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Abstract

The present study evaluated auditory sensitivity to spectral modulation by determining the

modulation depth required to detect modulation phase reversal. This approach may be pref-

erable to spectral modulation detection with a spectrally flat standard, since listeners appear

unable to perform the task based on the detection of temporal modulation. While phase

reversal thresholds are often evaluated by holding modulation depth constant and adjusting

modulation rate, holding rate constant and adjusting modulation depth supports rate-specific

assessment of modulation processing. Stimuli were pink noise samples, filtered into seven

octave-wide bands (0.125–8 kHz) and spectrally modulated in dB. Experiment 1 measured

performance as a function of modulation depth to determine appropriate units for adaptive

threshold estimation. Experiment 2 compared thresholds in dB for modulation detection with

a flat standard and modulation phase reversal; results supported the idea that temporal

cues were available at high rates for the former but not the latter. Experiment 3 evaluated

spectral modulation phase reversal thresholds for modulation that was restricted to either

one or two neighboring bands. Flanking bands of unmodulated noise had a larger detrimen-

tal effect on one-band than two-band targets. Thresholds for high-rate modulation improved

with increasing carrier frequency up to 2 kHz, whereas low-rate modulation appeared more

consistent across frequency, particularly in the two-band condition. Experiment 4 measured

spectral weights for spectral modulation phase reversal detection and found higher weights

for bands in the spectral center of the stimulus than for the lowest (0.125 kHz) or highest

(8 kHz) band. Experiment 5 compared performance for highly practiced and relatively naïve

listeners, and found weak evidence of a larger practice effect at high than low spectral mod-

ulation rates. These results provide preliminary data for a task that may provide a better

estimate of sensitivity to spectral modulation than spectral modulation detection with a flat

standard.
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Introduction

Spectral information is thought to provide cues for the perception of both vowels and conso-

nants [1–5]. Formants and formant transitions are associated with low-rate spectral modulation,

whereas the harmonic structure of voiced speech is associated with higher-rate modulations.

Speech recognition is thought to rely predominantly on relatively low-rate spectral modulations,

in the region of 0.25 to 2 ripples per octave [2, 6, 7]. Sensitivity to spectral modulation predicts

speech recognition among listeners with varying degrees of hearing loss and among cochlear

implant users [3, 6, 8, 9]. Detection of spectral modulation, or discrimination between different

patterns of spectral modulation, likely reflects a combination of frequency selectivity and the

ability to process the pattern of intensity across frequency [4, 5, 10]. Based on the association

between speech perception and sensitivity to spectral modulation, evaluating sensitivity to spec-

tral modulation has been proposed as a clinically useful approach for evaluating auditory perfor-

mance. More recently, sensitivity to spectral modulation has been evaluated in combination

with temporal modulation [11–13].

Sensitivity to spectral modulation is typically assessed using one of two approaches: 1) esti-

mating the spectral modulation depth at which listeners can detect that spectral modulation

has been applied to a noise carrier, or 2) estimating the highest modulation rate for which lis-

teners can detect a spectral modulation phase reversal. In both cases, spectral modulation is

typically imposed via multiplication in the log frequency domain with a raised sinusoid, with

spectral modulation rate defined in ripples per octave (rpo). In the spectral modulation detec-

tion paradigm, the standard stimulus is spectrally flat, and the target is spectrally modulated.

Spectral modulation depth is adjusted to estimate the threshold for a particular modulation

rate. In this paradigm, sensitivity to spectral modulation is characterized as the spectral modu-
lation detection threshold in dB. In the spectral modulation phase reversal paradigm, both the

standard and the target are spectrally modulated, but the modulation phase differs by 180˚.

Spectral modulation rate is adjusted to determine the highest rate at which a listener can dis-

criminate modulation phase. In this paradigm, sensitivity to spectral modulation is character-

ized as the spectral modulation phase reversal threshold in rpo.

