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Complementary Post 
Transcriptional Regulatory 
Information is Detected by 
PUNCH-P and Ribosome Profiling
Hadas Zur1,*, Ranen Aviner2,* & Tamir Tuller1,3

Two novel approaches were recently suggested for genome-wide identification of protein aspects 
synthesized at a given time. Ribo-Seq is based on sequencing all the ribosome protected mRNA 
fragments in a cell, while PUNCH-P is based on mass-spectrometric analysis of only newly synthesized 
proteins. Here we describe the first Ribo-Seq/PUNCH-P comparison via the analysis of mammalian cells 
during the cell-cycle for detecting relevant differentially expressed genes between G1 and M phase. 
Our analyses suggest that the two approaches significantly overlap with each other. However, we 
demonstrate that there are biologically meaningful proteins/genes that can be detected to be post-
transcriptionally regulated during the mammalian cell cycle only by each of the approaches, or their 
consolidation. Such gene sets are enriched with proteins known to be related to intra-cellular signalling 
pathways such as central cell cycle processes, central gene expression regulation processes, processes 
related to chromosome segregation, DNA damage, and replication, that are post-transcriptionally 
regulated during the mammalian cell cycle. Moreover, we show that combining the approaches better 
predicts steady state changes in protein abundance. The results reported here support the conjecture 
that for gaining a full post-transcriptional regulation picture one should integrate the two approaches.

Gene expression is a multi-step process, with the first stage of this process (transcription) and its product (mRNA 
levels) comprehensively studied and measured. However, it was shown that the correlation between mRNA and 
protein levels is relatively limited1–3. Consequently, recently various technologies for studying post transcriptional 
regulation, and specifically translation, have emerged to close this gap1,3–26.

Currently the most common technology for studying translation is ribosomal profiling (Ribo-Seq). Although 
ribosomal profiling was introduced only several years ago it has already been successfully employed for answering 
fundamental biological questions related to post transcriptional regulation of gene expression5,27–30. Figure 1A 
includes the major steps of the ribosomal profiling approach: Cells are treated with cycloheximide (or a different 
drug) to arrest translating ribosomes; extracts from these cells are then treated with RNase to degrade regions of 
mRNAs not protected by ribosomes; the resulting 80S monosomes, many of which contain a ~30-nucleotide ribo-
somal protected footprint (RPF), are purified (e.g. using sucrose cushion) and then treated to release the RPFs, 
which are processed for Illumina high-throughput sequencing. The next steps are computational: the RPFs are 
mapped to the transcriptome, and based on them it is possible to infer various biophysical properties related to 
the translation elongation process. For example, each ribosomal footprint read is related to a certain codon along 
the mRNA, and was generated when the codon in one of the mRNA molecules is covered by a ribosome. Thus, 
from a biophysical perspective, relatively slower codons along the mRNA can be detected based on the fact that 
they are covered by ribosomes for longer periods of time, creating a higher number of reads.

Recently a new approach called PUNCH-P31,32 was proposed. This approach is based on the combination of 
biotinylated puromycin with MS analysis to globally label newly synthesized proteins, enabling identifying the 
proteins translated in a certain condition. The method involves isolation of ribosomes by ultracentrifugation 
followed by cell-free labeling of nascent polypeptide chains with 5′  biotin-dC-puromycin 3′  (Biot-PU), capture 
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on immobilized streptavidin, and analysis by liquid chromatography-tandem MS (LC-MS/MS). This work flow 
leads to the identification of thousands of newly synthesized proteins in a certain condition, generating a snapshot 
of the cellular translatome, see Fig. 1B.

It is easy to see that both approaches measure very similar but non-identical aspects related to protein synthesis 
(Fig. 1A,B). Roughly, Ribo-Seq is based on the total number of ribosomes on the mRNA molecules related to a 
certain gene; PUNCH-P, on the other hand, is based on the total amount of nascent peptide emerging from the 
ribosomes on the mRNA molecules related to a certain gene which are translating at the time of the experiment. 
Since not all ribosomes on the mRNA (i.e. can be detected by Ribo-Seq) are actually translating33–35 at a certain 
moment (i.e. can be detected by PUNCH-P), the signal detected by these approaches is not identical.

Furthermore, the different approaches are expected to have different experimental biases/noise as they are 
based on different experimental/analysis techniques: sequencing vs. proteomics.

It is important to mention that a priori it is not clear which approach (or if there is an approach that) performs 
better. This is true not only due to the different biases related to the different methods, but also due to the fact 
that each of them is expected to capture biological meaningful signals not detected by the other: changes in the 
number of translating ribosomes, but also the total number of ribosomes, are expected to be relevant to protein 
levels regulation.

Thus, the aim of this study is to compare these two methods, which were both performed at the G1 and 
M phases of the cell cycle, and discern if their integration can yield improved predictions of relevant genes/
proteins, and uncover otherwise elusive biological phenomena. To this end we: 1. Tested the predictive power 
of steady-state protein levels of each approach and their combination (Fig. 1C). 2. Uncovered significant M/
G1 differentially expressed genes with each of the approaches. 3. Exploiting these genes we discovered relevant 
intra-cellular pathways with each of the approaches (Fig. 1E). 4. Discerned biological relevant properties related 
to the differentially expressed genes detected by each approach and the protein-protein interaction network 
(Fig. 1D,F). In points 2.-3. we specifically studied the genes/proteins detected by only one of the methods.

Figure 1. A schematic illustration of the study: Ribo-Seq (A) and PUNCH-P (B) data are used simultaneously 
in-order to augment the information which can be extracted based on each alone (description of the methods 
appears in the main text). (C) Predictive power of steady-state protein levels based on the two approaches 
are assessed. (D) Protein-protein interaction (PPI) analyses are performed based on differentially expressed 
(DE) genes in the cell-cycle phases M and G1 based on each approach. (E) Pathway enrichment analyses are 
performed based on the DE genes detected based on each approach. (F) Clustering of the PPI sub-networks 
induced by DE genes detected based on each approach is performed.
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Data for PUNCH-P was taken from31 (see Methods), while we generated the Ribo-Seq data via two experi-
ments, one with 3 replicates, and the other with one replicate, totalling 4 technical replicates per each cell-cycle 
phase, G1 and M (see Methods and Supplementary Methods).

Results
Correlations based on Ribo-Seq and PUNCH-P with steady state protein levels. Steady state 
protein levels are expected to be affected by all gene expression steps (e.g. transcription, translation, mRNA deg-
radation, protein degradation). Thus, steady state protein levels (PSS) are expected to correlate with mRNA levels, 
PUNCH-P (PP), and Ribo-Seq (RP). In addition, it is easy to see that RP and PP (which encapsulate both the 
mRNA levels and the translation step, or the number of ribosomes on the mRNA molecules) are expected to 
have higher correlation than mRNA levels with steady state protein levels. Moreover we expect to see relatively 
high correlation between PP and RP as they measure similar variables. Finally, we also expect that the combina-
tion of the different measures can improve the prediction of steady state proteins, as each of them encapsulates 
non-identical aspects of gene expression and exhibits different experimental biases. All these points are verified 
in this sub-section.

