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Abstract

Heterogeneity in the number of secondary tuberculosis (TB) cases per source case, the effective
reproductive number, R, is important in modelling prevention strategies’ impact on incidence.

We estimated mean R (Rm) and calculate the dispersion parameter of this distribution, k,
using surveillance and genotyping data for U.S. cases during 2009–2018. We modelled trans-
mission assuming cases in a cluster have matching genotypes and share characteristics related
to geography, temporal proximity (i.e. serial interval) and time since U.S. arrival among
non-U.S.-born persons.

Complete data were available for 55 330/85 958 cases. Varying the serial interval and geo-
graphic proximity used to derive clusters, we consistently estimated Rm<1.0 and k < 0.08; the
low value of k indicates a small number of source cases produce a disproportionate number of
secondary cases.

U.S. TB reproductive number has a highly skewed distribution, indicating a minority of
source cases disproportionately contribute to transmission.

Introduction

Globally, 10 million people became sick with tuberculosis (TB) in 2019 [1]. In order to achieve
the Sustainable Development Goal of ending the TB epidemic by 2030 [2], substantial
reductions in TB incidence will be required. Understanding which control strategies are
most effective at reducing TB incidence is of paramount importance to meet this goal.

Mathematical models are useful in determining the efficacy of prevention strategies at
reducing disease incidence. However, the validity of these models relies on the values and dis-
tributions of input parameters, such as the effective reproductive number (R), the number of
secondary cases of disease an individual source case produces. Mathematical models are often
encoded with the assumptions that all individuals are equally infectious, which is questionable
based on outbreak reports and molecular and spatial analyses [3–5]. The negative binomial
dispersion parameter, k, quantifies the magnitude of overdispersion in the mean of R (Rm).
In the context of infectious disease transmission, smaller values of k (<0.10) indicate greater
overdispersion in Rm and thus a higher degree of individual heterogeneity in transmission.

Molecular genotyping of M. tuberculosis isolates is often used to track TB transmission,
decipher epidemiologic links between TB cases and derive TB transmission clusters [6]. In
turn, these transmission clusters can be analysed to infer k [6–9]. Employing molecular geno-
typing and contact tracing data, several studies have observed substantial heterogeneity in
observed secondary cases of TB [7–9]. We assess heterogeneity in infectiousness and estimate
Rm and k using spoligotype and 24-locus mycobacterial interspersed repetitive units variable
number tandem repeats (MIRU-VNTR) genotyping data from the U.S. Centers for Disease
Control and Prevention (CDC). We hypothesise there is substantial heterogeneity in TB
transmission in the United States.

Methods

Previous work estimating Rm and k for tuberculosis

We follow the approach of Ypma et al. [7]. In brief, they used insertion sequence (IS) 6110
restriction fragment length polymorphism (RFLP) genotyping data from the Netherlands to
quantify heterogeneity in R. This approach requires deriving genotype clusters, defined as
cases with matching molecular typing, then deriving transmission clusters with the following
rules: cases with a unique genotype not observed in the 24 months before diagnosis comprise a
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new transmission cluster where the first temporal case in each
cluster is the index case; cases with recent arrival (<6 months)
to the country were considered index cases themselves, thus an
individual transmission cluster could have >1 index case; and
clusters occurring at the temporal beginning and end of the
study were censored, effectively assuming these clusters are a
size of ≥y, where y represents the cluster size, due to the potential
for partially observed clusters. Using these rules to derive clusters,
Ypma and colleagues then modelled TB transmission as a subcrit-
ical branching process whereby the number of secondary cases
from an infectious TB case is modelled using a negative binomial
offspring distribution with a mean R and dispersion parameter k.
Maximum likelihood estimation is used to estimate Rm and k.
Briefly, Ypma et al. constructed the likelihood model of observing
cluster sizes given the number of index cases in all clusters as
follows:

L(R, k|y, n, a, b, p) =
∏

y

∏

n

P(Y = y|n)ay,nP(Y ≥ y|n)by,n

The likelihood function is a function of the parameters R and k
(the parameter p, which represents the probability of observing
non-index cases). The probability functions of P(Y = y│n) and
P(Y⩾y│n) quantify the probabilities of observing a cluster size
equal to y and at least y given n index cases in the cluster.
Therefore, given the observed data y (cluster sizes), n (the num-
bers of index cases), a ( y,n) (the number of clusters whose sizes
are equal to y and numbers of index cases are equal to n), b ( y,
n) (the number of clusters whose sizes are at least y and numbers
of index cases are equal to n), the maximum likelihood estimates
of R and k can be obtained.

We modify this approach using molecular genotyping data
from U.S. cases and incorporate geographic proximity of cases,
disease site as a proxy for infectiousness and a more nuanced esti-
mate of the serial interval, the duration of time between disease
symptom onset of a case and its infector.