Anderson et al. [14] compared thresholds in these two paradigms–spectral modulation

detection thresholds in dB and spectral modulation phase reversal thresholds in rpo–for three

normal-hearing young adults. Spectral modulation detection thresholds were approximately

2.5 dB at 3 rpo, with poorer performance above and below that rate; notably, all three listeners

were able to detect modulation at depths of less than 20 dB at 60 rpo, which was the highest

rate tested. In contrast, spectral modulation phase reversal thresholds were approximately 8

rpo. In other words, the modulation detection paradigm indicated sensitivity at a higher rate

of spectral modulation than the phase reversal paradigm. One possible explanation for this

discrepancy in results across paradigms is that listeners were using a temporal cue–based on

temporal beating between spectral peaks falling within an auditory filter–to detect high-rate

spectral modulation. For example, spectral modulation of 16 rpo is associated with beats

between neighboring spectral peaks ranging from approximately 15 Hz at the low-frequency

edge of the stimulus (360 Hz) to 243 Hz at the high-frequency edge (5600 Hz). These rates are

within the passband of sensitivity to envelope modulation on a noise carrier [15]. The value of

temporal cues in the spectral modulation detection paradigm is complicated somewhat by the

fact that spectral peak spacing is not uniform in Hz across frequency. As a consequence, enve-

lope fluctuation is complex for filters passing more than two spectral peaks and varies in rate

across auditory filters. The presence of beats would not provide a cue in the spectral modula-

tion phase reversal task, as modulation is present in both intervals. Changes in modulation

rate and the spectral distribution of temporal modulation cues differ as a function of spectral
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modulation phase, and theoretically listeners could use those differences to identify the target.

However, behavioral data suggest that human listeners are not able to use these cues [14]. That

result is consistent with data on modulation rate discrimination for a noise carrier. For the

example of 16 rpo, spectral modulation phase reversal results in a 2% change in envelope mod-

ulation rate in neighboring spectral regions. While some data indicate that a 2% change in

envelope modulation rate may be discriminable when applied coherently to a broadband

masker, most data indicate thresholds >2% [16]; variability in envelope modulation depth and

rate across frequency in the spectral modulation phase reversal task would further reduce the

value of temporal cues.

There are advantages and disadvantages to using spectral modulation detection vs spectral

modulation phase reversal for evaluating sensitivity to spectral modulation. One advantage of

characterizing sensitivity by measuring spectral modulation detection thresholds in dB is that

sensitivity can be evaluated at specific modulation rates. This could be beneficial in evaluating

sensitivity to the low-rate modulation cues that support phoneme recognition. Spectral modu-

lation phase reversal thresholds in rpo would indicate whether 100% modulation at these rates

supported discrimination, but not the fidelity with which those cues were represented. One

potential disadvantage of the spectral modulation detection paradigm is uncertainty regarding

the contribution of temporal cues to performance [14].

The present report evaluates a hybrid approach for measuring sensitivity to spectral modu-

lation. The listener’s task was to detect spectral modulation phase reversal, but the modulation

depth (not the rate) was adjusted to determine threshold. This paradigm characterizes sensitiv-

ity to spectral modulation as spectral modulation phase reversal threshold in dB. While relatively

uncommon, there is precedent for this approach in the literature [17]. The potential advantage

of this method over the more commonly used paradigms, described above, is that it allows

assessment of sensitivity at a particular rate of spectral modulation, without introducing salient

temporal cues. Experiments were conducted to evaluate this potential advantage and provide

preliminary data for this task across a range of conditions.

Experiment 1 measured performance as a function of modulation depth to determine

appropriate units for adaptive threshold estimation. Experiment 2 compared thresholds in dB

for two tasks: detection of spectral modulation, using a flat standard, and detection of modula-

tion phase reversal. The goal was to replicate and extend the previous results of Anderson et al.

[14]. Experiment 3 evaluated spectral modulation phase reversal thresholds for modulation

that was restricted to either one or two neighboring octave-wide bands of noise. These stimu-

lus conditions are relevant to speech recognition, where modulation is typically restricted in

frequency. Experiment 4 measured spectral weights for spectral modulation phase reversal

detection. Very little is known about normal-hearing listeners’ use of spectral modulation cues

that are distributed across frequency, and this was deemed to be a fundamental feature of spec-

tral modulation processing. Experiment 5 compared performance for highly practiced and

relatively naïve listeners. Interest in this comparison is based on the observation that large

practice effects could be problematic if this task were adapted for use as a clinical assessment

tool.