At the first step, we aimed at providing estimations for the effect of transcription and translation on steady state 
protein levels via the correlation of the products of these stages. Our analyses demonstrate that the correlation (all 
correlations reported in the paper are Spearman, see Methods) between the G1 and M phases of steady state pro-
tein levels and Ribo-Seq (r(PSS,RP)) are: 0.70 (p <  10−454) (see Fig. 2A,E) and 0.70 (p <  10−454) respectively (see 
Fig. 2B,F); the correlation is significant and high also when controlling for mRNA levels (r (PSS,RP|mRNA): 0.45 
(p =  2.4·10−252) (see Fig. 2C,E) and 0.47 (p =  4·10−280) (see Fig. 2D,F). The correlation between M and G1 phases 
of steady state protein levels and PUNCH-P (r(PSS,PP)) are: 0.68 (p <  10−454) (see Fig. 3A,E) and 0.68 (p <  10−454) 
(see Fig. 3B,F); the correlation is significant and high also when controlling for mRNA levels (r (PSS,PP|mRNA): 
0.48 (p =  3.3·10−213) (see Fig. 3C,E) and 0.48 (p =  2.7·10−208) (see Fig. 3D,F). The correlation of PSS with mRNA 
levels is indeed lower than with both RP and PP, (r(PSS,mRNA)): 0.61 (p <  10−454) and 0.60 (p <  10−454), for the 
G1 and M phases respectively (see Supplementary Figure S4).

Next we estimated the correlation between the two methods PP and RP to evaluate the similarity between 
the prediction obtained by the two methods. Our analyses demonstrate that the correlations between the M 
and G1 phases of PUNCH-P and Ribo-Seq are 0.63 (p <  10−454) (see Fig. 4A,E) and 0.63 (p <  10−454) (see 
Fig. 4B,F) respectively; the correlations are high also when controlling for mRNA levels (r (PP,RP|mRNA)): 0.31 
(p =  2.5·10−112) (see Fig. 4C,E) and 0.32 (p =  2.2·10−117) (see Fig. 4D,F) for M and G1 respectively.

Finally, as can be seen in Fig. 5, regressors based on PP and RP for the M and G1 phases (see Methods), as a 
function of RP coverage from > 0 to ≥ 60%, achieve improved correlation with steady state protein levels in com-
parison to a regressor based only on either PP or RP, while including mRNA levels further improves the correla-
tion (but not substantially), see Supplementary file Supplementary_Table_S1_RegressorCorrs.xlsx.

The results demonstrate that the correlation between PP and RP is high (as expected) but is far from being 
perfect. In addition, these results support the hypothesis that the variance in protein levels can be explained by PP, 
RP, and mRNA levels; thus both changes in mRNA levels (regulated among others via transcription) and changes 
in ribosomal densities (as part of the translation step) effect the changes in protein abundance (translation, and 
not only transcription, as traditionally thought, has important contribution to changes in protein levels). The 
results also show that PP and RP have significant predictive power of protein levels. Finally, we demonstrate how a 
regression based both on PP and RP improves the prediction of steady state protein levels. Since steady state pro-
tein levels may also be affected by proteins not translated at the moment of the experiment, a predictor based on 
both PP and RP improves the prediction of steady state protein levels upon a predictor based on PP or RP alone.

There are relevant genes detected to be differentially expressed exclusively by each 
method. At the next step our objective was to show that both PP and RP can be used for detecting relevant 
differentially transcriptional and post transcriptional regulated genes, and that each of these methods exclusively 
detects relevant genes.

To demonstrate this point we first inferred the set of differentially expressed (DE) genes between the G1 and M 
phases of the cell cycle detected for PUNCH-P (PP) and Ribo-Seq (RP) separately. M/G1 differentially expressed 
(DE) genes were determined according to DESeq36 for Ribo-Seq (RP), where the top 10% most significant FDR 
p-values were selected (See Methods and Supplementary Methods), and for PUNCH-P (PP) according the top 
10% ANOVA significant fold change (see Methods,31). At the next step we defined three DE gene groups: 1. RP-PP 
(genes that are significantly DE in RP but not in PP; 1,090 genes). 2. PP-RP (genes that are significantly DE in 
PP but not in RP; 200 genes). 3. RPPP (genes that are significantly DE both in PP and in RP; 125 genes). These 
two DE sets, and the three DE groups derived from them will be employed throughout the paper. We performed 
pathway and biological process enrichment for each of the groups (Methods). To achieve our objective, we aimed 
to show that relevant pathways and biological processes are significantly enriched with DE genes in all three cases.

As can be seen in Fig. 6 (for a full pathway list please see Supplementary Information Table 1 (section 3.2), 
and for a full biological process list see Supplementary files Supplementary_Table_S3_RPDavidReports.xlsx, 
Supplementary_Table_S4_PPDavidReports.xlsx, Supplementary_Table_S5_RPiPPDavidReports.xlsx, see fur-
ther details in Methods), each technique enables detecting meaningful genes/proteins that are not detectable by 
the other. The detected differentially expressed post-translational regulatory pathways related to the three sets 
described via enrichment analysis include: central cell cycle, central gene expression regulation, DNA damage 
and replication, and chromosome arrangement.

For example, all three sets are enriched with genes related to the cell cycle and M phase; RP-PP and RPPP 
are enriched with genes related to apoptosis regulation, while PP-RP is enriched with genes related to cell prolif-
eration; RP-PP is enriched with genes related to Spindle Organization and DNA Damage response, while PP-RP 



www.nature.com/scientificreports/

4Scientific RepoRts | 6:21635 | DOI: 10.1038/srep21635

and RPPP are enriched with genes related to Spindle Microtubule/Microtubule organization center and DNA 
replication.

We would like to emphasize the fact that aside from detecting distinct biologically relevant pathway enrich-
ments, there are cases that the sets RP-PP and PP-RP are enriched with genes related to the same (or very similar) 
pathways, suggesting that the different techniques tend to find different parts of the same relevant pathways. This 
evidence again demonstrates the advantage of combining/considering the two methods.

