightarrow 12$
$T_{\min} = 0.588, T_{\max} = 0.760$	$k = -12 \rightarrow 13$
12450 measured reflections	$l = -21 \rightarrow 19$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.147$ Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0979P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

S = 0.97	$(\Delta/\sigma)_{\rm max} = 0.001$
3674 reflections	$\Delta \rho_{max} = 2.18 \text{ e} \text{ Å}^{-3}$
193 parameters	$\Delta \rho_{min} = -0.65 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure invariant direct	

Primary atom site location: structure-invariant direct Extinction correction: none methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
P2	0.85844 (10)	0.75002 (9)	0.28847 (6)	0.0208 (2)
Se1	0.78275 (4)	0.76292 (4)	0.16772 (2)	0.02698 (17)
01	0.8422 (2)	0.6100 (2)	0.33157 (15)	0.0243 (6)
02	0.6042 (3)	0.6037 (3)	0.30807 (16)	0.0310 (6)
C1	0.7130 (4)	0.5607 (4)	0.3426 (2)	0.0243 (8)
C2	0.7308 (4)	0.4557 (4)	0.4043 (2)	0.0274 (8)
C3	0.7855 (5)	0.5221 (5)	0.4839 (2)	0.0424 (11)
H3A	0.8789	0.5588	0.4826	0.064*
H3B	0.7923	0.4588	0.5269	0.064*
H3C	0.7203	0.5908	0.493	0.064*
C4	0.8353 (4)	0.3542 (4)	0.3869 (3)	0.0341 (10)
H4A	0.7989	0.3118	0.3365	0.051*
H4B	0.8486	0.2903	0.4296	0.051*
H4C	0.9258	0.3953	0.3835	0.051*
C5	0.5874 (4)	0.3949 (4)	0.4078 (3)	0.0412 (11)
H5A	0.5226	0.4609	0.4212	0.062*
H5B	0.5984	0.3272	0.4482	0.062*
H5C	0.5493	0.3574	0.356	0.062*
C6	1.0474 (4)	0.7623 (3)	0.3126 (2)	0.0211 (8)
C7	1.1309 (4)	0.6520 (4)	0.3187 (2)	0.0263 (8)
H7	1.0889	0.569	0.3136	0.032*
C8	1.2769 (4)	0.6654 (4)	0.3324 (2)	0.0273 (9)
H8	1.3348	0.5908	0.3365	0.033*
C9	1.3386 (4)	0.7856 (4)	0.3399 (2)	0.0298 (9)
H9	1.4384	0.7935	0.3494	0.036*
C10	1.2550 (4)	0.8946 (4)	0.3337 (2)	0.0277 (9)
H10	1.2976	0.9773	0.3387	0.033*
C11	1.1095 (4)	0.8839 (4)	0.3203 (2)	0.0242 (8)
H11	1.0524	0.9589	0.3164	0.029*
C12	0.7863 (4)	0.8624 (4)	0.3506 (2)	0.0254 (8)
C13	0.6748 (4)	0.9438 (4)	0.3208 (2)	0.0262 (8)
H13	0.6364	0.9409	0.266	0.031*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C14	0.6194 (4)	1.0279 (4)	0.3691 (3)	0.0338 (10)
H14	0.5447	1.084	0.3476	0.041*
C15	0.6734 (4)	1.0307 (4)	0.4499 (3)	0.0357 (10)
H15	0.6343	1.0875	0.4839	0.043*
C16	0.7843 (5)	0.9505 (4)	0.4806 (3)	0.0376 (10)
H16	0.8216	0.953	0.5356	0.045*
C17	0.8406 (4)	0.8673 (4)	0.4316 (2)	0.0307 (9)
H17	0.9169	0.8128	0.453	0.037*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
P2	0.0152 (5)	0.0257 (5)	0.0208 (5)	0.0002 (4)	0.0014 (4)	0.0001 (4)
Se1	0.0227 (2)	0.0355 (3)	0.0210 (2)	0.00040 (17)	-0.00147 (16)	0.00093 (15)
O1	0.0153 (13)	0.0272 (13)	0.0289 (14)	-0.0003 (10)	-0.0002 (10)	0.0038 (11)
O2	0.0159 (14)	0.0380 (16)	0.0371 (16)	0.0016 (12)	-0.0016 (12)	0.0088 (13)
C1	0.0201 (19)	0.0271 (19)	0.026 (2)	-0.0059 (16)	0.0044 (16)	-0.0059 (15)
C2	0.0211 (19)	0.035 (2)	0.025 (2)	-0.0008 (17)	0.0007 (16)	0.0055 (16)
C3	0.050 (3)	0.050 (3)	0.025 (2)	-0.004 (2)	0.003 (2)	0.0038 (19)
C4	0.026 (2)	0.035 (2)	0.040 (2)	0.0042 (18)	0.0028 (18)	0.0097 (18)
C5	0.023 (2)	0.046 (3)	0.054 (3)	-0.0007 (19)	0.006 (2)	0.017 (2)
C6	0.0152 (17)	0.0296 (19)	0.0183 (18)	0.0002 (14)	0.0024 (14)	0.0004 (14)
C7	0.023 (2)	0.0282 (19)	0.027 (2)	-0.0011 (16)	0.0032 (16)	0.0007 (15)
C8	0.020 (2)	0.031 (2)	0.031 (2)	0.0051 (16)	0.0040 (16)	-0.0002 (16)
C9	0.019 (2)	0.041 (2)	0.028 (2)	-0.0034 (17)	0.0029 (16)	-0.0027 (18)
C10	0.023 (2)	0.033 (2)	0.025 (2)	-0.0076 (16)	0.0008 (16)	-0.0022 (16)
C11	0.022 (2)	0.0279 (19)	0.0225 (19)	0.0044 (16)	0.0031 (15)	0.0010 (15)
C12	0.020 (2)	0.0263 (19)	0.030 (2)	0.0003 (16)	0.0039 (16)	-0.0025 (16)
C13	0.0209 (19)	0.028 (2)	0.030 (2)	0.0002 (16)	0.0040 (16)	0.0016 (16)
C14	0.021 (2)	0.032 (2)	0.048 (3)	-0.0008 (17)	0.0052 (19)	-0.0006 (19)
C15	0.035 (2)	0.035 (2)	0.039 (3)	-0.0017 (19)	0.013 (2)	-0.0078 (19)
C16	0.047 (3)	0.039 (2)	0.028 (2)	0.002 (2)	0.0062 (19)	-0.0013 (18)
C17	0.030 (2)	0.034 (2)	0.026 (2)	0.0029 (18)	0.0008 (17)	0.0022 (17)