General methods

Listeners

Listeners were adults with normal hearing, defined as pure-tone thresholds of 20 dB HL or less

at octave frequencies 0.25–8 kHz [18]. No listener reported a history of hearing problems. Five

of the listeners were highly practiced, with between 30 and 2000 hrs of prior psychoacoustic lis-

tening experience (25–63 yrs, mean of 41 yrs). The remainder were relatively inexperienced,
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many with no prior psychoacoustic listening experience (19–26 yrs, mean of 21 yrs). Experi-

enced listeners participated in all five experiments, whereas naïve listeners provided data only

for the final experiment. All listeners provided written consent to participate, and all proce-

dures were approved by the Institutional Review Board of the University of North Carolina at

Chapel Hill.

Stimuli

Stimuli were composed of bands of pink noise, and each band either was or was not spectrally

modulated. Spectral modulation, when present, was imposed via multiplication in the fre-

quency domain with a raised sine wave, with both frequency and magnitude represented in

log units (octaves and dB SPL, respectively). Across intervals within a trial, spectral modulation

of the target was 180˚ out-of-phase with respect to spectral modulation of the standard. A new

random starting phase for standard modulation was selected for each trial, and a new sample

of pink noise was generated prior to each interval. Spectral modulation depth was defined as

the peak-to-trough differences in dB.

Stimuli were filtered into seven bands, with center frequencies 0.125 to 8 kHz, via multipli-

cation with 2-oct-wide Hann windows. Windows were spaced at 1-oct intervals, and neighbor-

ing windows overlapped at the 6-dB-down points. The input to each of the eight filters could

be pink noise, spectrally modulated pink noise, or an array of zeros (silence). Fig 1 illustrates

idealized magnitude spectra for example stimuli in a selection of conditions; the top and bot-

tom rows of panels represent pairs of standard and target stimuli. All stimuli were 168 ms in

duration, including 20-ms raised-cosine ramps. While some studies of spectral modulation

perception have used longer-duration stimuli, on the order of 400 ms [14, 19], there is prece-

dent in the literature for using stimulus durations as short as 30–100 ms [20, 21]. Briefer sti-

muli may be preferable if they provide the listener with less robust temporal cues to spectral

shape. Stimuli were presented at a median level of 70 dB SPL, with a trial-by-trial level rove of

+/- 6 dB, based on a random draw from a uniform distribution.

Fig 1. Examples of idealized magnitude spectra for stimuli in three conditions. In all cases the spectral modulation depth is 20 dB. The top and

bottom rows show standard and target stimuli, respectively. The leftmost column shows 0.5 rpo for a condition in which all 8 bands are target bands.

The middle column shows 4 rpo for a condition in which target bands are centered on 0.5 and 1 kHz, and the remaining bands are unmodulated noise

(masked condition). The rightmost column shows 2 rpo for a condition in which the target is a single band centered on 2 kHz, and the remaining bands

are scaled to zero (quiet condition). The +/- 6-dB interval rove is not depicted in this figure.

https://doi.org/10.1371/journal.pone.0195686.g001
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Procedure

Data were collected in a three-alternative forced-choice procedure, with a 400-ms inter-stimu-

lus interval. Listeners indicated their responses by pressing one of three buttons on a handheld

response box, and correct-answer feedback was provided visually. At the beginning of each

data collection track three practice trials were provided, with 60-dB spectral modulation

depth. Responses on these trials were not scored.

Performance was evaluated in two ways: by fixing the depth of spectral modulation and

measuring percent correct (Exp 1 and 4) or by adaptively varying the modulation depth to

estimate threshold (Exp 2, 3, and 5). Thresholds were measured using a 3-down, 1-up track-

ing rule that estimates 79% correct [22]. Initial adjustments in spectral modulation depth in

dB were a factor of 2; that stepsize was reduced to 20.5 after the second track reversal. Each

track continued until eight reversals were obtained, and threshold was the geometric mean

of the last six track reversals. The signal strength was capped at a depth of 60 dB. Any track

that hit this limit six times was terminated early, and the threshold was reported as 60 dB.

Modulation depth was adjusted in equal steps on units of log(dB); the rationale for using

these unconventional units is discussed in more detail in the context of Experiment 1. Given

the small number of listeners in some experiments, the results presented here should be

viewed as preliminary.