Now, in order to further demonstrate that each of the techniques, RP and PP, uncovers biologically relevant 
protein-protein interactions that cannot be detected by the other technique, three PPI network colouring schemes 
were defined, where “black” nodes represent differentially expressed genes (DE; see Methods) as above between 

Figure 2. (A) Scatter plot of steady state protein levels (PSS) (y-axis , data is log2-scaled) and Ribo-Seq (RP) 
(x-axis, read count log2-scaled RPKM (see Methods)) G1 phase. (B) Scatter plot of PSS (y-axis log2(intensity)) 
and RP levels (x-axis, read count log2-scaled RPKM (see Methods)) M phase. (C) Correlation between PSS 
and RP G1 phase for different bins of genes sorted by mRNA levels (the y-axis is the correlation, the x-axis is 
the mRNA levels RPKM ranges, scatter plots are log2-scaled). (D) Correlation between PSS and RP M phase 
for different bins of genes sorted by mRNA levels (the y-axis is the correlation, the x-axis is the mRNA levels 
RPKM ranges, scatter plots are log2-scaled). (E) A summary of the 2 correlations performed with PSS: RP, and 
RP controlled for mRNA levels (partial correlation) for G1 phase. F. A summary of the 2 correlations performed 
with PSS: RP, and RP controlled for mRNA levels (partial correlation) for M phase.
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the G1 and M phases of the cell cycle. In the first case, the black nodes were defined as genes that are DE according 
to RP but not PP (RP-PP); in the second case the black nodes were defined as genes that are DE according to PP 
but not RP (PP-RP); in the third case the black nodes were defined as genes that are DE according to both RP and 
PP; similarly to the previous analysis.

We computed the mean distance (md) between all black nodes in each of the aforementioned three cases. For 
each case, we computed a PPI empirical p-value by randomizing each PPI network 100 times respectively gener-
ating random networks with a similar degree distribution as the original one, and calculating the black node dis-
tance, showing that the mean distances are shorter in the real graph in comparison to the random ones (see details 
in the Methods section). Shorter distances between DE PPI nodes means more meaningful biological signals, as 

Figure 3. (A) Scatter plot of steady state protein levels (PSS) (y-axis log2(intensity)) and PUNCH-P (PP) 
(x-axis log2(intensity)) G1 phase. (B) Scatter plot of PSS (y-axis log2(intensity)) and PP levels (y-axis 
log2(intensity)) M phase. (C) Correlation between PSS and PP G1 phase for different bins of genes sorted 
by mRNA levels (the y-axis is the correlation, the x-axis is the mRNA levels RPKM ranges, scatter plots are 
log2-scaled). (D) Correlation between PSS and PP M phase for different bins of genes sorted by mRNA levels 
(the y-axis is the correlation, the x-axis is the mRNA levels RPKM ranges, scatter plots are log2-scaled). (E) A 
summary of the 2 correlations performed with PSS: PP, and PP controlled for mRNA levels (partial correlation) 
for G1 phase. (E) A summary of the 2 correlations performed with PSS: PP, and PP controlled for mRNA levels 
(partial correlation) for M phase. PP data is log scaled.
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if indeed we uncover real regulatory changes in signalling pathways, we expect them to be clustered/close in the 
PPI network (we expect to see physical interactions between DE genes). All p-values were < 10−2 (when 100 per-
mutations are performed a p-value < 10−2 means that the observed distance was always shorter than the distances 
obtained during all 100 random permutations), with the mean distance being shorter (2.01) in the case of the 
RPPP than in the case of the RP-PP and the PP-RP groups (2.12 and 2.13, respectively) (see Fig. 7).

Our analyses demonstrate that genes detected by each of the methods (even if not detected by the other) 
tend to be closer to each other than expected by the null model in the PPI network. Thus, this result supports 
the hypothesis that not all biological meaningful genes detected by one of the methods are detected by the other.

Figure 4. (A) Scatter plot of PUNCH-P (PP) (y-axis log2(intensity)) and Ribo-Seq (RP) G1 phase (x-axis, 
read count log2-scaled RPKM (see Methods)). (B) Scatter plot of PP (y-axis log2(intensity)) and RP levels M 
phase (x-axis, read count log2-scaled RPKM (see Methods)). (C) Correlation between PP and RP G1 phase for 
different bins of genes sorted by mRNA levels (the y-axis is the correlation, the x-axis is the mRNA levels RPKM 
ranges, scatter plots are log2-scaled). (D) Correlation between PP and RP M phase for different bins of genes 
sorted by mRNA levels (the y-axis is the correlation, the x-axis is the mRNA levels RPKM ranges, scatter plots 
are log2-scaled). (E) A summary of the 2 correlations performed with PP: RP, and RP controlled for mRNA 
levels (partial correlation) for G1 phase. (E) A summary of the 2 correlations performed with PP: RP, and RP 
controlled for mRNA levels (partial correlation) for M phase. PP data is log scaled.
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Modules of differentially post-transcriptionally expressed genes and physical interactions. To 
better understand the differentially expressed genes detected by PP and RP we performed a clustering analysis 
(Newman algorithm37, see Methods), on the PPI network using the previously described DE genes according to 
RP and PP respectively, divided into the following three aforementioned groups: 1. RP-PP. 2. PP-RP. 3. RPPP 
(See Supplementary Figure S5 for RP∪ PP (Supplementary section 3.3)). We projected each of the 3 groups on to 
the PPI network respectively, and only selected genes from each group that have a neighbour in that group in the 
PPI. In each case, the Newman algorithm partitions the PPI networks to sub-networks, where each sub-network 
is modular and includes nodes related only to the corresponding group. To understand the pathways related to 
each module we performed pathway enrichment based on the genes in each module (for all significantly enriched 
pathways see Supplementary file Supplementary_Table_S6_ClusterPathwayEnrichment.xlsx). As can be seen in 
Fig. 8, the number of modules detected for each of the groups RP-PP/PP-RP/RPPP were 4/13/15 respectively. 
The modules in all cases were enriched with relevant pathways related to the cell-cycle, DNA Damage and rep-
lication, and gene expression regulation and signalling. This analysis demonstrates again that meaningful sub 
networks of physical interactions are detected by each of the methods separately and together.

Genes detected to be of opposite regulatory direction based on the different methods. Finally, 
we aimed to examine if there are genes that are detected to be significantly expressed based on both RP and PP 
but in opposite directions. To this end we looked at the following groups:

(a) Genes that have RP M/G1 fold-change > 0 and PP M/G1 fold-change < 0
(b) Gens that have RP M/G1 fold-change < 0 and PP M/G1 fold-change > 0
In total 78 genes appear in the first group and 68 genes in the second (the list of genes appears in 

Supplementary file Supplementary_Table_S7_RPopPPdiffGenes.xlsx). Both lists of genes were enriched with rel-
evant pathways related to gene regulation and cell cycle (see Supplementary table 2 in Supplementary section 3.4). 
For example, the first group is enriched with genes related to DNA Replication and cell cycle control, while the 
second group is enriched with genes related to various central signalling pathways.

