
fmicb-10-00052 January 25, 2019 Time: 17:50 # 1

ORIGINAL RESEARCH
published: 29 January 2019

doi: 10.3389/fmicb.2019.00052

Edited by:
Xing Chen,

China University of Mining
and Technology, China

Reviewed by:
Xianwen Ren,

Peking University, China
Robert Heyer,

Otto-von-Guericke-Universität
Magdeburg, Germany

*Correspondence:
Jie Yang

jieyang2012@hotmail.com
Zhenfang Wu

wzfemail@163.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Systems Microbiology,
a section of the journal

Frontiers in Microbiology

Received: 22 October 2018
Accepted: 14 January 2019
Published: 29 January 2019

Citation:
Quan J, Cai G, Yang M, Zeng Z,

Ding R, Wang X, Zhuang Z, Zhou S,
Li S, Yang H, Li Z, Zheng E, Huang W,

Yang J and Wu Z (2019) Exploring
the Fecal Microbial Composition

and Metagenomic Functional
Capacities Associated With Feed

Efficiency in Commercial DLY Pigs.
Front. Microbiol. 10:52.

doi: 10.3389/fmicb.2019.00052

Exploring the Fecal Microbial
Composition and Metagenomic
Functional Capacities Associated
With Feed Efficiency in Commercial
DLY Pigs
Jianping Quan1†, Gengyuan Cai1,2†, Ming Yang2, Zhonghua Zeng1, Rongrong Ding1,
Xingwang Wang1, Zhanwei Zhuang1, Shenping Zhou1, Shaoyun Li1, Huaqiang Yang1,
Zicong Li1, Enqin Zheng1, Wen Huang3, Jie Yang1* and Zhenfang Wu1*

1 College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural
University, Guangzhou, China, 2 National Engineering Research Center for Breeding Swine Industry, Guangdong Wens
Foodstuffs Group Co., Ltd., Guangzhou, China, 3 Department of Animal Science, Michigan State University, East Lansing,
MI, United States

Gut microbiota has indispensable roles in nutrient digestion and energy harvesting,
especially in processing the indigestible components of dietary polysaccharides.
Searching for the microbial taxa and functional capacity of the gut microbiome
associated with feed efficiency (FE) can provide important knowledge to increase
profitability and sustainability of the swine industry. In the current study, we
performed a comparative analysis of the fecal microbiota in 50 commercial
Duroc × (Landrace × Yorkshire) (DLY) pigs with polarizing FE using 16S rRNA gene
sequencing and shotgun metagenomic sequencing. There was a different microbial
community structure in the fecal microbiota of pigs with different FE. Random forest
analysis identified 24 operational taxonomic units (OTUs) as potential biomarkers to
improve swine FE. Multiple comparison analysis detected 8 OTUs with a significant
difference or tendency toward a difference between high- and low-FE pigs (P < 0.01,
q < 0.1). The high-FE pigs had a greater abundance of OTUs that were from
the Lachnospiraceae and Prevotellaceae families and the Escherichia-Shigella and
Streptococcus genera than low-FE pigs. A sub-species Streptococcus gallolyticus
subsp. gallolyticus could be an important candidate for improving FE. The functional
capacity analysis found 18 KEGG pathways and CAZy EC activities that were different
between high- and low-FE pigs. The fecal microbiota in high FE pigs have greater
functional capacity to degrade dietary cellulose, polysaccharides, and protein and may
have a greater abundance of microbes that can promote intestinal health. These results
provided insights for improving porcine FE through modulating the gut microbiome.
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INTRODUCTION

Feed cost accounts for nearly 70% of the total cost in pig
production (Teagasc, 2015). Therefore, improving feed
efficiency (FE) of the pig will reduce feeding expense and
increase profitability while also reducing the environmental
impact of pig production (Rotz, 2004). In the commercial pig
population, especially in Duroc × (Landrace × Yorkshire)
(DLY) pigs, the improvement in FE will bring obvious
benefits. The FE can be measured by using residual feed
intake (RFI) or the feed conversion ratio (FCR). The FCR
is calculated as the feed intake divided by the body weight
gained. In other words, the high-FCR individuals are less
efficient at converting feed into body weight than the
low-FCR individuals. The FE in this study was measured
by FCR.