Experiment 1: Sensitivity to spectral modulation phase reversal as

a function of modulation depth

The first experiment characterized the shape of the psychometric function by measuring lis-

teners’ sensitivity to spectral modulation phase reversal as a function of spectral modulation

depth. Three listeners provided data for each of five spectral modulation rates (0.25, 0.5, 1, 2 &

4 rpo). In preparation for this experiment, listeners completed four adaptive tracks at each

spectral modulation rate, and mean thresholds were computed. The present experiment evalu-

ated percent correct at each of five modulation depths, from 0.25 to 1.41 times the listener’s

adaptive threshold. Six blocks of 60 trials each were collected for each spectral modulation

rate. Within each block, trials cycled sequentially through the five depths relative to the listen-

er’s threshold, from x1.41 (easiest) to x0.25 (hardest). The order of conditions was not ran-

domized due to concerns that multiple very difficult trials in a row could result in the listener

forgetting the target cue.

Data for each condition and each listener were fitted using a cumulative normal distribu-

tion, scaled by 2/3 and shifted up by 1/3 to capture effects of guessing in a three-alternative

forced choice. Functions were fitted twice for each spectral modulation rate and listener, once

in dB modulation depth and a second time in the log transform of that value. Example data for

one listener are shown in Fig 2. For fits on log(dB), r2 = 0.52–0.99 (median r2 = 0.92). For fits

on dB, r2 = 0.47–0.99 (median r2 = 0.89). These differences were not significant (F1,2 = 3.32,

p = 0.210). For all five spectral modulation rates, the median psychometric function slope was

broadly comparable on log(dB): performance rose from 40 to 85% correct with a factor of 4.1

(3.7–7.3) increase in modulation depth. Adaptive threshold estimates obtained using a

3-down, 1-up rule are affected by the magnitude of the stepsize relative to the psychometric

function slope [15]. Adjusting modulation depth in log(dB) units supports the use of uniform

stepsizes across conditions without introducing rate-dependent bias. Another reason to prefer

units of log(dB) over units of dB is to avoid ceiling effects in the adaptive track. Results of this

experiment support the use of factorial steps in the adaptive threshold procedures in subse-

quent experiments.
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Experiment 2: Thresholds in dB for modulation detection vs. phase

reversal

Five highly practiced listeners provided data in two tasks: spectral modulation detection and

spectral modulation phase reversal for rates of 0.25, 0.5, 1, 2, 4, 8, and 16 rpo, with threshold

quantified in dB in both cases. Each listener provided three to four threshold estimates, as

time allowed. As illustrated in Fig 3, performance in both tasks improved with increasing

Fig 2. Psychometric functions by rate. Example fits are shown for one listener. Functions are plotted on dB modulation depth in

the left panel and log(dB) in the right panel. Color reflects spectral modulation rate.

https://doi.org/10.1371/journal.pone.0195686.g002

Fig 3. Thresholds as a function of spectral modulation rate for two tasks. Thresholds in dB are plotted for detecting

spectral modulation and spectral modulation phase reversal. Error bars show one standard deviation, computed in log

units.

https://doi.org/10.1371/journal.pone.0195686.g003
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modulation rate up to 1–2 rpo. This result has been attributed to difficulties comparing spec-

tral features that are distributed widely in frequency [21]. Above 2–4 rpo, thresholds worsened

with increasing modulation rate, a finding attributed to detrimental effects of limited fre-

quency resolution [19]. For modulation rates below 4 rpo, thresholds were lower for the

phase reversal than the modulation detection task. This is consistent with the observation that

differences in the magnitude spectra of target and standard stimuli are twice as large for the

modulation phase reversal task than the modulation detection task. Thresholds for spectral

modulation phase reversal were at the ceiling value of 60 dB by 8 rpo. In contrast, thresholds

remained below 10 dB up to 16 rpo for the spectral modulation detection task. These results

broadly replicate those reported by Anderson et al. [14].

The discrepancy between thresholds obtained for spectral modulation detection and spec-

tral modulation phase reversal is consistent with the idea that temporal cues can be used to

detect the introduction of high-rate spectral modulation, but that those cues are not beneficial

in the phase reversal task. If temporal cues are available for a subset of the modulation detec-

tion conditions, one question of interest is which conditions reflect sensitivity to spectral mod-

ulation, and which reflect the use of temporal cues. If listeners were relying solely on changes

in stimulus level across intervals at one or more fixed points in frequency, then threshold

should be a factor of two poorer in the modulation detection task than the phase reversal task;

this prediction is based on the observation that the change in local magnitude is twice as large

in the phase reversal task as the modulation detection task. Thresholds in the modulation

detection task differed from those in the phase reversal task by a factor of 2.4 (0.25 rpo), 1.9

(0.5 rpo), 2.0 (1 rpo), 1.8 (2 rpo), 0.9 (4 rpo), and 0.1 (8 rpo). Paired t-tests support the observa-

tion that effects of task are restricted to 4 rpo (p = 0.033) and 8 rpo (p< 0.001) after adjusting

for the factor of two difference in stimulus differences across intervals. When looking for evi-

dence of this result in Fig 3, recall that the x2 correction was not applied to those data points.