This result suggests that increasing/decreasing ribosomal density as detected by Ribo-Seq is not always related 
to increasing/decreasing the ribosomal density involved in protein synthesis at a certain time point as detected by 
Punch-P. There can be various explanations for this discrepancy which may be related (among others) to the fact 

Figure 5. Correlations with M and G1 steady state protein levels (PSS) for three regressors based on PP, PP 
and RP, and PP, RP and mRNA respectively, as a function of the RP coverage (>0 – 60%), the y-axis is the 
correlation. We performed a 2-fold cross validation 100 times per Spearman linear regressor, with the standard 
deviation of all the regressors being between 0.0062–0.0141, with the variation being lower for the most part as 
coverage increases and with more measurements combined. One can see that combining all 3 measurements 
improves correlations with steady state protein levels. See Supplementary file Supplementary_Table_S1_
RegressorCorrs.xlsx.
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that translation elongation (and not only translation initiation) is controlled during the mammalian cell cycle. For 
example, regulatory changes that cause ribosomal stalling during elongation33–35 may cause traffic jams, for exam-
ple, near the beginning of the ORF where the ribosomes are not translating, or there is no nascent peptide emerg-
ing from the ribosome; since such ribosomes can theoretically be detected by RP and not PP they may increase 
RP but decrease PP. It is also possible that in some cases, due to traffic jams, the RNase does not accurately digest 

Figure 6. Selected pathways and biological processes which are significantly enriched by the 3 groups 
of DE genes (for a full pathway list please see Supplementary Information Table 1 (section 3.1), and for 
a full biological process list see Supplementary files Supplementary_Table_S3_RPDavidReports.xlsx, 
Supplementary_Table_S4_PPDavidReports.xlsx, Supplementary_Table_S5_RPiPPDavidReports.xlsx).

Figure 7. Three PPI network colouring schemes were defined, where black nodes represent DE genes 
(based on PP and/or RP): 1. RP-PP. 2. PP-RP. 3. RPPP DE. We compute the mean distance (md) in each 
between all black nodes. For each case we compute a PPI empirical p-value by randomizing each PPI network 
100 times respectively and calculating the black node distance. Shorter distances between DE PPI nodes means 
more meaningful biological signals (we expect to see physical interactions between DE genes).
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the mRNA between ribosome protected regions. This may result in underestimation of ribosome density and may 
lead to a decrease in measured ribosome density when the actual density increases (see, for example,38).

It is also important to emphasize that aspects related to changes in mRNA levels can’t trivially explain the 
observed discrepancies since both RP and PP are expected to be proportional to mRNA levels (if there are no 
traffic jams and biases).

Details regarding some of the post-transcriptionally regulated genes detected. The major aim 
of this study was to show in an objective, large scale, quantitative manner that combining RP and PP measure-
ments (in comparison to each measure independently) is expected to improve the ability to detect meaningful 

Figure 8. (A) RP-PP clusters: 879 genes participate, resulting in 4 clusters. (B) PP-RP clusters: 96 genes 
participate, resulting in 13 clusters. (C) RPPP clusters: 90 genes participate, resulting in 15 clusters. The 
functional enrichment related to each cluster appears in the figure. There are 4 node sizes depicted in the figure, 
according to their centrality (the 4th size being equal for most nodes is a coarse-grained portrayal for simplicity). 
For the full cluster pathway enrichment see Supplementary_Table_S6_ClusterPathwayEnrichment.xlsx.
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post transcriptional regulation signals. Thus, we focused on objective quantitative measures. Nevertheless, in 
this section we provide some biological examples related to meaningful/relevant biological cell cycle signals 
detected by PP and RP. To this end, we will focus on the module inference/clustering analysis performed based 
on protein-protein interactions among genes detected to be differentially expressed based both on PP and RP (90 
genes, see Fig. 8C and supplementary table Supplementary_Table_S9_RPiPP_ClusterPEDetails.xlsx). As men-
tioned, we detected 15 modules (see Fig. 8C); here we will discuss in further detail the four largest modules.

The first module of size 11 genes/proteins includes many genes that encode ribosomal proteins (e.g. RPL3, 
RPL34, RPS10, RPL35, RPL32, RPL29) which are down regulated (in terms of both RP and PP) in M in compari-
son to G1. This result supports the hypothesis that translation (specifically the canonical regulatory mechanisms) 
is globally down regulated during M phase39–41 in mammalian cells, and that the down regulation occurs and can 
be detected also post transcriptionally.

The second module of size 27 genes/proteins includes various M phase specific genes/proteins mainly related 
to spindle morphogenesis and chromosome movement that are found to be up-regulated based on PP and RP in 
M phase: for example, one hub in this module is the gene/protein ESPL1 which stabilizes cohesion between sister 
chromatids before anaphase, and their timely separation during anaphase is critical for chromosome inheritance. 
Another hub is the gene/protein BUB3 that is involved in spindle checkpoint function, which is up-regulated in 
M phase together with BUB1. Interestingly the module also includes several kinesins KIF22, KIF20A, KIF18A, 
KIF23, KIF2C, KIFC1; it was suggested that kinesins and proteins interacting with them are known to have 
important spindle morphogenesis and chromosome movement in cell division42–45, and our analysis emphasizes 
their post-transcriptional regulation. Naturally this module also includes (among others) cell cycle regulatory 
proteins such as CDC20 and CDC8 that are involved in nuclear movement prior to anaphase, chromosome sep-
aration, and spindle formation. It also includes various Kinases (e.g. PLK1, CDK1, and TTK) that are involved in 
regulating the processes mentioned above.

The third module includes 13 genes/proteins related mainly to DNA replication. One hub in this module is the 
gene FZR1; it is up-regulated in M-phase and is a key regulator of ligase activity of the anaphase promoting com-
plex/cyclosome. The module includes genes/proteins related to DNA replication regulation, and activation and 
maintenance of the checkpoint mechanisms in the cell cycle that coordinate S phase and mitosis: MCM6, CDC6, 
MCM3, PCNA, RFC4; all these genes are down regulated (based on RP and PP) at the M-phase as there is no 
DNA replication during M-phase46. The module also includes various genes related to gene expression regulation 
and proliferation such as the gene DMAP1 which represses transcription and is up-regulated in M-phase. Finally, 
it includes genes related to cell cycle progression such as the genes CCNA2 and CDK4 which are up-regulated in 
M-phase.

The fourth module (module number 14) includes 12 genes/proteins which are related among others to 
dynamic microtubules polymerization, which is an important step of the M-phase46. For example, the module’s 
main hub, TUBB4B (Tubulin, beta 4B class IVb), and 3 additional tubulins ( TUBB6, TUBA4A, TUBB4A) are 
up regulated (according to RP and PP) in M-phase; this fact emphasizes the post transcriptional regulation of 
microtubules polymerization during M-phase.

To summarize the details depicted above, the genes/proteins detected by RP and PP are highly relevant to 
cell-cycle biology and teach us about the central role of post transcriptional regulation during the cell cycle.