Data source

We used spoligotype and 24-locus MIRU-VNTR data from the
CDC’s National Tuberculosis Genotyping Service (NTGS) and
surveillance data from the National Tuberculosis Surveillance
System (NTSS) for cases reported to CDC during 1 January
2009–31 December 2018. Cases from the 50 U.S. states and
Washington D.C. were included if they had complete data on
genotype and case characteristics, including disease site, month
and year of U.S. arrival and reporting jurisdiction. Analysis of sur-
veillance data was determined by CDC as non-human subjects
research and did not require institutional review board approval.

Derivation of genotype and transmission clusters

We defined cases as being in the same genotype cluster if the
24-loci MIRU-VNTR and spoligotype were an exact match.
Cases with missing or mixed loci and cases that did not have
genotyping data were excluded from the analysis.

We used Ypma et al.’s rules, summarised above, to split geno-
type clusters into transmission clusters [7]. Because cases across
distanced locations might not be linked, we split genotype clusters
by county Federal Information Processing Standard codes and by
state in sensitivity analyses. We did not consider a case of extra-
pulmonary disease as the first case in any cluster because most

extrapulmonary TB is noninfectious [10]. This rule resulted in
clusters without a designated index case. Because the transmission
model requires ≥1 index case per transmission cluster, we
imputed these clusters to have one index case in our primary ana-
lysis. In sensitivity analyses, we excluded extrapulmonary TB
cases.

Rather than assuming a 24-month serial interval, we imple-
mented a probabilistic approach whereby the serial interval was
selected randomly from a gamma distribution of median 0.51
years (95% credible interval: 0.41–0.64, shape = 1.47, rate =
0.1968). This distribution is based on previous work estimating
the serial interval for TB in the U.S. [11]. We rounded serial inter-
val estimates to the closest month to conform to month-level
reporting in our data, resulting in a median time between cases
of 6 months (95% simulation interval: 1–20). Using the serial
interval distribution, we report the median and 95% simulation
intervals across estimates.

Results

Case characteristics

There were 85 958 TB cases reported to NTSS from the 50 U.S.
states and Washington D.C. during 1 January 2009–31
December 2018. We excluded 30 628 cases (36%), of which 72%
(N = 22 121) lacked complete genotyping data (cases had mixed
or missing loci or spoligotype, were culture-negative or an isolate
was unavailable for genotyping).

Other exclusions included 19% (N = 5787) for mixed or miss-
ing genotype, 9% (N = 2657) for missing date of U.S. arrival and
0.2% (N = 63) for missing epidemiologic data. Extrapulmonary
TB was more common among excluded cases than included
cases (Supplemental Digital Content); other case characteristics
were comparable. Of 55 330 remaining cases, 46 470 had pulmon-
ary disease or both pulmonary and extrapulmonary disease and
two-thirds of patients (66%) were non-U.S. born (Table 1).

Rm and k estimates assuming a fixed 24-month serial interval

In the primary analysis assuming a fixed 24-month serial
interval, keeping both pulmonary and extrapulmonary TB cases
(N = 55 330 cases) and splitting genotype clusters at the county-
level resulted in 45 386 transmission clusters with an estimated
Rm = 0.59 and k = 0.05 (Fig. 1, ). Splitting clusters by state
resulted in 38 544 transmission clusters and an estimated Rm =
0.95 and k = 0.07 (Fig. 1, ). These results did not change sub-
stantially when we excluded extrapulmonary cases (N = 46 470
cases) and split genotype clusters by county (N = 37 909 transmis-
sion clusters, Rm = 0.61, k = 0.05) (Fig. 1, ) or state (N = 32 195
transmission clusters, Rm = 0.99, k = 0.07) (Fig. 1, ).

Rm and k estimates using a probabilistic approach for the
serial interval

Using a probabilistic approach for the serial interval, keeping both
pulmonary and extrapulmonary TB cases (N = 55 330 cases) and
splitting genotype clusters at the county-level resulted in 49 215
(95% SI: 45 895–52 403) transmission clusters with an estimated
median Rm = 0.13 (95% SI: 0.05–0.42) and k = 0.05 (0.04–0.05)
(Fig. 1). Excluding extrapulmonary TB cases (N = 46 470 cases)
resulted in 41 208 (95% SI: 38 354–46 470) transmission clusters
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and an estimated median Rm = 0.14 (95% SI: 0.06–0.44) and k =
0.04 (95% SI: 0.03–0.05) (Fig. 1).

Discussion

We consistently estimated low values of k, indicating substantial
heterogeneity and overdispersion in Rm. These findings suggest
a minority of source cases disproportionately contribute to TB
transmission in the United States.