While these values do not rule out the availability of temporal cues below 4 rpo, they suggest

that temporal cues probably do not reliably improve spectral modulation detection below 4

rpo in normal-hearing listeners.

Experiment 3: Carrier-frequency-specific spectral modulation

phase reversal thresholds in dB

Whereas sensitivity to spectral modulation is often measured for spectral modulation across a

wide range of frequency, the spectral cues required to identify speech are restricted in fre-

quency (e.g., the region associated with formant frequencies). This is consistent with the obser-

vation that spectral shape discrimination is a better prediction of speech discrimination when

the stimuli are restricted to the frequency region of the speech cue [23]. Processing frequency-

specific spectral modulation cues may also be affected by the presence of off-frequency mask-

ers. This experiment evaluated effects of carrier frequency and the presence of unmodulated

off-frequency masking noise on spectral modulation phase reversal thresholds in dB.

Published findings on the effect of carrier frequency on sensitivity to spectral modulation

are mixed. Eddins and Bero [19] report that spectral modulation detection thresholds in dB do

not depend on carrier spectral region or bandwidth. In contrast, Supin et al. [17] found that

spectral modulation phase reversal thresholds in dB do depend on the carrier frequency. That

study evaluated listeners’ ability to detect a change in spectral modulation phase for a 3/

4-octave-wide noise band. For 2.8 rpo, thresholds were similar for bands with center frequen-

cies of 500 to 8000 Hz, with a mean of 3.3 dB. However, thresholds for higher-rate spectral

modulation depended on the center frequency of the band. For example, 4.2-rpo spectral mod-

ulation phase reversal thresholds fell from 8.8 dB at 500 Hz to 4.8 dB at 4 kHz. Frequency

Auditory sensitivity to spectral modulation phase reversal as a function of modulation depth

PLOS ONE | https://doi.org/10.1371/journal.pone.0195686 April 5, 2018 7 / 15

https://doi.org/10.1371/journal.pone.0195686


effects for high-rate spectral modulation were argued to reflect variability of frequency resolu-

tion across frequency regions.

Supin and his colleagues have published several studies evaluating the effect of unmodu-

lated noise on listeners’ sensitivity to spectral modulation imposed on a 1-oct band of noise.

Quantifying sensitivity as the highest modulation rate supporting modulation phase reversal,

they showed more masking for an unmodulated band below the target than above the target

[24]. Under some conditions a masker below the target was more effective than an on-fre-

quency masker [25]. Interestingly, increasing the bandwidth of the low-frequency masker did

not introduce more masking–if anything, it decreased masking [24]. Masking in these studies

was interpreted as reflecting a range of factors, including combination tones, upward spread of

excitation, and/or lateral suppression [24, 26].

In the present study, thresholds were collected for one- and two-band targets in different

frequency regions, presented either in quiet or in the context of off-frequency bands of

unmodulated noise. The target was never present in the lowest band (125 Hz) or the highest

band (8000 Hz). A modulation rate of 0.5 rpo was not evaluated in the one-band condition

because a 1-oct band would provide the listener with just one-half of a period of spectral mod-

ulation. The hypotheses were that detection thresholds for high-rate modulation would be

better at high than low frequencies, as observed by Supin et al. [17], and that masking noise

would have a more modest effect for the two-band than the one-band target, due to the more

modest energetic masking in the spectral center of the two-band target. Three listeners pro-

vided data in all conditions, with three to four threshold estimates per condition. Mean thresh-

olds are plotted as a function of carrier frequency in Fig 4.