Discussion
This study includes the first comparison of RP and PP. We report various analyses that demonstrate that RP 
and PP can exclusively detect relevant differentially expressed genes. Specifically, based on enrichment and PPI 
network analyses, we show that genes that are detected by each of these methods, but not by the other, tend to 
include biologically relevant signals. We evince that the prediction of steady state protein levels can be improved 
by combining PP and RP measurements. Furthermore, we show that the relevant DE genes detected by each of 
the methods may have opposite fold-change, demonstrating that the two techniques can detect different aspects 
of translational regulation, and are thus in part synergistic.

There are three major explanations to the fact that the correlation between 1) a model based on RP, PP, and 
mRNA and 2) steady state protein levels is not prefect: First, steady state protein levels are a result of many gene 
expression steps such as the regulation of protein degradation, post-translational regulation, and secretion of 
proteins. Second, there are different biases in the cases of the various experiments/measurements. For example, 
the sequencing based experiments have biases related to RNase, while the proteomic based approaches have 
biases related to protein digestion; in addition, the distribution of protein/peptide length is different in PUNCH-P 
(where truncated proteins are generated at the first stage) and in steady state protein levels measurements.

Third, some of the differences are due to natural variability among technical repeats and may also be related to 
the stochasticity (specifically for lowly expressed genes) of the gene expression steps (see, for example,47).

We would like to summarize some of the different biases in the RP and PP experiments. The RP major biases 
can be related to preferences/non-uniform efficiency of the RNase, sequencing biases, inefficiency of the RNase in 
digesting regions with high ribosome densities, multiple mapping positions of small reads/footprints, ribosomal 
RNA filtering, biases due biochemical properties/efficiencies/’preference’ of the protocol’s reagents27,38,48–51.

The PP major biases can be related to preferences/non-uniform efficiency of the protein digestion step, recog-
nition/detection of similar and/or short proteins/peptides, inability to recognize short peptides emerging from 
ribosomes at the 5′  end of the ORF (the beginning of the translation), mass spectrometry resolution, biases due 
biochemical properties/efficiencies/’preference’ of the protocol’s reagents52–58.

Thus, naturally, the analyses reported here suggest that one possibility to overcome these problems is via the 
integration of these techniques. For example, performing both PP and RP experiments should enable detecting 
more significantly relevant differentially expressed genes than each of the methods separately.
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As mentioned above, there are aspects of gene expression not covered by PP, RP, or mRNA levels. These aspects 
include among others measurements of protein degradation rates, mRNA degradation rates, post-transcriptional 
regulation, protein secretion and transport. Including these aspects in the regression analysis should improve 
the correlation with steady state protein levels, and provide better understanding of gene expression regulation. 
Similar/overlapping analyses that include various (but not all) gene expression steps were performed in very few 
previous studies8,59. However, such an analysis has yet to be performed in the cell cycle of mammalian cells (or 
other organisms) with all the gene expression aspects mentioned above, calling for future studies on this topic.

The Spearman correlations obtained between PP, PP +  RP, and PP +  RP +  mRNA, regression (for RP cov-
erage > 0; and on 100 2-fold cross validations, see Methods) with steady state protein levels of G1 are up to 
0.681/0.753/0.756 respectively. Similarly, the Spearman correlations obtained between PP, PP +  RP, and 
PP +  RP +  mRNA, regression with steady state protein levels of M are up to 0.677/0.752/0.757 respectively. 
The Pearson correlations are similar: correlations between PP, PP +  RP, and PP +  RP +  mRNA, regression 
with steady state protein levels of G1 are 0.715/0.776/0.781 respectively; correlations between PP, PP +  RP, and 
PP +  RP +  mRNA and steady state protein levels of M are 0.714/0.775/0.781 respectively.

The mRNA vs. protein levels correlations are comparable or higher than correlations reported in mammals in 
previous studies based on different techniques and/or tissues/cells: for example, previous studies have generally 
reported a correlation of up to 0.5–0.64 and sometimes lower between protein and mRNA levels (hence around 
30%–40% of the variance of protein levels is explained by mRNA levels59–61). Thus, the improved correlations/
regressions reported here are significant and high also when comparing to previous studies in the field.

It is important to emphasize that the correlations between RP, PP and regression based on both in mammals 
have not been reported before. Furthermore, correlations between mRNA and protein levels have not been per-
formed in the HeLa S3 cell-cycle; since post-transcriptional regulation is expected to vary among different tissues, 
cell-lines, and conditions, we also do not expect to see identical mRNA - protein-levels correlations in all these 
cases.

The fact that our analyses demonstrate that there are genes detected to be differentially expressed in opposite 
directions via RP and PP, suggests increasing/decreasing ribosomal density detected by RP is not always related 
to increasing/decreasing ribosomes involved in protein synthesis rates and/or protein abundance. As mentioned, 
this is possible, for instance, if not only translation initiation but also elongation is regulated during the cell cycle. 
Specifically, an increase in the initiation rate (which should contribute towards increasing ribosome density and 
RP levels) together with an increase in the elongation rate in some regions of the mRNA (which should contribute 
towards decreasing ribosome density and traffic jams related to RP levels), may decrease the number of ribosomes 
involved in translation at a certain time point (related to PP and RP levels measurements) even though the protein 
synthesis rate should clearly increase. As aforementioned, the differences between the RP and PP measurements 
can be related to possible biases in the two techniques.

Finally, the aim of the paper was to show in a simple and clear way that each of the methods PP and RP can 
detect biological meaningful information not detected by the other method. The various future directions which 
emerged based on the reported results include: better understanding and modelling of the biases of PP and RP, 
and developing various novel experimental and computational methods for combining the information detected 
by the two techniques.

Furthermore, it will be interesting to provide additional biological verifications related to some of the reported 
results. For example, the genes with RP-PP discrepancy can be studied to better understand the origin of this 
discrepancy. As mentioned, one explanation may be related to ribosome trafficking/traffic jams/etc, to better 
understand this issue novel variants of RP, less sensitive to traffic jams need to be developed; they may be based on 
sequencing of reads related to two or three close ribosomes and not only one ribosome footprint length38.