In recent years, analyzing the microbiota of breeding animals
has gained interest because it allows for the prediction of
the potential function and associated metabolites of such
communities, which are believed to impact all aspects of host
physiology including nutrient processing, energy harvesting, and
animal performance (Hiergeist et al., 2015; Xiao et al., 2016;
Ferrario et al., 2017; Fouhse et al., 2017; Tan et al., 2017).
Previous studies have revealed a possible link between the
intestinal microbiota and FE in pigs; e.g., Tan et al. (2018)
discovered that in Landrace pigs, the high-FCR pigs had a
greater abundance of Lactobacillus and Streptococcus than the
low-FCR pigs. In Large White × Landrace pigs, there was
a greater abundance of Christensenellaceae, Oscillibacter, and
Cellulosilyticum in the gastrointestinal tract of high-FE pigs
(McCormack et al., 2017). In Duroc pigs, Yang et al. (2016)
identified 31 operational taxonomic units (OTUs) showing
potential associations with FE. Interestingly, these studies
also imply that in different breeds of pigs, there may be
differences in microbial composition and advantage species.
Xiao et al. (2017) also indicated that breed-specific bacteria
in swine intestinal tract may exist, even when pigs were
treated with the same diet, farm conditions, and management
methods.

There are few studies that focus on the association between
microbial composition and functional capacity in regards to FE
in DLY pigs. For DLY pigs, which are the largest population in the
world porcine industry, understanding the relationships between
the intestinal tract and host FE performance is meaningful. In
our previous studies, we found that DLY pigs with contrasting
FE have 11, 55, and 55 OTUs that were different among ileum,
cecum and colon (Quan et al., 2018). The functional predictive
analysis suggested that the microbial fermentation in cecum
and colon may play important roles in improving porcine FE.
However, due to the limitations of the research strategy, we
have not been able to annotate the microbial gene into more
functional database and get more detailed microbial classification
differences between high- and low- FE pigs. In this study, we used
16S rRNA gene sequencing and high-throughput metagenomic
sequencing to investigate whether the microbiota composition
and potential functionality of the intestinal microbiota are linked
with FE.

MATERIALS AND METHODS

Animals and Sample Collection
This study was conducted according to the protocols approved by
the Animal Care and Use Committee (ACUC) of the South China
Agricultural University (SCAU) (approval number SCAU#0017).
In an experimental pig farm (Guangdong, Yunfu, Southern
China), a total of 226 normal weaning (28-day-old) commercial
DLY female pigs were randomly raised in a fattening house
comprised of 30 pens, each housing 6–8 pigs. All of the pigs
that were analyzed in this study were selected from populations
with similar genetic backgrounds and were the same gender.
During the fattening stage, the pigs were raised with the same
customized diet in man-controlled farm conditions and similar
management conditions. The customized corn-soybean feed (free
of probiotics and antibiotics) contained 16% crude protein, 3100
kJ of digestible energy and 0.78% lysine. The diet was available
ad libitum from an automatic feeding trough, Osborne’s FIRE
(Feed Intake Recording Equipment) System (Osborne Industries
inc, Osborne, Kansas), which can separately record daily feed
intake and daily body weight gain of each pig. Water was available
ad libitum from nipple drinkers. During the whole experiment,
any pigs treated with antibiotics were removed from the study.
The FCR values of all pigs were calculated at 140 days of age.
After the FCR value ranking of each pig, the 25 pigs with the
lowest FCR (highest FE) and the 25 pigs with the highest FCR
(lowest FE) were selected for this study. The fecal samples of
50 sows were collected following rectal stimulation and were
transferred immediately to liquid nitrogen for temporary storage.
Then, the samples were sent to the laboratory where they were
stored at−80◦C until analysis. We further chose six fecal samples
for metagenomic sequencing. These six pigs included three
individuals from the high-FE group and their full siblings from
the low-FE group.

DNA Extraction, PCR Amplification, and
16S rRNA Gene Sequencing
Fecal DNA was extracted using a Soil GenomeTM DNA
Isolation Kit (Qiagen, Düsseldorf, Germany) in accordance
with the manufacturer’s instructions. DNA concentration
and quality were measured using UV-Vis spectrophotometry
(NanoDrop 2000, Waltham, MA, United States) and agarose
gel electrophoresis. The DNA obtained from each sample was
diluted to 1 ng/µL with sterile water. Amplification of the
V4–V5 hypervariable region of the bacterial 16S rRNA gene
was performed using universal primers, where the reverse
primer contained a 6-bp error-correcting barcode unique
to each sample (515f: 5′-GTGCCAGCMGCCGCGGTAA-3′,
907r: 5′-CCGTCAATTCCTTTGAGTTT-3′). Amplification
was performed using an initial denaturation at 98◦C for 1 min
followed by 30 cycles of denaturation at 98◦C for 10 s, annealing
at 50◦C for 30 s, elongation at 72◦C for 30 s, and a final step
at 72◦C for 5 min. All PCR reactions were carried out using
Phusion R© High-Fidelity PCR Master Mix (NEB, Ipswich, MA,
United States). PCR products were run in an electrophoresis
chamber on a 2% agarose gel to confirm the successful