Thresholds for the two-band signal were relatively unaffected by the presence of unmodu-

lated neighboring bands, but there was a clear effect of carrier frequency at high spectral

modulation rates. The relatively modest effects of presenting flanking bands that are not

modulated can be seen in Fig 4 as a close correspondence between thresholds shown with

filled and unfilled circles. Across conditions, flanking maskers elevated thresholds by a factor

of 1.2 on average, with values ranging from 0.9 (0.5 rpo at 0.5 & 1 kHz) to 2.0 (2 rpo at 0.25 &

0.5 kHz). For both masked and quiet listening conditions, there was a trend for better high-

rate modulation thresholds at higher carrier frequencies. This was most pronounced at 4

rpo, where thresholds fell from approximately 40 dB (0.25 & 0.5 kHz) to approximately 8 dB

(2 & 4 kHz).

Thresholds for the one-band target were more clearly affected by the masker, although

there were marked individual differences in susceptibility to masking. This can be seen in the

right panels of Fig 4 in the separation between filled and unfilled circles, and the large error

bars on the filled circles. Across conditions, flanking maskers elevated thresholds by a factor of

1.8 on average, with values ranging from 1.0 (4.0 rpo at 0.25 kHz) to 2.4 (4 rpo at 4 kHz). The

modest effect of masking for 4 rpo at 0.25 kHz is due to the fact that performance with and

without flanking maskers was at ceiling for all listeners. Similar to the two-band data for 2 and

4 rpo, there was a trend for thresholds to improve as the carrier was increased from 0.25 to 1

kHz. In contrast to the two-band data, however, there was also a trend for thresholds to rise

again between 2 and 4 kHz. Based on these results, it is possible that the relatively low thresh-

olds obtained in the two-band data for 2 & 4 kHz were based predominantly on cues in the

2-kHz band.

Results of this experiment contrast with those of Eddins and Bero [19], who found little evi-

dence of a carrier frequency effect for spectral modulation detection. The present results are

consistent with the frequency effects observed by Supin et al. [17], who reported poorer spec-

tral modulation phase reversal thresholds for high-rate modulation at low than high carrier

frequencies. The trend for best performance in the middle of the spectrum (1–2 kHz) in the
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one-band data is broadly consistent with the finding that sensitivity to increments in an other-

wise flat spectral profile is greatest around 1 kHz [20].

Experiment 4: Spectral weights for detecting spectral modulation

phase reversal

The results of Experiment 3 are broadly consistent with better sensitivity to spectral modula-

tion at 2 kHz than below that carrier frequency, particularly for high modulation rates. While

Fig 4. Thresholds for one- and two-band targets as a function of band center frequency. Thresholds are plotted as a

function of band center frequency for targets spanning two octave-wide bands (left) or one octave-wide band (right).

Filled symbols indicate thresholds obtained in the presence of unmodulated noise in the non-target bands (masked

condition), and open symbols indicate that target bands were presented without flanking maskers (quiet condition).

Each panel shows results for a different modulation rate, as indicated at the top of the panel. Error bars show one

standard deviation, computed in log units.

https://doi.org/10.1371/journal.pone.0195686.g004
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the spectral region associated with the target was fixed across trials in the previous experiment,

it is likely to be uncertain under natural listening conditions (e.g., when listening to speech in

a dynamic masker). The present experiment therefore evaluated weights for spectral modula-

tion phase reversal for conditions in which the spectral region associated with the best cues

(largest modulation depth) varied randomly across trials.

Four highly practiced listeners provided data at a fixed nominal modulation depth for each

spectral modulation rate (0.25, 0.5, 1, 2 & 4 rpo). The nominal depth used for each listener in

each condition was selected to produce approximately 65% correct, based on previous adaptive

threshold data and fixed-level pilot data, and this nominal depth was consistent across bands.

In addition to the +/- 6-dB interval level rove used in all conditions in this series of experi-

ments, the present experiment also incorporated band-specific jitter in the modulation depth

associated with each trial. In this context, jitter refers to trial-by-trial variability in modulation

depth. Prior to each trial, a random factor between 0.42 and 2.40 was identified for each of the

seven spectral bands; a draw from a uniform distribution was used to select one of five values

(0.42, 0.65, 1.00, 1.55, & 2.40), with equal probability. Those factors were applied to the spectral

modulation depth associated with each band in each of the three listening intervals. Fig 5 illus-

trates idealized magnitude spectra for example stimuli, excluding the +/- 6-dB level rove. The

nominal modulation depth for these examples is 10 dB. The top and bottom rows of panels

represent pairs of standard and target stimuli, respectively, and the left and right columns

show stimuli with 0.5 and 2 rpo. Listeners completed 10 blocks of 50 trials each. Spectral

weights for spectral modulation phase reversal were estimated by evaluating the correlation

between depth jitter in each band and correctness of the listener’s response. The hypothesis

was that weights would generally resemble the differential sensitivity to spectral modulation

for bands presented in quiet, with greater weight associated with regions of greater sensitivity.

