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Abstract: HIV/AIDS is a global public health crisis that is yet to be contained. Effective management
of HIV drug resistance (HIVDR) supported by close resistance monitoring is essential in achieving the
WHO 95-95-95 targets, aiming to end the AIDS epidemic by 2030. Point-of-care tests (POCT) enable
decentralized HIVDR testing with a short turnaround time and minimal instrumental requirement,
allowing timely initiation of effective antiretroviral therapy (ART) and regimen adjustment as needed.
HIVDR POCT is of particular significance in an era when ART access is scaling up at a global level
and enhanced HIVDR monitoring is urgently needed, especially for low-to-middle-income countries.
This article provides an overview of the currently available technologies that have been applied or
potentially used in HIVDR POCT. It may also benefit the continued research and development efforts
toward more innovative HIVDR diagnostics.
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1. Introduction

The HIV/AIDS epidemic has spread to all populated continents in the past four
decades, with no sign of ending in the foreseeable future. HIV has infected 79.3 million
people since it was identified in the early 1980s, and approximately 36.3 million people have
died from AIDS-related illnesses thus far [1]. In 2014, UNAIDS declared ambitious new
targets (95-95-95) to end the HIV epidemic by 2030 [2,3]. However, a challenge that hinders
the elimination of HIV is its ability to constantly mutate genetically and antigenically [4].
The high variability of HIV causes the emergence of drug-resistant variants, reducing
the effectiveness of available antiretroviral (ARV) drugs [4,5]. As access to antiretroviral
therapy continues to scale up globally, HIV drug resistance (HIVDR) has become an
imminent danger that threatens the substantial strides taken by UNAIDS and impairs the
maximization of antiretroviral therapy (ART) benefits [5].

HIV infections are treated with drugs that target viral proteins essential for their
replication, such as protease (PR), reverse transcriptase (RT), and integrase (IN). Nucleoside
and non-nucleoside reverse transcriptase inhibitors (NRTI and NNRTIs) prevent the reverse
transcription of HIV RNA to proviral DNA. In contrast, protease inhibitors (PIs) prevent
the cleavage of HIV polyproteins, and integrase inhibitors (INIs) interrupt viral integration
into the host genome. The rise of HIV drug resistance mutations (HIVDRMs) may render
these drugs inefficient in virological suppression for all available ART agents. As such,
genotypic HIVDR typing aims to examine the presence of known HIVDRMs, qualitatively
or semi-quantitatively [6]. HIV RNA and proviral DNA represents replication-competent
viruses and archived/historical viral populations respectively. Therefore, the detection of
HIVDRM(s) in HIV RNA and DNA may have different clinical application values. For
instance, HIVDRMs in HIV DNA may only inform the treatment initiation with proper ARV
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drugs, while HIVDRM detection in HIV RNA benefits both ART initiation and subsequent
regimen adjustment.

To minimize the impacts of HIVDR variants, the WHO recommends routine surveil-
lance of HIVDR to monitor ART and pre-exposure prophylaxis (PrEP) distribution [4].
The information obtained can also be facilitated by countries when forming their na-
tional treatment guidelines to optimize patient outcomes [4]. Since most infections occur
in the developing world, an ideal HIVDR assay should be accountable and readily ac-
cessible/operable in resource-limited settings (RLS) [7]. Point-of-care tests (POCT) are
vital for de-centralized HIVDR monitoring, which offers lower testing costs, broader test
access, shorter turnaround time, and timely initiation of effective ARV treatment and reg-
imen adjustment as needed [8]. In addition, an ideal POCT should meet the ASSURED
(Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-free, and Deliverable)
criteria endorsed by WHO (Geneva, Switzerland) [7].

POCT has been of great interest to HIVDR professionals for decades. It is acknowl-
edged that the topic of HIVDR POCT had previously been reviewed by others [8–10].
While minimizing the overlap with the previous literature, we focus in this article on the
recent advances in the previously examined POCTs, newly emerged technologies that have
recently been attempted for HIVDR and also those assays with great POCT potentials but
yet to be validated for HIVDR.