Frontiers in Microbiology | www.frontiersin.org 2 January 2019 | Volume 10 | Article 52

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00052 January 25, 2019 Time: 17:50 # 3

Quan et al. Porcine Feed Efficiency-Associated Microbes

amplification of the target gene. DNA bands of 400–450 bp,
corresponding to the 16S rRNA gene amplicon, were excised
and purified using the GeneJET Gel Extraction Kit (Thermo
Fisher Scientific, Waltham, MA, United States) according to the
manufacturer’s instructions. Purified amplicons were used for
library preparation and pyrosequencing. Sequencing libraries
were generated using NEB Next R© UltraTM DNA Library Prep Kit
for Illumina (NEB, Ipswich, MA, United States), following the
manufacturer’s recommendations, and index codes were added.
A Qubit@ 2.0 Fluorometer (Thermo Fisher Scientific, Waltham,
MA, United States) and Agilent Bioanalyzer 2100 system were
used to assess the quality of the library. Pyrosequencing was
performed on the Illumina HiSeq 2 × 250 platform (Illumina,
San Diego, CA, United States). The 16S rRNA gene sequence
data have been deposited in the NCBI SRA database with an
accession number of SUB4418365.

Processing of Sequencing Data
Sequencing reads were assigned to each sample, based on
unique barcodes, and truncated by cutting off the barcode and
primer sequence. The original DNA fragments were merged
into tags using FLASH (v1.2.7) (Magoc and Salzberg, 2011).
Quality filtering of the raw tags was performed under specific
filtering conditions to generate high-quality clean tags according
to the QIIME (v1.9.1) quality-controlled process (Caporaso
et al., 2010). To generate effective tags, the chimeric sequences
were removed from clean tags using the UCHIME algorithm
based on the reference database (Gold database) (Haas et al.,
2011). After selecting representative species for each OTU, each
of the remaining sequences was assigned to an OTU when
at least 97% threshold identity was obtained using UPARSE
software (v7.0.1) (Edgar, 2013). The taxonomy of each OTU
representative sequence was assigned for further annotation
using the RDP Classifier algorithm1 (Wang et al., 2007) against
the SILVA ribosomal RNA gene database. Subsequent analyses
were performed based on the OTU information. A Venn diagram
was generated using the VennDiagram R package to show shared
and unique OTUs between high- and low-FE pigs.

In this study, we used mothur software (v.1.30.1) to
calculate the community alpha diversity indices, including Chao1
and ACE indices, which estimate community richness, and
Shannon and Simpson indices, which estimate community
diversity (Schloss et al., 2011). A significant difference in alpha
diversity between high- and low-FE groups was determined
using the Mann–Whitney U-test. Moreover, we also calculated
the community pan-OTU number and Good’s coverage index
to evaluate sample size and the sequencing depth. Principal
component analysis (PCA) was determined to evaluate the
community structure similarity between the samples in the
high- and low-FE groups. Significant differences in beta-diversity
across opposite FE groups were evaluated using permutational
multivariate analysis of variance (PERMANOVA) with 104

permutations. In addition, the effects of pen information,
initial weight and final weight on variance of sample microbial
community composition were evaluated by PERMANOVA

1http://rdp.cme.msu.edu/

analyses (Anderson, 2001; Anderson and Walsh, 2013). Bacterial
taxonomic distributions of sample communities were visualized
using the ggplot2 R package. In subsequent analyses, taxa
occurring in less than three samples with a relative abundance
less than 0.01% of the total community were removed. To test
whether microbial community composition can predict feed
conversion, we trained a random forest model at the OTU level
on all samples based on a random sampling with replacement
(Number of decision trees = 500). We evaluated the performance
using 10-fold cross-validation. The cross-validation error curve
(average of 5 test sets each) of the 10-fold cross-validation was
averaged. The variable importance by mean decrease in accuracy
was calculated. The predictive power was scored in a receiver
operating characteristic (ROC) analysis. The discriminatory
power of OTUs was calculated as the area under the ROC curve
(AUC) using the plotROC R package.

The comparison of relative abundances of OTUs between
high- and low-FE pigs was performed using Welch’s t-test in
STAMP software (White et al., 2009). The Benjamini–Hochberg
False Discovery Rate (FDR) method (q-value) was used to correct
the multiple comparisons (Benjamini and Hochberg, 1995). The
statistical cutoff of the p-value <0.05 (Welch-Test) and q-value
<0.05 (FDR) were set as the significance threshold. The relative
abundance of different OTUs between high- and low-FE pigs was
visualized by heatmap using vegan R package.