The pattern of weights was consistent across listeners, so only mean data are shown in Fig

6. Lines and symbols indicate the correlations in group data as a function of band frequency,

and shading indicates the 95% confidence interval around each value, estimated using a boot-

strapping procedure (n = 1000). For all five spectral modulation rates, bands at the low- and

Fig 5. Examples of idealized magnitude spectra for 0.5 and 2 rpo. In both cases the nominal spectral modulation

depth is 10 dB. The top and bottom rows show standard and target stimuli, respectively. The +/- 6-dB interval rove is

not depicted in this figure.

https://doi.org/10.1371/journal.pone.0195686.g005
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high-frequency edges of the stimulus (0.125 and 8 kHz) tended to receive less weight than

bands intermediate to those edge frequencies. This is consistent with the observation that spec-

tral modulation detection appears to be dominated by cues in the region associated with the

best audiometric thresholds [6]. The pattern of weights was otherwise relatively flat for 0.25

rpo, consistent with the idea that listeners were using cues distributed across octave-wide

bands in these conditions; this makes sense since at least four bands would be required to rep-

resent a full cycle of modulation at this low rate, and modulation jitter was imposed on 1-oct

bands. There was increasing evidence of greater weight applied to the middle of the spectrum

as the modulation rate increased. For 4 rpo there was a clear peak in weights at 2 kHz, and little

or no weight applied to bands 0.125–0.5 kHz. In contrast, for the 0.5 rpo condition the 0.5 kHz

band was among the bands receiving the highest weights. This is broadly consistent with data

collected in quiet in Experiment 3, where performance was relatively consistent across fre-

quency for low modulation rates but improved with increasing frequency up to 2 kHz for

higher rates. The finding that weights varied across frequency contrasts with the findings of

Eddins and Bero [19], who reported that thresholds for detecting spectral modulation do not

depend on carrier spectral region bandwidth.

Experiment 5: Ripple phase discrimination in naïve listeners

A clinical test of spectral modulation would need to be relatively consistent across normal-

hearing listeners and immune to practice effects. While Eddins and Bero [19] found little evi-

dence of practice effects, Sabin et al. [27] argued that practice may differ for different rates of

spectral modulation. Listeners in that study underwent seven days of training on spectral mod-

ulation detection. Training produced the largest threshold improvement for 0.5 rpo, less at 1

rpo, and none at 2 rpo. In the final experiment, spectral modulation phase reversal thresholds

in dB were compared for listeners with extensive listening experience (n = 5, Exp 2) and those

with little or no prior listening experience (n = 15). Three to four threshold estimates were

obtained at each of six spectral modulation rates, completed in a different random order for

each listener.

Results are shown in Fig 7, with light grey lines showing thresholds for individual naïve lis-

teners, and the solid black line showing the mean across naïve listeners. Blue circles show the

mean results from practiced listeners. There was substantial variability across naïve listeners,

with thresholds varying by x3.9 (0.5 rpo) to x14.5 (4 rpo). This wide range of performance was

due primarily to a small number of poor performers. A repeated measures ANOVA was con-

ducted with Greenhouse-Geisser correction; there were two levels of the between-subjects fac-

tor group (practiced, naïve) and five levels of the factor modulation rate (0.25, 0.5, 1, 2 & 4).

The 8-rpo data were excluded due to uniform ceiling performance. This analysis revealed a

Fig 6. Correlation between spectral modulation depth and correct detection of modulation phase reversal. Correlations are plotted as a function of

carrier band frequency, with results shown separately for each of the five spectral modulation rates. Symbols and lines indicate the correlation values

based on 500 trials from each of four listeners. Shaded regions indicate the 95% confidence intervals around those estimates.

https://doi.org/10.1371/journal.pone.0195686.g006
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significant effect of rate (F2.5,45.8 = 32.50, p< 0.001), but no effect of group (F1,18 = 1.64,

p = 0.217) and no rate-by-group interaction (F2.5,45.8 = 0.11, p = 0.936). This result indicates

that most listeners are near asymptotic performance with relatively little practice.