2. Technologies Attempted for HIVDR POCT

Conventional genotypic HIVDR typing relies on Sanger sequencing of target HIV
genes and examines the presence of all known HIVDRMs within collectively. In contrast,
while the mechanisms vary, all attempted HIVDR POCTs thus far target single or multiple
selected known HIVDRMs only. Described below are several near-POCTs attempted for
HIVDR testing thus far.

2.1. Oligonucleotide Ligation Assays (OLA)

OLA is a point mutation test initially developed by Landegren et al. to detect mutations
associated with sickle cell anemia [11,12]. The assay was devised based on the premise
that two adjacent oligonucleotide probes hybridized to a specific DNA sequence could be
covalently bonded with a ligase that will discriminate against mismatched bases [11,13].
Frenkel et al. modified the OLA to detect HIVDR mutations in the HIV-1 pol gene with
colorimetry or spectrophotometry [14–16]. OLA is the most-studied POCT for HIVDR. It
has been implemented to detect HIVDR mutations associated with NNRTIs and NRTIs in
Thailand, Zimbabwe, and Kenya [17–20]. Panpradist et al. recognized the need to improve
the detection step, which proved too extensive and complex [12]. As a result, they created
the OLA-Simple, allowing ligated products to be viewed as colored lines on a lateral flow
strip either with a scanner or by plain sight [12,21,22].

The latest version of the OLA-Simple is capable of detecting HIVDRMs across multiple
HIV-1 subtypes (A, B, C, D, and CRF01_AE) using different specimen types (dried blood
spots, peripheral blood mononuclear cells, and plasma) [21]. There are four main steps
involved in OLA-Simple, as illustrated in Figure 1A: (1) acquirement of a cDNA/DNA
template, (2) PCR amplification, (3) ligation of oligonucleotide probes that identify single
mutations, and (4) lateral flow detection [12,22]. In the ligation step, a genotype (mutation or
wild-type) specific probe coupled with a reporter molecule and a common probe with biotin
will bind adjacent to one another to a complementary sequence on the template [14,15]. The
ligated products are then captured with immobilized antibodies on the lateral flow strip
and detected with anti-biotin antibodies conjugated with gold nanoparticles to generate
lines on the strip [21].
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pre-made dry reagents, RNA is used to make PCR products that will undergo oligonucleotide liga-
tion. In this step, mutant (Mut)/wild-type (WT) probes with a reporter molecule will bind adjacent 
to a common probe with biotin to a complementary sequence on the template. The ligation products 
are eventually visualized using a lateral flow device; (B) PANDAA workflow, displaying how pri-
mers and probes bind to their specific target to determine the mutation of interest. Starting with the 
binding of PANDAA primers, qPCR will generate a homogenous population with a probe-binding 
region, followed by the annealing of a target-specific probe with FAM fluorophore (F) to detect the 

Figure 1. Simplified workflow of the exemplar POCTs. (A) In the OLA-Simple workflow, using
pre-made dry reagents, RNA is used to make PCR products that will undergo oligonucleotide ligation.
In this step, mutant (Mut)/wild-type (WT) probes with a reporter molecule will bind adjacent to a
common probe with biotin to a complementary sequence on the template. The ligation products are
eventually visualized using a lateral flow device; (B) PANDAA workflow, displaying how primers
and probes bind to their specific target to determine the mutation of interest. Starting with the
binding of PANDAA primers, qPCR will generate a homogenous population with a probe-binding
region, followed by the annealing of a target-specific probe with FAM fluorophore (F) to detect the single
nucleotide polymorphism. Wild-type specific probes are labelled with VIC fluorophore (V) for comparison.
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(C) The SMART assay combines molecular biology with microfluidics. The ssDNA probes are first
added to RNA, where the SMART probe will bind to the mutation sequence and the BCO binds to a
conserved sequence. Next, a SMART microchip will facilitate the separation of bound and unbound
probes from well 1 to 2. This step is followed by a modified NASBA that will amplify probes
and generate a sequence for a molecular beacon to identify the presence or absence of a mutation.
(NC = negative control). (D) The MAS assay utilizes ASPE primers labelled with Tag to discriminate
against a mutation. Primers are first added to a PCR product, and multiplex ASPE ensues. While
amplification proceeds, biotin is incorporated into the final product and the Tag/anti-Tag sequences
will bind to one another. After, a reporter dye will find biotin and detect hybridized products using
a suspension array system. Data is then recorded by measuring the mean fluorescence intensity
(MFI). (E) The LRA assay starts with adding RNA template to a reaction mixture containing ligases,
DNA polymerases and oligonucleotide primers. Ligation occurs between a common probe that is
complementary to the RNA template and a detector probe that is complementary to the variant. DNA
polymerase will then become activated, and qPCR will amplify ligated products using dual-labelled
probes with fluorophore (F) and quencher (Q) for detection. (F) Multiplex detection assay that uses
specific primers with a Tag sequence and a lateral flow dipstick to detect mutations. PCR samples
undergo a multiplex SSPE, and biotin is incorporated into the extended products. As amplicons
flow through the dipstick, they bind to a complementary anti-Tag and anti-biotin antibodies with
gold nanoparticles will produce red dots for identification. (G) A paper-based assay that combines
different techniques to detect HIVDRM. It starts with RPA, followed by oligonucleotide ligation at
the site of interest. Products are then applied to an ELISA lateral flow assay, where fixed antibodies
will hybridize with reporter molecules. Then streptavidin conjugated with horseradish peroxidase
binds to biotin to produce brown precipitates for signal detection.