Metagenomic Sequencing and Statistical
Analyses
Metagenome sequencing libraries were generated with an
insert size of 350 base pairs (bp) for six fecal DNA samples
following the manufacturer’s instructions (Illumina, San
Diego, CA, United States). The libraries for metagenomic
analysis were sequenced on an Illumina HiSeq 2500 platform
by an Illumina HiSeq – PE150 strategy. The raw reads were
treated to remove reads with low qualities, trim the read
sequences and remove adaptors using Readfq software (v8).
The metagenomic sequencing data have been deposited
in the NCBI SRA database with the accession number
SUB4056369. Subsequently, pig genomic DNA sequences
were removed by SOAPaligner software (v2.21) (Li et al.,
2008).

De novo assembly of high quality reads was performed using
SOAPdenove software (v2.04) with the parameters -d 1, -M 3,
-R, -u, -F. Scaffolds were broken into new scaftigs at their gaps
(Luo et al., 2012). Meanwhile, the scaftigs with a length less
than 500 bp were removed, and the number of scaftigs ≥500 bp
was calculated. The qualified scaftigs were applied to predict
the bacterial open reading frames (ORFs) by MetaGeneMark
(v2.10) software, and the sequences with lengths less than 100 bp
were filtered out (Zhu et al., 2010). CD-HIT software (v4.5.8)
was used to exclude the redundant genes from all predicted
ORFs to construct a preliminary non-redundant gene catalog
(Fu et al., 2012). Subsequently, clean reads of each sample
were compared to the preliminary non-redundant gene catalog
using SOAPaligner with the parameters of -m 200, -× 400,
identity ≥95%. The number of reads was compared for each
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gene that could be calculated. The genes with a read number
≤2 were removed to obtain a final non-redundant gene catalog
(Qin et al., 2012). The genes in the final non-redundant gene
catalog were called unigenes. The abundance of a gene was
calculated based on the number of reads that aligned to the
gene, normalizing by the gene length and the total number
of reads aligned to the unigenes (Karlsson et al., 2012). The
specific formula for the relative abundance calculation of a gene
was Gk =

rk
Lk
·

1∑n
i = 1

ri
Li

., here r is the number of reads mapped

to a gene and L is the length of gene. Subsequently, we used
DIAMOND software (V0.7.9) to compare the unigenes with
the Kyoto Encyclopedia of Genes and Genomes (KEGG) gene
database to obtain KO annotation information and metabolic
pathway information (Buchfink et al., 2015). We compared
the unigenes with the Carbohydrate-Active enzymes database
(CAZy) to obtain information on species and the functional
classification of EC.

To determine the differential abundance of functional features
between the high- and low-FE groups, Metastats analysis was
applied (White et al., 2009). The Benjamini–Hochberg FDR
method (q-value) was used to correct the multiple comparisons
(Benjamini and Hochberg, 1995). Z-scores were calculated to
construct a heatmap to demonstrate the relative abundance of the
pathways in each group with the formula z = (x−µ)/σ, where
x is the relative abundance of the pathways in each group, µ

is the mean value of the relative abundances of the pathways

in all groups, and σ is the standard deviation of the relative
abundances.

RESULTS

Phenotypic Values of Porcine FCR and
Community Composition of Porcine
Fecal Microbiota
All experimental pigs had daily feed intake and daily body weight
gain separately recorded during the fattening stage (28-day-old
to 140-day-old). The 25 pigs with the highest FE (FCR value:
2.29 ± 0.080) and the 25 pigs with the lowest FE (FCR value:
2.60 ± 0.088) were selected for this study. The FCR value was
significantly different between the high- and low-FE groups
(p-value < 0.001, Figure 1A and Supplementary Table S1).

A total of 50 pigs, which included extreme FCR values, were
selected, and 16S rRNA gene sequencing was performed, which
generated a total of 3,788,293 DNA sequence reads, aligned
into 2,851,748 effective tags after quality control. Based on the
97% sequence similarity, the number of OTU samples ranged
from 569 to 1037. The pan-OTU numbers of community would
reach saturation when the sample size was greater than thirty
(Figure 1B) and the Good’s coverage indices in high- and low-FE
groups were greater than 99% (Figure 1C), which indicated
a sufficient sample size and adequate sequencing depth for

FIGURE 1 | The feed conversion ratio value (FCR), pan OTUs, Good’s coverage and community composition in high- and low-feed-efficiency (FE) pigs. Groups are
coded according to the feed efficiency status (High_FE, high feed efficiency; Low_FE, low feed efficiency). (A) FCR value in high- and low-FE pigs. (B) Pan
OTU = sample size. The horizontal axis represents the number of samples. The vertical axis represents the number of OTUs contained in all samples. (C) Good’s
coverage value in high- and low-FE pigs. (D) Community composition at the phylum level in high- and low-FE pigs. (E) Community composition at the genus level in
high- and low-FE pigs.
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this study. The Venn diagrams show that 1437 OTUs were
shared between the high- and low-FE groups. Only 44 and 60
OTUs were unique in the low- and high-FE groups, respectively
(Supplementary Figure S1A).