Four out of 15 naïve listeners had at least one threshold that was a factor of two or more

above the mean for practiced listeners. This poor performance in a subset of naïve listeners

appeared to be more likely at high modulation rates (2 & 4 rpo) than low modulation rates

(0.25 & 0.5 rpo), although one listener’s thresholds were elevated at all rates. This trend is

opposite to that observed by Sabin et al. [27], who found greater evidence of improved spectral

modulation detection at low than high modulation rates following practice. The observation of

larger practice effects at high rates in the present paradigm should be treated cautiously, given

the small number of listeners. However, if these findings are confirmed they would indicate

that low-rate spectral modulation phase reversal thresholds could be a better clinical indicator

of hearing deficit than high-rate spectral modulation phase reversal thresholds.

General discussion

The purpose of the present report was to evaluate a measure of spectral modulation sensitivity

that blends the traditional approaches of spectral modulation detection threshold in dB and spec-
tral modulation phase reversal threshold in rpo. The first experiment provided support for esti-

mating modulation phase reversal thresholds by adaptively varying spectral modulation depth

in units of log(dB). Experiment 2 compared thresholds for spectral modulation detection and

modulation phase reversal in dB. Results replicated the continued good spectral modulation

detection thresholds at and above 8 rpo, as observed by Anderson et al. [14]. This result has

Fig 7. Thresholds as a function of spectral modulation rate. Thresholds for spectral modulation phase reversal in dB

are plotted as a function of spectral modulation rate. Thin grey lines show thresholds for individual naïve listeners, and

the thick black line shows the mean across naïve listeners. Circles show results from five highly practiced listeners (also

shown in Fig 3).

https://doi.org/10.1371/journal.pone.0195686.g007
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been hypothesized to reflect temporal cues that support the detection of high-rate spectral

modulation in the context of a spectrally flat standard. In contrast to spectral modulation

detection, modulation phase reversal thresholds were at ceiling (60 dB) for 8 rpo, consistent

with the idea that listeners were not able to use temporal cues under these conditions. While

spectral modulation detection at 4 rpo and above may benefit from a temporal cue, perfor-

mance for lower rates is no better than predicted based on spectral modulation phase reversal

thresholds.

Experiments 2 and 3 evaluated sensitivity to spectral modulation as a function of frequency

region and the presence of masking noise in flanking frequency regions. Off-frequency mask-

ing was negligible when spectral modulation was carried by two contiguous 1-oct bands, but

maskers elevated thresholds by as much as a factor of 2.4 for one-band targets. Both datasets

are consistent with less weight being given to bands at the spectral edges of the stimulus (0.125

& 8 kHz) than to bands in the middle region. While spectral weights were relatively flat for

bands between 0.25 and 4 kHz when the target modulation was 0.25 and 0.5 rpo, increasing

modulation rates were associated with increasing evidence of higher weights in the region of 2

kHz. This outcome is consistent with the frequency effects observed by Supin et al. [17] for

modulation phase reversal thresholds in dB, but inconsistent with the modulation detection

data of Eddins and Bero [19]. This discrepancy in results across paradigms raises the possibility

that temporal cues available in the modulation detection paradigm obscure effects of carrier

frequency, which are evident in the modulation phase reversal paradigm. Greater sensitivity to

high-rate spectral modulation at mid and high carrier frequencies than at low carrier frequen-

cies (< 2 kHz) could reflect frequency-dependent peripheral frequency resolution [28].

In the final experiment, spectral modulation phase reversal thresholds in dB were compared

for highly practiced and naïve listeners. Thresholds for four out of the 15 naïve listeners were

elevated relative to the practiced listeners for at least one modulation rate in the range of 2 to 4

rpo, with some indication of more consistent performance at lower rates. This range of vari-

ability for high-rate spectral modulation phase reversal thresholds within a population of

young, normal-hearing adults suggests that clinical implementation of this task may be limited

to a lower modulation rate (e.g., 0.5 rpo). Such a restriction would not necessarily be onerous

since speech perception is thought to rely predominantly on relatively low-rate spectral modu-

lations [2, 6, 7], and therefore the clinical relevance of results in this region may be particularly

informative. In contrast to results obtained with high-rate spectral modulation, where spectral

resolution is more likely to play a role in performance of hearing-impaired listeners [19], data

on sensitivity to low-rate spectral modulation is thought to reflect a listener’s ability to com-

bine spectral information across frequency.

Supporting information
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