OLA-Simple has been successfully applied in detecting HIVDRMs across multiple
major HIV-1 subtypes using specimens from Kenya, South Africa, Peru, Thailand, and
Mexico. High concordances were obtained between the results from OLA-Simple and those
from Sanger sequencing and even high-sensitivity HIVDR assays such as Next Generation
Sequencing (NGS) with a mutation frequency cut-off at 1% [21,22]. The significant advan-
tages of this assay include the use of lyophilized reagents for fast and accurate setup and
the elimination of purification between steps [21,22]. The major equipment required to
complete this assay includes a thermocycler and an office scanner linked to instructional
software [21].

OLA-Simple is the best-developed near-POCT HIVDR thus far that has been validated
for multiple key HIVDRMs from different HIV-1 subtypes. The instructional software
by the assay developers also ensures the user-friendliness of performing OLA-Simple
assay by inexperienced lab personnel, especially in RLS. Despite the promising approach
of the OLA-Simple, it needs extra machinery to generate a DNA template, electricity to
operate, and storage for lyophilized reagents. Proper training may also be necessary to
avoid cross-contamination between different steps.

2.2. Pan-Degenerate Amplification and Adaptation (PANDAA)

Allele-specific PCR is one of the most widely used tests for HIVDR identification
using quantitative PCR (qPCR) and is one of the many foundations of current POCTs.
PANDAA is a point mutation assay developed by MacLeod et al. to tolerate the diversity
of nucleotide sequences flanking the target mutation site, which showed a 96.9% sensitivity
and 97.5% specificity for quantifying HIVDRMs present at ≥5% [23]. In a traditional qPCR
reaction, the binding of probes that are not in perfect complementation to the template are
unstable and can produce false-negative results. In contrast, the PANDAA assay addresses
high sequence variability through normalization of probe-binding regions, as seen in
Figure 1B. PANDAA primers have two main features: (1) a pan-degenerate region (PDR)
containing degenerate bases to account for nucleotide variability and (2) an adaptor region
(AR) that matches the probe-binding regions flanking the mutation of interest [24].
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PANDAA requires no separate cDNA synthesis or PCR procedures, and the starting
materials could be RNA or DNA. During the initial qPCR cycles, site-directed mutagenesis
will occur to generate a population of homogenous amplicons with similar probe-binding
regions complementary to the probes. This step removes any secondary polymorphisms
that interfere with probe hybridization in a traditional qPCR. A target-specific probe will
bind in the next stage, and qPCR results will differentiate between a mutant and a wild-
type. While these primers were created by combining multiple HIV-1 subtypes to build
a consensus sequence, the PANDAA assay can be curated to accommodate local HIV-1
sequence diversity [23]. One intrinsic limitation of PANDAA, and other allele-specific
assays in general, is that a negative readout from it implies the absence of the target DRM
allele. It could result from wild-type template, shown by a positive outcome from the
wild-type control, or from a new allele at the target locus, which may render negative
results for both wild-type and mutation-specific reactions.