Methods
Ribosomal Profiling. Ribosomal Profiling Experiment. Two Ribo-Seq experiments (which included par-
allel RNA-Seq), one with 3 replicates, and the other with one replicate, totalling 4 technical replicates for each 
phase G1 RP and mRNA, and M RP and mRNA, respectively (all in all 16 samples), were performed. Total 
mRNA and ribosome-protected fragments were analyzed essentially as described in51. In brief, 5 ×  106 HeLa 
S3 cells synchronized to either G1 or M phase were treated with 100 ug/mL cycloheximide for 5 min, harvested 
on ice and washed twice in ice-cold PBS. Following cell lysis and removal of nuclei by centrifugation, one tenth 
of the lysate was removed for total mRNA extraction and the rest was digested with 60 units RNase I (Ambion) 
for 45 min at room temp. Digestion was terminated with SuperaseIN (Ambion) and monosomes were pelleted 
by ultracentrifugation on a sucrose cushion. Footprint fragments were purified using a 15% polyacrylamide urea 
gel, and rRNA fragments were removed using Ribo-Zero Magnetic Gold Kit (Epicentre) according to the man-
ufacturer’s instructions. In parallel, mRNA was purified using Oligo (dT) cellulose (Ambion) according to the 
manufacturer’s instructions and fragmented for 25 min at 94 °C. Both mRNA and ribosome-protected fragments 
were dephosphorylated with T4 polynucleotide kinase and ligated to Universal miRNA Cloning Linker (NEB). 
RNA was reverse transcribed using SuperScript III and cDNA was circularized using CircLigase (both Epicentre). 
Libraries were amplified using indexed Illumina primers, size selected on a 1% agarose gel and extracted using 
High Pure PCR Purification Kit (Roche).

Reference Transcriptome Assembly. We decided to compile our reference Human genome based on 
transcripts seeing as our aim is to quantify known gene mRNA levels and ribosomal footprints and compare them 
to the PUNCH-P measurements31. Annotated (5′ UTR, ORF, 3′ UTR, chromosome positions) Human transcripts 
(GRCh37.p11) were downloaded from BioMart62. Annotated UTRs were added to the ORFs when available, 
otherwise flanking 1000nt segments were retrieved from Ensembl GRCh37 release 72 in place of the missing 
UTRs63. In addition, transcripts with UTRs shorter than 4nt were replaced by the respective 1000nt flanking 
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segment. A total of 94895 transcripts were reconstructed, resulting in 20727 unique protein coding genes. There 
were 13016/94895 annotated 5′ UTRs, and 21195/94895 3′ UTRs. When UTRs were supplemented from Ensembl 
and the ORFs differed, we replaced the BioMart ORFs with their Ensembl counterpart, except for cases where 
the Ensembl ORFs were not composed of whole codons triplets (i.e. their length is not divisible by 3), and the 
BioMart ones were, there were 5884/94895 such cases. This left us with 12547/94895 transcripts not composed 
of whole codon triplets. In order to rectify this, these transcripts were converted to proteins and compared to the 
BioMart protein version. If the missing AA was present in the BioMart protein, we tried to uniquely determine 
the partial codon, by looking at the AA’s synonymous codons. If this was possible the partial codon was com-
pleted to a full codon, otherwise an N was added instead, this occurred in 2769/12547 of the transcripts. If the 
missing AA was not present in the BioMart protein, the ORF was truncated. Transcripts with no stop codon were 
randomly supplemented with one. BioMart ORFs containing one or two N characters in the beginning were not 
modified. Considerable specific rRNA contamination may remain even after depletion by subtractive hybridiza-
tion. Thus, a significant fraction of sequencing reads are derived from digested rRNA present in the monosome 
sample. Therefore reads mapping to rRNA are first filtered, against a rigorous rRNA database5. Aside from rRNA 
contamination, there are contaminating sequences derived from other abundant ncRNAs, such as tRNAs. The 
extent of rRNA and ncRNA contamination can vary, particularly when global changes in protein synthesis alter 
the fraction of active ribosomes, and thus the number of ribosome-protected footprints relative to other RNAs. 
Thus, reads are also mapped separately to an annotated non-coding RNA database5. rRNA (498 genes) and tRNA 
(452 genes) databases were compiled from BioMart (GRCh37.p11)62.

Mapping Ribosomal Footprints and mRNA Fragments to Transcripts. The following read (riboso-
mal footprint or mRNA fragment) mapping protocol was devised and implemented, for each of the four replicates 
separately (for G1 RP and mRNA, M RP and mRNA, totalling 16 replicates):

1. The 3′ end adapter CTGTAGGCACCATCAAT was removed from the 51nt long reads using Cutadapt 
v1.664, retaining only reads with a minimum length of 24nt.

2. These reads were then initially mapped against the rRNA and tRNA databases, using Bowtie v0.12.865:  
-a –best –strata -n 2 –seedlen 24 –tryhard. In -n mode, alignments may have no more than N mismatches in the 
seed, which was chosen here to be 25,48, with the seed length being 24, as sequencing errors are more likely near 
the end of the read. Specifying -a instructs bowtie to report all valid alignments, subject to the alignment policy, 
enabling us to control the mapping selection process, with –best –strata causing bowtie to report only those 
alignments in the best alignment “stratum”. Throughout the analysis the Bowtie mapping is executed as described. 
Reads which mapped against the rRNA and tRNA databases were removed.

3. The remaining reads were mapped against the assembled transcriptome using Bowtie as described.
4. Read mapping frequency was determined. The read mapped position is defined to be the read’s 5′  end 

first nucleotide (changing the definition to 10-20 nt downstream did not change the reported results). Uniquely 
mapped reads are indentified accordingly. As discussed in66, many of the multi-aligned reads are attributable to 
known duplicated genes and segmental duplications. This is expected for paralogs that are very similar to each 
other and for internally repeated domains within some genes. If all multi-aligned reads are simply discarded, 
the end result will be to undercount greatly or even entirely fail to report expression for genes that have closely 
related paralogs, such as those of the ubiquitin family for example. Specifically in our dataset, the human tran-
scriptome, many of the alternatively spliced transcripts of a gene bear high similarity. Multiple aligned reads were 
extended to 30nt (the approximated insert length), with a mismatch score calculated. Reads with a single mini-
mal mismatch score were deemed unique. Equal contenders vicinity read density was calculated 30nt upstream 
and downstream of the mapped read’s 5′  end first nucleotide (the read mapped position). Each of the multiple 
mapped positions is then assigned a fraction of the read, signifying its relative frequency based on its vicinity read 
density. In some rare instances the vicinity read density of all the multi-aligned reads is zero (possibly reflecting 
very recent gene duplication66), we then distribute the reads evenly among the mapped positions candidates. The 
inclusion and proportionate distribution of multiple aligned reads will naturally have variable impact on RNA 
quantification, with smaller effects on paralogs that are more divergent and larger effects on those that are more 
similar to each other66.

The total number of reads, number of reads mapped to rRNA, number of reads mapped to tRNA, total 
number of viable reads, number of reads mapped, and number of multi reads, appear in supplementary file 
Supplementary_Table_S8_RP_PP_Data.xlsx. As mentioned in the main text, the relatively short length of the 
reads may contribute towards biases in RP as some of the reads can be mapped to many positions in the genome. 
Our analysis demonstrates that this is the case for on average 8.6% of the reads (among others this may be due to 
the fact that we map to annotated transcripts and not to the entire genome).