These OTUs were annotated to the phylum, class, order,
family and genus classification level. At the phylum level, the
high- and low-FE pigs’ microbial community was dominated
by Firmicutes (67.47% vs. 63.35%), Bacteroidetes (24.40% vs.
24.68%), Tenericutes (2.43% vs. 7.01%), Spirochaetes (2.66% vs.
2.11%), and Proteobacteria (1.93% vs. 1.49%) (Figure 1D). At
the genus level, Streptococcus (11.80%), Clostridium sensu stricto
1 (11.11%), and Lactobacillus (10.19%) were the three most
abundant genera in the high-FE group; Clostridium sensu stricto
1 (15.21%), Lactobacillus (7.51%), and uncertain genera from
Bacteroidales S24-7 (7.40%) were the three most abundant genera
in the low-FE group (Figure 1E).

To further investigate microbial composition at the species
level, shotgun metagenomic sequencing was performed in six
fecal samples from three pairs of full-siblings having the
high- and low-FCR phenotypes. The metagenomic sequencing
produced a total of 56 Gbp of clean reads after removing
low-quality sequences and host genomic DNA sequences. After
subsequent assembly, a total of 1.15 million scaftigs with an
average length of 1,095 bp and an average N50 length of 1,152 bp
were produced. The phylogenetic composition of the fecal
microbiota determined by shotgun metagenomic sequencing was
similar to the result obtained in the 16S rRNA gene sequencing.
Firmicutes, Bacteroidetes, Spirochaetes, and Proteobacteria were
the dominant phyla (Supplementary Figure S1B). At the species
level, we detected a total of 6,972 bacterial species from all six fecal
samples. Firmicutes bacterium CAG:110, Treponema bryantii and
Bacteroides sp. CAG:1060 were the three most abundant species
(Supplementary Figure S1C).

Comparison of Fecal Microbial
Community Diversity Between High- and
Low-FE Pigs
To evaluate the alpha-diversity of bacterial communities in high-
and low-FE pigs, we compared the community richness indices
(Chao1 and ACE) and diversity indices (Shannon and Simpson)
of the microbiota in high- and low-FE pigs. We found that
high-FE pigs have significantly higher Chao1 and ACE indices
than low-FE pigs (P < 0.01, Figure 2A and Supplementary
Figure S2A). However, the Shannon and Simpson indices were
not significantly different between these two groups (Figure 2B
and Supplementary Figure S2B). Based on the abundance
profiling of the OTU level, PCA analysis showed that most of
the samples could be clustered into two groups, which was very
consistent with the grouping results according to performance
of feed conversion (Figure 2C). A significant dissimilarity in
beta-diversity between high- and low-FE groups was observed
(PERMANOVA, p-value <0.01). Based on the abundance
profiling of species level generated by metagenomic sequencing,
there were also a clear difference in bacterial composition in
the high- and low-FE pigs (Supplementary Figure S2C). In
addition, we found that the initial weight and final weight had no

significant effect on porcine fecal microbial composition (p-value
>0.3). The pig pen had a tendency to make effect on microbial
composition, but also cannot reach the significant level in our
study (p-value = 0.077) (Supplementary Table S2).

Identification of Potential Biomarkers
That Could Account for the FE
Differences
To determine whether OTUs could serve as biomarkers to
classify pigs into high- and low-FE groups and which OTUs
play important roles in this process, we constructed a random
forest model. The OTU-level random forest model had an
error of 0.025 when the number of top important variables
was 24 (Figure 3A). The mean decrease in accuracy of the
top 24 important variables is shown in Figure 3B. Six OTUs
that included the top three important variables (OTU509,
OTU1013, and OTU197) for predicting FE were annotated to
the genus of Streptococcus. Fortunately, based on the existing
database information, the most important candidate biomarker
(OTU509) can also be annotated to species level, which was
Streptococcus gallolyticus subsp. gallolyticus. Ten OTUs were
annotated to the family of Lachnospiraceae (OTU962, OTU555,
OTU1185, OTU931, OTU738, OTU684, OTU403, OTU399,
OTU928, and OTU458). Two pairs of OTUs were annotated to
the families of Erysipelotrichaceae (OTU1434 and OTU826) and
Ruminococcaceae (OTU1094 and OTU1355). Four single OTUs
were annotated to the families Coriobacteriaceae (OTU123),
Peptococcaceae (OTU670), Prevotellaceae (OTU10), and
Enterobacteriaceae (OTU398) (Figure 3B and Supplementary
Table S3). The area under the ROC curve (AUG) was 0.99 based
on the 24 most important variables (Figure 3C).