Kouamou et al. assessed the diagnostic accuracy of PANDAA against plasma samples
from patients in Zimbabwe that have acquired HIVDR [25]. Five HIVDRMs associated with
resistance against NNRTIs and NRTIs were examined with PANDAA, and the results were
compared against data from Sanger sequencing. The results demonstrated that PANDAA
rendered excellent sensitivity (95~98%) and specificity (83~100%), although the readouts
fluctuated among assays targeting different HIVDRMs. Maraupala et al. conducted another
study to test the diagnostic accuracy of PANDAA against Sanger in a cohort of patients
from Botswana to use the assay as an alternative approach for rapid HIVDR test, and high
concordance was observed between the data obtained from the two compared assays [24].
This positions PANDAA as a promising assay for HIVDR, although further refinement is
required to meet the ASSURED criteria [7].

PANDAA requires a qPCR machine, but there is no need for bioinformatics support
in data interpretation [26]. One significant advantage of PANDAA is that it mitigates the
impacts of sequence diversity in the flanking region, which would inevitably affect the
probe binding and reduce assay sensitivity and accuracy. Still, it requires either RNA/DNA
as a starting material, which indicates an extra step on top of the assay.

2.3. SMART (Simple Method for Amplifying RNA Targets)

The prevalence of influenza prompted McCalla et al. to develop a method to amplify
RNA with engineered ssDNA probes [27]. They reasoned that the availability of rapid
POCT diagnostics would aid the healthcare community in containing known infections and
preventing antiviral misuse. Their research found nucleic acid sequence-based amplification
(NASBA) assays advanced with the incorporation of microfluidic devices showed a positive
response. McCalla’s methodology realized the benefit of this combination and made crucial
modifications to NASBA to remove RNA secondary structures that hindered the assay and
presented the SMART assay. Morabito et al. then repurposed the assay to detect HIVDR
mutation from HIV-1 samples [28].

The SMART technique uses two ssDNA probes that will bind to a specific RNA target
sequence: (1) biotinylated capture oligonucleotide (BCO) attached to a streptavidin-coated
magnetic bead (SMB) binds to a conserved region and (2) a SMART probe binds to the
mutated region (Figure 1C). The two probes are added to the solution to bind to the RNA
target. The solution is then added to the SMART microchip, where it will pass through
a microfluidic channel from one well to the other while a magnet separates bound and
unbound structures. Afterwards, the modified NASBA will isothermally amplify the probes
and molecular beacons will quantify data in real-time [27–29].

In this assay, amplification and detection rely on the specific hybridization of the
SMART probe rather than the target RNA. The SMART probe can be engineered to have
favourable or unfavourable binding energies to ensure it does not bind to other oligonu-
cleotides. Additional benefits are the use of microfluidics, which provide a close, efficient,
automated system that reduces hands-on time, human error, and probable contamina-
tion. To complete this assay, a microfluidic device and a qPCR are the main components
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needed [27–29]. Limitations in this assay consist of the absence of an extraction step to
obtain an RNA template and qPCR, which utilizes molecular beacons. Concerns may also
arise as to proper laboratory operation and the requirement of technicians to be trained.
Again, a laboratory space will be essential in implementing this method. Moreover, this
preliminary study has only tested a single NNRTI mutation, and the lack of real-world
studies hinders the determination of feasibility of the assay, although it holds great promise
for POCT application.

2.4. Multiplex Allele-Specific (MAS) Assay

This assay was developed by Zhang et al. to address issues with existing POCTs only
detecting one or few mutations per test. Based on a suspension array technology, they
produced the MAS assay that would allow simultaneous detection of multiple major HIV-
DRs [30–33]. In their study, allele-specific primer extension (ASPE) primers were designed
to target HIVDRMs associated with NNRTIs, NRTIs, and PIs in HIV-1 subtype C [31,33].
The ASPE primers are further designed so that the 3′ end contains an allele-specific nu-
cleotide, while its 5′ end has a Tag sequence [31].

The assay begins with adding ASPE primers to a reaction tube with a reagent mixture
and the templates (Figure 1D). Primer extension occurs and biotin-labelled dCTP is incor-
porated into the derived amplicon. Afterwards, hybridization occurs where microspheres
containing an anti-Tag anneal to the extended DNA fragment through complementary Tag
sequence. A reporter molecule will then bind to the biotin and record the mean fluorescence
intensity of each microsphere based on its unique internal dye.