Our results affect TB transmission modelling research and
public health practice. First, TB transmission models, often used
to estimate R and inform prevention strategies, must be appropri-
ately parameterised to maximise validity. A systematic review
identified inconsistent TB serial interval and R estimates, which
might be due to the diverse assumptions applied to parameters
such as the transmission rate [12]. The implications of overdisper-
sion in k for TB modelling is that TB transmission rate constants
may more accurately summarise actual transmission when speci-
fied by a negative binomial distribution capturing individual
transmission heterogeneity [13]. Second, our results point to the
possibility that directing targeted prevention interventions
towards the minority of source cases who disproportionately
transmit TB might effectively reduce new infections. However,
identifying these source cases is difficult, as transmission relies
on complex host−pathogen interactions. While numerous case
reports document super spreading events and host and pathogen
characteristics associated with them [3, 4, 14, 15], few studies have
attempted to identify characteristics giving rise to super spreading
events in large cohorts [9].

Our conclusion is consistent with Ypma and colleagues’ [7],
despite differences between settings and study designs. We
extended their work to incorporate the geographic proximity of

cases to ensure the fidelity of transmission clusters.
Deterministically splitting genotype clusters by state and county
yielded slightly different estimates of Rm and k, reinforcing the
importance of U.S. geography. However, estimates from both ana-
lyses indicated substantial overdispersion. Future work could
incorporate a linear spatial scale to estimate the probability
cases with matching genotypes are linked via transmission.
Additionally, our results were similar to Ypma and colleagues des-
pite using MIRU-VNTR and spoligotype. MIRU-VNTR and spo-
ligotype have replaced RFLP as the gold standard for routine,
large-scale genotyping studies because of the formers’ quick turn-
around and discriminatory power. Numerous studies have con-
firmed the methods are comparable [16–18], thus differences
between estimates are likely not attributed to the form of molecu-
lar typing used. Both our study and Ypma and colleagues’ were
based in high-income, low burden TB settings, thus our conclu-
sions are likely generalisable to similar settings. Conducting a
similar analysis in a low-income, high burden TB setting is lim-
ited by the availability of genotyping data from such settings.

Our study limitations pertain to inherent constraints of mak-
ing transmission inferences from molecular typing data. First,
whole-genome sequencing (WGS) is newer technology with
higher molecular resolution to better understand transmission
[19, 20]. Because CDC began universal WGS of culture-positive
M.tb isolates in 2018, WGS data over an extended time period
are not yet available. While WGS provides some advantage over
MIRU-VNTR, determining whether cases sharing the same gen-
etically indistinguishably strain are in the same transmission clus-
ter remains a challenge [21]. To improve our ability to elucidate
these transmission clusters, we augmented genotyping data with
epidemiologic data. Second, all molecular typing methods rely
on culture-positive sputum specimens. We excluded approxi-
mately 25% of cases missing genotyping data, most of which
were culture-negative. Recent advances to capture M.tb DNA dir-
ectly from sputum specimens – without the need for culture – are
in development and could improve our understanding of TB
transmission. Similarly, we cannot rule out the likely occurrence
of missed TB cases, despite robust public health efforts to diag-
nose TB and trace contacts of TB cases in the U.S. If missed
cases were primarily in large clusters, this could underestimate
the magnitude of overdispersion. Third, we estimate Rm based
on matching molecular profiles across cases. While Rm is meant
to represent the true underlying transmission cluster, it should
not be confused to represent the effective reproduction number.
Estimation of k was consistent across models, however, we
found Rm to be sensitive to model inputs, Rm is thus not a reliable
indicator of the number of secondary cases from an individual
with TB and should not be interpreted as such. Lastly, we select
the first temporal case in a cluster as the index case, which is likely
an oversimplification of the underlying true order of cases in a
transmission chain. However, this assumption is not a source of
bias because the method we applied estimates k based on the clus-
ter size and number of index cases, not necessarily who is selected
as an index case in a given cluster. Inferences based on character-
istics of index cases – which we do not report – should not be
made.

We found substantial individual variation in the number of
secondary TB cases from a source case. Improving the validity
of TB transmission models requires incorporating heterogeneity
when specifying model parameters. Prevention strategies account-
ing for highly heterogeneous transmission processes might be
most effective for reducing TB incidence. Increased

Table 1. Characteristics of TB cases with complete MIRU-VNTR and spoligotype
genotyping notified in the United States, 1 January 2009–31 December 2018
(N = 55 330)

Characteristic N (%)

Disease site

Pulmonary only 40 215 (72.68%)

Extrapulmonary only 8860 (16.01%)

Both 6255 (11.30%)

Age group (years)

0–4 576 (1.04%)

5–14 530 (0.96%)

15–24 5839 (10.55%)

25–44 17 547 (31.71%)

45–64 17 297 (31.26%)

65+ 13 541 (24.47%)

Origin of birth

U.S. born 18 890 (34.14%)

Non-U.S. borna 36 440 (65.86%)

Time (years) since arrival to U.S. among non-U.S.
bornb

−5.9 (−18.9, 1.1)

aIncludes persons born outside the United States (including U.S. territories), except persons
born to at least one U.S. citizen parent.
bMedian (25th percentile, 75th percentile).
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understanding of host and pathogen factors affecting transmission
probability will be required to develop and implement optimal
prevention strategies.
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