Geometric parameters (Å, °)

P2—O1	1.650 (3)	С7—С8	1.392 (5)
P2-C12	1.795 (4)	С7—Н7	0.95
P2—C6	1.801 (4)	C8—C9	1.381 (6)
P2—Se1	2.0769 (11)	С8—Н8	0.95
O1—C1	1.386 (4)	C9—C10	1.383 (6)
O2—C1	1.200 (4)	С9—Н9	0.95
C1—C2	1.507 (5)	C10-C11	1.384 (5)
C2—C4	1.521 (5)	С10—Н10	0.95
C2—C5	1.527 (5)	C11—H11	0.95
C2—C3	1.539 (5)	C12—C13	1.394 (5)
С3—НЗА	0.98	C12—C17	1.398 (5)
С3—Н3В	0.98	C13—C14	1.370 (5)
С3—НЗС	0.98	С13—Н13	0.95

C4—H4A	0.98	C14—C15	1.394 (6)
C4—H4B	0.98	C14—H14	0.95
C4—H4C	0.98	C15—C16	1.386 (6)
C5—H5A	0.98	C15—H15	0.95
С5—Н5В	0.98	C16—C17	1.377 (6)
С5—Н5С	0.98	C16—H16	0.95
C6—C7	1.393 (5)	С17—Н17	0.95
C6—C11	1.395 (5)		
O1—P2—C12	103.55 (16)	C7—C6—P2	120.4 (3)
01—P2—C6	97.32 (15)	C11—C6—P2	119.1 (3)
$C_{12} = P_{2} = C_{6}$	107.07(17)	C_{8} C_{7} C_{6}	118.9 (3)
$\Omega_1 = P_2 = Se_1$	117 24 (10)	C8—C7—H7	120.5
C12 - P2 - Se1	116 17 (13)	С6—С7—Н7	120.5
C6—P2—Sel	113 35 (13)	C9 - C8 - C7	120.8 (4)
C1 - O1 - P2	122 8 (2)	C9—C8—H8	119.6
$0^{2}-0^{1}-0^{1}$	122.6 (2)	C7—C8—H8	119.6
02 - C1 - C2	127.0(3)	$C_{8} - C_{9} - C_{10}$	119.9 (4)
01 - C1 - C2	127.0(3)	C8—C9—H9	120
C1 - C2 - C4	111.5 (3)	C10-C9-H9	120
$C_1 - C_2 - C_5$	109.3 (3)	$C_{10} = C_{10} = C_{11}$	120 4 (4)
$C_1 - C_2 - C_5$	109.5(3)	$C_{2} = C_{10} = H_{10}$	120.4 (4)
$C_1 - C_2 - C_3$	106.1 (3)	$C_{11} = C_{10} = H_{10}$	119.8
$C_1 - C_2 - C_3$	100.1(3)	C10-C11-C6	119.6 (3)
$C_{1} = C_{2} = C_{3}$	100.1(3) 100.2(3)	C10-C11-H11	119.0 (3)
$C_2 = C_2 = C_3$	109.2 (3)	C6 C11 H11	120.2
$C_2 = C_3 = H_3 R$	109.5	C_{12} C_{12} C_{17}	120.2
	109.5	$C_{13} = C_{12} = C_{17}$	110.3(4)
$H_{3}A = C_{3} = H_{3}B$	109.5	C13 - C12 - P2	121.9(3)
	109.5	C1/-C12-F2	119.3 (3)
H3A—C3—H3C	109.5	C14 - C13 - C12	121.4 (4)
$H_{3B} = C_{3} = H_{3C}$	109.5	C14—C13—H13	119.3
C2—C4—H4A	109.5	C12—C13—H13	119.3
C2—C4—H4B	109.5	C13	119.5 (4)