In a follow-up study, Zhang et al. adapted the assay for subtype B by altering ASPE
primers and applied it to dried blood spot specimens collected from patients on antiretrovi-
ral therapy [33]. For both HIV-1 subtypes B and C, MAS assays showed high concordance
and comparability when compared to conventional Sanger sequencing [31,33]. The flexibil-
ity of the suspension array technology allows MAS assay to be easily adapted to create any
ASPE primer and corresponding microspheres. Unlike sequencing, the results can be easily
interpreted and reported right away [31]. The sensitivity of MAS assay ranged from 1.56%
to 12.5% depending on the HIVDRM being examined [33].

The extreme variation among HIV-1 sequences warrants the need for specific primers
to be made. In addition, as a PCR product is the starting material, raw material will have
to be processed to obtain a template. There is also the requirement for a suspension array
system to perform the assay and, as previously mentioned, such equipment comes with
an extra burden. Considering the logistic and operational constraints as the assay is now,
more development efforts are warranted to apply MAS in practice for HIVDR POCT.

2.5. Ligation on RNA Amplification (LRA)

A preliminary study by Barany exhibited a ligase-mediated detection technique to
distinguish between mismatched and complementary bases [34]. This process joins two
oligonucleotides together when they bind to a complementary sequence on a template. The
products then undergo cyclic amplification with another set of oligos complementary to
the original ones. In the presence of a mismatch, ligation and amplification are inhibited,
suggesting the presence of a variation. This method has been adapted to anneal two DNA
probes using miRNA as a template [35–37]. Zhang et al. noted the valuable role this assay
played and the part it could have in HIVDR testing. After some modifications, one being the
exclusion of cDNA production, which eliminated the risk of nucleotide misincorporation,
the LRA assay was formed [38].

The LRA assay is a one-step, single-buffer scheme to detect point mutations from
RNA. In a single tube with optimized buffer, ligase, hot-start DNA polymerase, and
oligonucleotide primers are added (Figure 1E). The reaction has three phases: (1) ligation,
(2) polymerase activation, and (3) quantitative PCR. The temperature is set low during the
first stage, allowing ligase to be the only active enzyme. In this step, a common probe that
fully complements the RNA target and a detector probe that is complementary only to
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the variant are hybridized adjacent to one another by a ligase. In the next stage, the ligase
enzyme is inactivated and DNA polymerase is activated instead, signalling the start of the
amplification phase. Ligated probes are then amplified with dual-labelled probes during
qPCR for detection [38].

This method separates the ligation and qPCR reaction by exploiting hot-start poly-
merases. By doing so, only one reaction is active at a time, thereby achieving maximum
sensitivity, which for K103N was determined as 1%. The results showed that this assay out-
performed allele-specific PCR and pyrosequencing in detecting mutant specificity [38]. To
perform this assay, a qPCR is needed, suggesting that it needs the minimum requirements
of a laboratory.

Zhang et al. had only presented a proof of principle for this assay. The RNA template
used had mutations introduced into the pol gene of the HIV-1 genome through site-directed
mutagenesis. Further follow-up study and validation of this assay to examine different
HIV-1 subtypes and HIVDRMs other than the K103N mutation they studied remain to be
completed and are necessary before its potential for HIVDR POCT can be better assessed.

2.6. Multiplex Detection Assay

Gomez et al. first developed a novel method for rapid genotyping of blood groups
using a lateral flow biosensor to prevent alloimmunization, a major complication during
blood transfusions [39]. Using whole blood sample, multiplex PCR was performed, and
amplicons were transferred onto a lateral flow strip. Products were then captured with
probes and red dots appeared for blood group deduction. Combining strategies that
were previously used for genetic diseases and cancer, they adapted the assay to detect
HIVDRM [40–42].