Ribosome Density and mRNA Levels Quantification. The sensitivity of RNA-Seq in general, and 
Ribo-Seq in particular, should be a function of both molar concentration and transcript length. Thus transcript 
levels are quantified in reads per kilobase of exon model per million mapped reads (RPKM). The RPKM measure 
of read density reflects the molar concentration of a transcript in the starting sample by normalizing for RNA 
length and for the total read number in the measurement. This facilitates transparent comparison of transcript 
levels both within and between samples66. In ideal conditions where sequenced reads are randomly sampled uni-
formly from transcripts and no alternative transcripts are derived from an identical genic region, RPKM reflects 
well the actual transcript abundance levels. In alternatively spliced genes, which comprise 92–94% of human 
genes67,68, if ignored, the fact that different isoforms may be of different lengths, results in a “projective normaliza-
tion” method. It has been shown in a recent paper that the projective normalization method under-estimated the 
gene expression levels to varying degrees69. We quantify RPKM at the gene level, and since reads were mapped to 
transcripts, the read count was calculated as the sum of the reads mapped to each transcript. We partially correct 
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for the alternative splicing bias by the manner we treat multi-aligned reads as described in the section above. An 
additional bias is related to ‘correct’ estimation of the mappable gene length based on its transcripts. In order to 
provide an accurate as possible estimation of the effective gene length, we performed the following procedure: for 
each gene transcript we extract all the 30 nt sliding windows (approximated insert length), with a slide of 1nt, and 
calculated the number of unique ones. Thus, reads per KB per million reads (RPKM,66), were calculated using 
the formula:

= ( )R C
NL

10
1

9

where C is the number of mappable reads that fell onto the gene’s transcripts, N is the total number of mappable 
reads in the experiment, and L is the estimated gene length in base pairs. For RPKM calculations we considered 
only the last 40nt of the 5′ UTR, entire ORF, and first 40nt of the 3′ UTR (these are the regions related to the trans-
lation of the main coding region of the transcript). This was performed for each of the 4 replicates separately of 
M, G1, RP and mRNA. Throughout the analyses we included only genes with > 0 ribosomal footprint coverage 
(though we supply all data in Supplemetary_Table_S8_RP_PP_Data.xlsx).

PUNCH-P
PUNCH-P Data. PUNCH-P is a novel system-wide proteomic approach for direct monitoring of translation, 
termed puromycin-associated nascent chain proteomics, which is based on incorporation of biotinylated puro-
mycin into newly synthesized proteins under cell-free conditions followed by streptavidin affinity purification 
and liquid chromatography-tandem mass spectrometry analysis, developed by Aviner et al.31. Aviner et al.31 gen-
erated a global profile of protein synthesis throughout the cell cycle by harvesting thymidine-synchronized HeLa 
cells at four time points, corresponding to peak S phase, G2/M boundary, mitotic exit, and peak G1 phase, based 
on fluorescent analysis of DNA content. Synchronization was performed in triplicates, and the samples were 
processed in parallel for PUNCH-P analysis. The raw intensity data was taken from31, consisting of 3 control rep-
licates (nonpuromycylated) and the 4 time points experimental (puromycylated) triplicates (12 in total). Raw MS 
files were analyzed with MaxQuant software70 and the Andromeda search engine71. MS/MS were searched against 
the UniProt human database and an additional list of common contaminants, including avidin. iBAQ and LFQ 
quantification of the raw intensity data were also obtained from31. In order to further eliminate background bind-
ers, e.g. ribosomal proteins, the raw intensity data at the four time points were filtered in the following manner:

1. Lowest intensity value imputation to replace missing values, in this case 1831, was performed on the exper-
imental (puromycylated) triplicates of each time point and the control (nonpuromycylated) triplicate in prepa-
ration for (2).

2. Splitting the data into 2 groups: 3 control samples, and 12 experimental samples, we performed a t-test with 
1% FDR72, filtering out non-significant experimental data points.

3. The non-significant experimental data points identified in (2) were also removed from the iBAQ and LFQ 
version.

4. The experimental data was further filtered for a minimum of proteins detected in at least 2 of the 3 repli-
cates. This was performed separately for the LFQ and iBAQ versions. This was performed in order to ensure that 
the protein levels reported are not a result of noise, a minimum of 2 replicates out of the 3 must show protein 
detection to be considered significant (this is a common filtering approach in the field). We tested variations of 
this filtering procedure and received similar results, but since the authors of31 employed this filtering method we 
decided to be consistent with that.

5. Averaging of the per time point triplicates was performed separately for the LFQ and iBAQ versions.
A total of 5105 proteins were identified in at least two of three samples, of which 4984 were specific to the 

puromycylated samples relative to nonpuromycylated controls (we supply all the PP replicates in iBAQ and LFQ 
form in Supplementary_Table_S8_RP_PP_Data.xlsx so the reader can manipulate them to his needs).

Steady State Protein Levels. Estimation of steady state protein levels for the G1 and M phases were taken 
from31. It is important to emphasize that mass spectrometry (PP and PSS) are highly quantitative, but not in 
an absolute sense. Since we expected a monotone relation between protein levels and RP or PP we performed 
Spearman correlation analysis.

The experimental data was filtered for a minimum of proteins detected in at least 2 of the 3 replicates (we 
tested variations of this filtering procedure and received similar results). This was performed separately for the 
LFQ, and iBAQ versions (we supply all the PSS replicates in iBAQ and LFQ form in Supplementary_Table_S8_
RP_PP_Data.xlsx so the reader can manipulate them to his needs).

HeLa Cells for All Experimental Procedures. PSS, RP, PP, and mRNA, were obtained from the same 
batch of cells but not simultaneously.

Determining Differentially Expressed Genes in M and G1. Differentially expressed genes between M 
and G1 Ribo-Seq measurements were calculated according to36, a method based on the negative binomial distri-
bution, with variance and mean linked by local regression (see Supplementary Methods for further details), where 
the top 10% most significant FDR p-values were selected. Since differential expression is determined at the gene 
level, and since reads were mapped to transcripts, the read count was calculated as the sum of the reads mapped to 
each transcript. Moreover, we considered only the last 40nt of the 5′ UTR, entire ORF, and first 40nt of the 3′ UTR 
(corresponding to the main coding region of the gene). For PUNCH-P differentially expressed genes between M 
and G1 are determined according to highest significant (ANOVA) fold-change. The top 10% highest significant 
fold change was selected. Results for both groups are robust to reasonable variations in this number.
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The analysis performed to detect differentially expressed genes differs between Rib-Seq and PUNCH-P due to 
the nature of the data. For example, Ribo-Seq (like RNA-Seq in general) is assumed to have a negative binomial 
distribution (see Supplementary Methods), while proteomic measurements such as PUNCH-P are (usually) ana-
lyzed with ANOVA31,73. To show that employing the same statistical method to both approaches is inaccurate, we 
performed the following analysis: We calculated Ribo-Seq differentially expressed (DE) genes according to the 
methodology used for detecting DE in PUNCH-P, and compared them to the DE genes as previously detected for 
Ribo-Seq (namely DESeq). Now both selected group sizes are the same (1215), and the intersection was 76, for 
which we calculated a hyper-geometric p-value, and received p =  1 (i.e. the overlap between the two approaches 
is not significant which does not make sense). Conversely the p-value achieved for the intersection of Ribo-Seq 
DE and PUNCH-P DE as performed in the paper was p =3.3·10-51.