We further compared the abundance of OTUs between the
high- and low-FE pigs using STAMP software with Welch’s
t-test. We detected only two OTUs (OTU509 and OTU1013)
that were significantly different between pigs with low or high
FE using p-value <0.05 and q-value <0.05 as the significance
threshold. However, at a threshold of p-value <0.01 and q-value
<0.1, we identified an additional six OTUs with a tendency
toward a difference (Figure 3D). The average abundance of
these OTUs between the high- and low-FE groups are shown in
Supplementary Figure S3. Most of these OTUs were contained in
the OTU list that outlined important variables to account for the
differences in FE (Supplementary Table S4), except OTU1456,
which was annotated to the order Clostridiales.

Comparison of the Functionality of the
Fecal Microbiome in High- and Low-FE
Groups Based on Metagenomic
Sequencing
Comparison of the functional capacity of the gut microbiome
can help to investigate the metabolic differences between high-
and low-FE groups and further indicate the microbes that may
affect special nutrient metabolism. The functional capacity was
determined according to the annotation of ORFs predicted from
the assembled contigs. The predicted genes were then aligned
with the KEGG gene database to obtain the KO annotation
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FIGURE 2 | The community diversity between fecal samples from high- and low-FE pigs at the OTU level. (A) The Chao1 index in high- and low-FE pigs. (B) The
Shannon index in high- and low-FE pigs. (C) Principal component analysis (PCA) of the fecal microbiota based on OTUs.
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FIGURE 3 | Important biomarkers selected by random forest analysis and the different abundance of OTUs in high- and low-FE pigs. (A) Model evaluation by using
top important variables. The horizontal axis represents the number of variables ranked by importance. The vertical axis denotes the average prediction error rate
using 10-fold cross-validation when using the number of corresponding variables. (B) The ordination diagram of variables of importance. The horizontal axis is the
measurement standard of variables of importance, and the value is equal to the measurement value of variables of importance/standard deviation. The vertical axis is
the variable names sorted by importance. (C) ROC of the random forest classifier based on the 24 most important variables. The AUC value is the area under the
corresponding curve. When the AUC > 0.5, the AUC value is closer to 1, the diagnostic effect is better. (D) The OTUs with a significantly different abundance
between high- and low-FE pigs detected by STAMP software.

information from the KEGG database (see section “Materials and
Methods”). A total of 1,857,107 ORFs were found with an average
length of 616 bp. We identified a total of 352,002 KEGG genes
and assigned them into 322 KEGG pathways. Subsequently, we
compared the KEGG pathways abundance between the high- and
low-FE groups, but no pathways were significantly different at
FDR < 0.05. When we relaxed the threshold (p-value <0.05 and
q-value <0.3), 18 pathways showed different enrichment at level
3. Eight pathways were more enriched in high-FE groups, and 10
pathways were more enriched in low-FE groups. The pathways
that were enriched in high-FE pigs were associated with protein
metabolism (ko04974), lipid metabolism (ko00600), and glycan
degradation (ko00511). The pathways enriched in low-FE pigs
involved endocrine regulation (ko03320 and ko04924), signal
transduction (ko04152), the immune system (ko04622) and
cardiovascular diseases (05410) (Figure 4A and Supplementary
Table S5).

We further investigated the functional information of genes
in the CAZy database; over forty thousand genes were identified
and categorized into six CAZy classes. Glycoside hydrolases
(GHs), glycosyl transferases (GTs) and carbohydrate-binding

modules (CBMs) were the three classes enriched the most in
both the high- and low-FE groups (Supplementary Figure S4).
When we compared the EC activity abundance between the
high- and low-FE groups, we found that 15 EC activities were
more abundant in the high-FE groups, and 3 EC activities
were enriched in the low-FE groups (p-value <0.05, q-value
<0.05). The higher abundance of EC activities in the high-FE
groups involved the degradation of xylan, cellulose and many
other polysaccharides. The low-FE pigs have a greater abundance
of three kinds of fucosyltransferases than the high-FE pigs
(Figure 4B and Supplementary Table S6).