H4A—C4—H4B	109.5	C13C14H14	120.2
C2—C4—H4C	109.5	C15—C14—H14	120.2
H4A—C4—H4C	109.5	C16—C15—C14	119.9 (4)
H4B—C4—H4C	109.5	С16—С15—Н15	120
C2—C5—H5A	109.5	С14—С15—Н15	120
C2—C5—H5B	109.5	CI/CI6CI5	120.2 (4)
H5A—C5—H5B	109.5	С17—С16—Н16	119.9
C2—C5—H5C	109.5	C15—C16—H16	119.9
H5A—C5—H5C	109.5	C16—C17—C12	120.4 (4)
H5B—C5—H5C	109.5	С16—С17—Н17	119.8
C7—C6—C11	120.4 (3)	С12—С17—Н17	119.8
Se1—P2—O1—C1	-69.5 (3)	O2—C1—C2—C3	-108.5 (5)
C6—P2—O1—C1	169.4 (3)	O2—C1—C2—C4	131.6 (4)
C12—P2—O1—C1	59.8 (3)	O2—C1—C2—C5	8.9 (6)
Se1—P2—C6—C7	-92.1 (3)	P2—C6—C7—C8	175.9 (3)
Se1—P2—C6—C11	84.0 (3)	C11—C6—C7—C8	-0.1 (5)

supplementary materials

O1—P2—C6—C7	31.8 (3)	P2-C6-C11-C10	-175.8 (3)
O1—P2—C6—C11	-152.1 (3)	C7—C6—C11—C10	0.3 (5)
C12—P2—C6—C7	138.5 (3)	C6—C7—C8—C9	0.0 (5)
C12—P2—C6—C11	-45.4 (3)	C7—C8—C9—C10	-0.1 (5)
Se1—P2—C12—C13	7.0 (4)	C8—C9—C10—C11	0.3 (5)
Se1—P2—C12—C17	-174.5 (3)	C9—C10—C11—C6	-0.4 (5)
O1—P2—C12—C13	-123.0 (3)	P2-C12-C13-C14	179.1 (3)
O1—P2—C12—C17	55.5 (4)	C17—C12—C13—C14	0.5 (6)
C6—P2—C12—C13	134.8 (3)	P2-C12-C17-C16	-178.3 (3)
C6—P2—C12—C17	-46.7 (4)	C13—C12—C17—C16	0.3 (6)
P2	15.0 (5)	C12-C13-C14-C15	-1.3 (6)
P2-O1-C1-C2	-162.2 (2)	C13-C14-C15-C16	1.3 (6)
O1—C1—C2—C3	68.6 (4)	C14—C15—C16—C17	-0.5 (6)
O1—C1—C2—C4	-51.4 (4)	C15-C16-C17-C12	-0.3 (7)
O1—C1—C2—C5	-174.0 (3)		

Table 1

Comparison of the geometry of the title compound with related compounds (Å, °)

CSD refcode	P—Se	Р—О	Ph–Ph dihedral	Smaller torsion	Reference
(Allen, 2002)			Ph–Ph dihedral	Smaller torsion	
	2.0769 (11)	1.650 (3)	72.64 (14)	7.0 (4)	This work
MPSEPO	2.080	1.619	82.62	4.15	Lepicard et al. (1969)
MUMFUV	2.072	1.624	80.93	13.32	Balakrishna <i>et al.</i> (2002)
	2.070	1.612	75.01	22.34	
RAMXEJ	2.089	1.596	78.65	8.84	Balakrishna <i>et al.</i> (2005)
	2.079	1.585	78.49	6.58	
YIQOM	2.089	1.620	70.15	6.15	Mague et al. (2007)

Fig. 1