The study executed a proof-of-concept test on HIV-1 subtype B plasma specimens
to rapidly detect mutations that cause resistance in NNRTIs. The assay has two major
components: (1) a rapid multiplex detection system utilizing sequence-specific primer
extension (SSPE) primers containing a Tag sequence and (2) a dry reagent lateral flow
dipstick that generates red dots (Figure 1F). As the sample migrates on the dipstick, the
products are captured by probes with an anti-Tag sequence. Then, an anti-biotin antibody
conjugated with gold nanoparticles will cause the generation of red dots for easy visual
recognition. On the membrane, wild-types can be detected on the left, while mutants
can be found on the right [43]. This assay was shown to have a limit of detection of
100 copies of plasmid DNA, while its sensitivity for mutation detection was determined as
10~20% depending on the HIVDRMs being examined. Notably, these findings remain to be
validated using clinical specimens.

Besides the OLA-Simple, Multiplex Detection Assay is another methodology claimed
to be near-point-of-care assay [43]. It proves to be versatile as primers and probes of
this assay can be tailored to detect known or new HIVDR mutations prevalent in an
area. It is specific, and no cross-reaction has occurred between sequences from different
subtypes or between wild-type and variant sequences. Compared to Sanger, which has a
lower detection limit of 200 copies per assay, the study achieved a lower detection limit
of 20 copies per assay, demonstrating higher sensitivity. To perform this assay, some of
the instruments required include a thermal cycler and a drying oven. Regardless of the
positive indications of this assay, an extraction step is needed. Also, much like the LRA, it
fails to provide much real-life evidence to showcase its practicality.

2.7. Paper-Based Detection Assay

This proof-of-concept assay builds on multiple techniques and previous work done
by researchers. Bui et al. found success when they joined PCR with OLA to detect
drug resistance in Streptococcus pneumonia. As discussed earlier, Panpradist et al. made
significant strides in modifying the OLA-Simple [21,44]. Based on these findings, Natoli
et al. established a technique that would isothermally amplify HIV products and detect
drug resistance through a lateral flow [45].
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The assay starts with using recombinase polymerase amplification (RPA) to amplify
a portion of the HIV-1 pol region (Figure 1G). Afterwards, an oligonucleotide assay, akin
to the OLA-Simple, is used to discriminate against wild-type, and visualization occurs
through the paper-based ELISA. In the lateral flow membrane, antibodies corresponding to
reporter molecules are immobilized on each side of the fork and will each capture ligated
products as they flow through the membrane. Brown precipitates will then appear if ligated
products are present. The detection limit of this assay was determined as 103 copies of
pre-amplification template while mutant templates were present at 20% [45].

RPA not only isothermally amplifies DNA in a short time, but it also tolerates impure
samples, which is favorable in places where contamination is unavoidable. Reagents of
this amplification technique can also be in lyophilized form, shortening preparation time.
Additionally, the assay design proves to be specific as the fork in the membrane limits the
aggregation of OLA products. To complete this assay, a heat block and a tabletop centrifuge
is necessary for the RPA step prior to proceeding to OLA [45].

Although this assay can merely detect one mutation per test, it can be adapted to
detect other high-impact mutations. At its current state, the assay is yet to have sample
preparation as an integrated step, and more hands-on time is required when adding ELISA
reagents to the membrane. Furthermore, gBlocks stocks were used as DNA template and
the membrane design lacks a control region, lowering the validity of this assay. More
research is needed to advance this technology towards POCT.

HIV patients often elude clinics after a one-time visit because of stigma, inconvenience, travel
costs, or other socio-economic factors. It is then essential for physicians to diagnose and treat the
patients on the same day. POCTs for HIVDR will aid physicians when determining the best drug
regimen to start with or switch to in order to achieve suppressed viral loads. Table 1 provides an
overview of some general features and requirements of these assays. The estimates of the assay costs
and assay time was excluded as these numbers can vary depending on manufacturers and number of
samples, respectively.

Table 1. An overview of current technologies promising for HIVDR POCT.

POCTs Starting Material Subtype Specificity Major Equipment
Required

Validated
against Sanger Refs.