DISCUSSION

Metagenomic approaches based on high-throughput sequencing
methods have rapidly facilitated the compositional and
functional study of the gut microbiota in recent years (Fraher
et al., 2012; Weinstock, 2012). Based on these high-throughput
sequencing methods, many previous studies had revealed
potential microbial biomarkers for improving FE in multiple
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FIGURE 4 | Heatmap of functional capacity profiles showing different enrichment in high- and low-FE pigs by metagenomic sequencing analysis. Samples are
coded according to the feed efficiency status (HighFE, high feed efficiency; LowFE, low feed efficiency). For example, HighFE.1 represented the first sample that was
collected from high-feed-efficiency pig. (A) Heatmap of KEGG pathways showing different enrichments in high- and low-FE pigs. (B) Heatmap of CAZy EC activities
showing different enrichments in high- and low.
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breeds of pigs (McCormack et al., 2017; Tan et al., 2017, 2018;
Yang et al., 2017; Quan et al., 2018). However, this study is
one of the first to combine the technology of 16S rRNA gene
sequencing and shotgun metagenomic sequencing to analyze
the fecal microbial composition and function in commercial
DLY pigs with high and low FE. All experimental pigs were
selected from populations with similar genetic backgrounds.
They were the same gender and were subjected to the same
environmental, nutritional and management conditions to
minimize the variability in FE due to genetic, gender, and
external factors. Even in this well-controlled environment,
there was still polarization in the FE of the experimental pig
population. The difference in the intestinal microbiota in the
experimental pigs was partly contributed to this phenomenon,
which was suggested by previous studies (Nicholson et al., 2012;
Parks et al., 2013; Yang et al., 2014). Although the experimental
pig population and the number of sequencing samples is not
particularly large in this study, the obvious FE variations reflect
the real phenomenon in the pig industry. The pan-OTU number
and the Good’s coverage indices in the sequencing samples
showed sufficient sampling of the population and adequate depth
to investigate different bacterial species in the high- and low-FE
pigs. The different bacterial species that were involved in feed
nutrient processing and energy harvesting in high- and low-FE
DLY pigs could be considered potential microbial biomarkers
for FE.

When looking at the fecal microbiota composition, consistent
with previous findings in pigs, the core phyla within the fecal
microbiota were dominated by Firmicutes and Bacteroidetes
(Yang et al., 2016; Xiao et al., 2017). Bacteroidetes have an
important role in degrading indigestible dietary polysaccharides
into short-chain fatty acids that can be reabsorbed by the host
(Becker et al., 2014). Firmicutes were also thought to play a
vital role in the energy harvest of mice (Turnbaugh et al.,
2006). This finding may indicate that the dominant core phyla
maintain a balance and can ensure the stability of intestinal
function during the growth process in pigs. However, in our
present study, we did not observe differences in Bacteroides and
Firmicutes in high- and low-FE pigs. These findings differed
with the results in pigs that showed an increase in Firmicutes
in high fatness compared with low fatness subjects (Yang et al.,
2016). Furthermore, when considering the annotation result at
the genera level of the swine fecal microbiota, many studies had
different classification compositions. In Yang et al.’s (2016) study,
Prevotella, Lactobacillus, and Treponema were the three most
abundant genera in Duroc pigs. Prevotella, Streptococcus, and
SMB53 were the three most abundant genera in Hampshire pigs,
and Clostridium, SMB53, and Streptococcus were the three most
abundant genera in Landrace and Yorkshire pigs in Xiao et al.
(2017) study. This result suggested a special composition of the
intestinal microbial community at the genus level, which may be
due to differences in the breed, age, feed, and husbandry of pigs.

When we compared the bacterial community composition
between the high- and low-FE pigs, we found that the community
structure was significantly different (Figures 2A,C). The
community of high-FE pigs had more richness and similar
diversity to that of low-FE pigs. This finding suggested that the

difference in FE is not due to the presence of specific bacteria in
high-FE pigs but to the larger number of certain bacteria. These
differences may come from colonized difference in the early life
of mammalian, whose gut microbiome were thought to be at
least partially shared by their parents, and it is relatively stable
to perturbation once a dense microbial population is established
(Antonopoulos et al., 2009; Snijders et al., 2016). However,
no study has confirmed the causality between the microbial
difference of offspring and their parents in pigs. In the present
study, since the dams of our experimental pigs could not be fully
tracked, we could not conclude that mother animals would cause
a bias between high- and low FE pigs. In addition, gut microbiota
composition may also be influenced by environmental factor
(Yang et al., 2017), such as pig pen. However, in our study, the pig
pen did not have a significant effect on porcine fecal microbial
composition, but had a tendency to take a significant effect
(p-value = 0.077) (Supplementary Table S2). In the current
study, the random forest analysis showed that many OTUs
played important roles in varying FE (Figure 3B). According to
the annotation information from these OTUs, bacteria belonging
to the genus Streptococcus and the families Lachnospiraceae,
Erysipelotrichaceae, Ruminococcaceae, Coriobacteriaceae,
Peptococcaceae, Prevotellaceae, and Enterobacteriaceae may be
important candidates to improve swine FE. Furthermore, the
OTUs that were enriched in high-FE pigs were mainly found in
Streptococcus, Escherichia-Shigella, and Prevotellaceae NK3B31
and the family Lachnospiraceae (Figure 3D and Supplementary
Table S4).