OLA-Simple DNA or RNA HIV-1 (A, B, C, D, AE) Thermocycler, Office
scanner
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3.1. Multiplex Solid-Phase Melt Curve Analysis

This melt curve analysis platform is a genotypic resistance assay that measures the
hybridization, capture, and dissociation of multiple nucleic acid targets to and from surface-
bound oligonucleotide probes. The probes have two parts: (1) a complementary sequence
to HIV-1 strains and (2) a nucleotide triplet complementary to a codon at a drug resistance
mutation. First, fluorescently labelled DNA is added to the oligonucleotide microarray at
one temperature (i.e., 55 ◦C). Then, the concentration of labelled DNA captured is monitored
in real-time by the probes as the solution temperature progressively increases. A time-series
data is generated that defines duplex stability, which is used to identify the correct codon
at the position of a drug resistance mutation. In vitro experiments were performed with
HIV-1 plasma samples and culture supernatants, containing HIV-1 subtype A, B, C, D,
CRF01_AE, and CRF02_AG [46]. Although this is a promising approach, operation in a
closed-tube format and removing the wash step are essential. Multiplex PCR will need to
be executed to detect the entire set of known HIVDRMs. Lastly, a production version of a
prototype chip was used to detect fluorescence, so it is unsure how this would translate in
real-world settings [46].

3.2. µBAR Platform

Myers et al. have developed the Microfluidic Biomolecular Amplification Reader
(µBAR) in an attempt to combine electronics, optics, microfluidics, and molecular biology.
The µBAR is a battery-powered, portable instrument capable of isothermal amplification of
multiple markers with the use disposable microfluidic assay cartridges. First, the sample
(i.e., blood, sputum, or saliva) is loaded onto a disposable microfluidic cartridge, where the
system uses a loop-mediated isothermal amplification (LAMP) technique. The cartridge is
then inserted into the µBAR, where it will control assay temperature, illuminate the chip,
and monitor real-time fluorescence signals from individual reaction chambers [47,48].

Previously, the LAMP assay was verified to detect HIV and malaria from blood
samples and TB drug resistance from sputum samples. Myers et al. have also exhibited use
of the LAMP assay on the µBAR platform in detecting the HIV integrase gene. The platform
also has GPS and cellphone connectivity for healthcare delivery in remote locations and
epidemiological surveillance. The chip contains six inlets, meaning multiple samples can
be loaded simultaneously. In its current form, the µBAR requires more work to modify for
HIVDR detection [48].

3.3. Oxford Nanopore MinION (ONT) Sequencing

The increase in using NGS technologies to detect HIVDR have been on the rise. It
is noteworthy that most of available NGS platforms are not even close to the bedside
POCT considering their prohibitive instrument and reagent costs, demanding technical
operation and complexity in data interpretation. One exception could be the MinION
platform, developed by the Oxford Nanopore Technologies (https://nanoporetech.com/,
accessed on 16 June 2022). MinION is thus far the only portable device that execute NGS
on DNA or RNA templates with minimal requirement for additional instrumental and
technical support.

Gonzalez et al. pioneered applying MinION sequencing to HIVDR analysis. HIV RNA
was first extracted from plasma samples followed by PCR amplification. PCR products
were then prepared for MinION library preparation and a sequencing library was generated
to load into a flow cell. Good concordance was observed between the MinION consensus
sequences and the Sanger sequencing outputs from the same patients, regarding both the
sequence identity and HIVDR profiling [49]. While their findings support the usage of
ONT in decentralized laboratories, the scarcity of supporting data from other labs warrants
further investigation on the full potentials of MinION technologies in HIVDR POCT.

The technologies listed in this section are but a snippet of potential and relevant assays. For
example, techniques that use GeneXpert, Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR), and High-Resolution Melting (HRM) have also been implemented in drug resistance
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detection for varying pathogens. Perhaps these methods, coupled with the rise in technological
advancement, may inspire new HIVDR POCTs.

4. Conclusions

The expansion of ART access comes with a growing concern for the rise in HIVDR.
HIVDR monitoring is essential for effective HIV/AIDS management at individual and
population levels. Conventional Sanger sequencing-based HIVDR genotyping may not be
readily assessable, especially in RLS, for logistical and operational reasons. POCT offers a
quick and affordable solution administered at or near patient care. The assays explored
here show the progression of each test, where they stand, and adjustments that need to
be made. Although the work that has been done is impressive, no such assay entirely
embodies the ASSURED criteria. A fully validated POCT that satisfies the set standards
and meets all the needs for HIVDR diagnostics, especially in RLS, has yet to be developed.
More research still needs to be done as POCTs are indispensable in controlling the spread
of drug-resistant HIV.
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