A previous study suggested that Lachnospiraceae was
associated with human obesity (Cho et al., 2012). Kameyama and
Itoh (2014) reported that a bacterial strain of Lachnospiraceae
can induce obesity in mice. Many members of Lachnospiraceae
can produce short-chain fatty acids (SCFAs) by fermenting
dietary polysaccharide (Pryde et al., 2002). The SCFAs were
linked to a reduced risk of developing gastrointestinal disorders,
cancer and cardiovascular disease and promote human obesity
(Wong et al., 2006; Cho et al., 2012). Therefore, we hypothesized
that the Lachnospiraceae might improve porcine FE by
maintaining the gut in a healthy state to increase its absorptive
capacity. Prevotellaceae is reported to relate to several diseases,
such as asthmatic airway inflammation and arthritis, and
associate with mucin degradation (Brinkman et al., 2011;
Scher et al., 2013). Several members of Prevotellaceae were
well-known succinate producer and can improve glucose
homeostasis through activation of intestinal gluconeogenesis
(De Vadder et al., 2016). A recent study reported that the
succinate level was associated with carbohydrate metabolism and
energy production (Serena et al., 2018). This study indicated
that Prevotellaceae may increase FE in pigs by promoting
host health or energy metabolism. A study in dairy calves
suggested that SCFA concentration and carbohydrate utilization
were significantly correlated with Escherichia-Shigella (Song
et al., 2018). Streptococcus has been generally considered
a health-promoting microbe for its roles in modulating
human health (Kleerebezem and Vaughan, 2009). Many species
belonging to Streptococcus were associated with carbohydrate
fermentation, starch hydrolysis and the production of glucan
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from sucrose (Facklam, 1972; Nelms et al., 1995). In this
study, Streptococcus gallolyticus subsp. gallolyticus (annotated by
OTU509) was considered an important candidate that might be
used for improving porcine FE. Most strains of this species can
ferment mannitol, trehalose, and inulin and can produce acid
from starch and glycogen (Schlegel et al., 2003). These finding
suggested that high-FE pigs are likely to have a greater abundance
of intestinal microbes that can promote host intestinal health
or degrade dietary carbohydrates. Therefore, high-FE pigs might
have a greater ability to utilize feed and better intestinal health
than low-FE pigs.

We also performed functional capacities analyses. Although
we did not identify any core metabolic pathways at the q-value
<0.05 level, some pathways showed a trend toward difference
in high- and low-FE pigs. The pathways associated with protein
metabolism (ko04974), lipid metabolism (ko00600), and glycan
degradation (ko00511) were enriched in high-FE pigs. The
higher abundance of protein metabolism and glycan degradation
pathways in the high-FE groups had been reported in previous
studies (Li and Guan, 2017; Yang et al., 2017). The experimental
pigs in this study were fed with a fiber-enriched and high-protein
diet. Therefore, the fecal microbiota may be more competent
in terms of utilizing the diet protein. It is interesting that the
fecal microbes of high-FE pigs have relatively more pathways
of lipid metabolism, and it was believed that most of digestion
and absorption occur in the small intestine (Rudd, 2012; Voet
et al., 2013). We confirmed whether the fecal microbes have
a compensatory metabolism function for unmetabolized lipid.
Analysis of the microbial gene functional annotation in the CAZy
database revealed expected results. In high-FE groups, the EC
activities included the degradation of xylan, cellulose and many
other polysaccharides. These functional results were consistent
with the previous hypothesis that the high-FE pigs might have
a greater ability to utilize dairy protein and carbohydrate than
low-FE pigs.

CONCLUSION

In conclusion, there was a different microbial community
structure in the fecal microbiota of pigs with different FE.
We detected 24 OTUs that can serve as potential biomarkers
to improve swine FE. Eight OTUs were significantly different
or had a trend toward difference in the high- and low-FE
pigs. The high-FE pigs had a greater abundance of OTUs
in the families Lachnospiraceae and Prevotellaceae and in
the genera Escherichia-Shigella and Streptococcus compared to
low-FE pigs. Streptococcus gallolyticus subsp. gallolyticus could

be an important candidate microbe for improving FE. We
detected 18 KEGG pathways and CAZy EC activities that were
different between high- and low-FE pigs. We found that the
fecal microbiota in high-FE pigs have a greater capacity to
degrade dietary cellulose, polysaccharide, and protein and may
have a greater abundance of microbes to promote intestinal
health. These findings should improve our understanding of the
differences in the fecal microbial composition between high-
and low-FE commercial pigs and provide important candidate
microbes that can potentially use for improving porcine FE.
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