Correlations and Regression Analysis. In the correlation analysis the M, G1, RP and mRNA vectors were 
the result of averaging across the respective 4 replicates RPKM (after normalizing each replicate by its mean, and 
the resultant averaged vector is multiplied by the average of the replicate means), in order to minimize exper-
imental noise. The PP M and G1 vectors were the result of averaging across the 3 replicates after the filtering 
described above. All correlations reported in this study are Spearman. We performed a 2-fold cross validation 100 
times per Spearman linear regressor. The regression analysis was performed as a function of the coverage for the 
following 7 RP coverage groups: > 0, ≥ 10%, ≥ 20%, ≥ 30%, ≥ 40%, ≥ 50%, ≥ 60%. The coverage is related to the 
expression levels of the genes (lower coverage corresponds to lower expression levels) and to the expected bias in 
the RP protocol (lower coverage corresponds to higher expected bias).

Note that we believe that Spearman (and not Pearson) correlations are the correct way to evaluate the reported 
relations since we do not expect them to be linear due to the following reasons: 1. Due to translation regulation 
(and other post transcriptional regulatory steps such as degradation of mRNAs and proteins) the protein levels 
are not expected to be proportional to the mRNA levels. 2. Due to the limitations of the approaches often the 
relation between the variable and its measurements is not linear but saturates at higher levels.

Various data utilized in the analysis. Pathways. Human pathways data was downloaded from74. 
Since the flatfile (http://wikipathways.org/wpi/cache/wikipathways_data_Homo%20sapiens.tab, accessed on 
the 30/05/2014) contained only a subset of the genes reported in the individual pathway pages (such as http://
www.wikipathways.org/index.php/Pathway:WP100, accessed on the 30/05/2014), we parsed the individual path-
way pages listed in the flatfile. Specifically, each pathway in the flatfile has its relevant url listed, for example for 
‘Glutathione metabolism’ the url is http://www.wikipathways.org/index.php/Pathway:WP100. We programmati-
cally retrieved each url page, and according to the html tags of the page identified the pathway genes, those whose 
IDs are not ENSG, namely Uniprot, Entrez, and Affymetrix IDs, were then converted to ENSG accordingly. Our 
parsed pathways can be found in supplementary file Supplementary_Table_S2_Human_Pathways.xlsx. In the 
subsequent analyses we only included pathways with seven or more genes (194/372).

Pathway Enrichment Score. A pathway enrichment score for each pathway is calculated according to a hyper-
geometric p-value in terms of the number of differentially expressed genes (calculated as defined above) in ribo-
somal density (RP) excluding PUNCH-P (PP): RP-PP, in PP-RP, and the intersection RPPP, showing that each 
technique enables detecting biological meaningful signals that are not detectable by the second technique.

DAVID Analysis. DAVID functional annotation analyses were performed using the DAVID Web Service 
(DAVID-WS)75. The background list in each analysis was the 20,727 unique protein coding genes described 
above. The categories utilized were: BBID, BIOCARTA, COG_ONTOLOGY, GOTERM_BP_FAT, GOTERM_
CC_FAT, GOTERM_MF_FAT, INTERPRO, KEGG_PATHWAY, OMIM_DISEASE, PIR_SUPERFAMILY, 
SMART, SP_PIR_KEYWORDS, UP_SEQ_FEATURE, GENERIF_SUMMARY, DIP, altogether 15. Term 
clustering analysis was performed with the following parameters: overlap =  3; initialSeed =  3; finalSeed =  3; 
linkage =  0.5; kappa =  50. Gene cluster analysis was performed with the following parameters: overlap =  4; 
initialSeed =  4; finalSeed =  4; linkage =  0.5; kappa =  35. Each representing the medium stringency. Additional 
information regarding the DAVID analysis can be found in the Supplementary Methods.

Protein-Protein Interactions. PPI data was taken from76, which contains 372766 molecular interactions for 
over 30000 human proteins, which are mapped to 17694 unique genes. Besides protein–protein interactions 
from 12 different resources (including HPRD77, BioGrid78, IntAct79, DIP80, BIND81 and Reactome82 databases; 
as well as four interaction maps produced by computational predictions83–86 and two high-throughput yeast-
2-hybrid (Y2H) screens87,88), UniHI 7 also comprises curated transcriptional regulatory interactions from three 
complementary databases TRANSFAC89, miRTarBase90 and HTRIdb91. Since UniHI 7 is in Entrez gene ID for-
mat, we converted to Ensembl gene Ids using: HGNC92, Ensembl BioMart62, DAVID75, UniProt93, IDconverter94 
and g:Profiler95. Of the 17694 genes in the PPI data, we managed to convert 16720, resulting in 357019/372766 
interactions.

The nodes in the resultant PPI network, which is an undirected graph with 4271 connected components, 
with the main connected component the size of 16445 nodes and 357007 edges (interactions), while the rest are 
single nodes or an edge (12), thus we focused on the main connected component, which we will refer to as the 
PPI network.

Two PPI analyses were performed, with differentially expressed (DE) genes according to Ribo-Seq (RP) and 
PUNCH-P (PP) determined as described above:

http://wikipathways.org/wpi/cache/wikipathways_data_Homo%20sapiens.tab
http://www.wikipathways.org/index.php/Pathway:WP100
http://www.wikipathways.org/index.php/Pathway:WP100
http://www.wikipathways.org/index.php/Pathway:WP100
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Three PPI network colouring schemes were defined where black nodes represented DE genes: 1. RP-PP 
(999 genes). 2. PP-RP (203 genes). 3. RPPP (125 genes), respectively. We computed the mean distance (md) in 
each between all black nodes. For each case we compute a PPI empirical p-value by randomizing each PPI net-
work 100 times respectively, while maintaining the degree distribution of the network, and calculating the black 
node distance. Shorter distances between DE PPI nodes means more meaningful biological signals (we expected 
to see physical interactions between DE genes). This analysis shows that each of the techniques uncovers signifi-
cant protein-protein interactions that cannot be detected by the other.

We performed a clustering analysis (Newman algorithm37), on the protein-protein interaction network using 
the previously described differentially expressed genes according to Ribo-Seq (RP) and PUNCH-P (PP) respec-
tively, divided into the following four groups: 1. RP-PP. 2. PP-RP. 3. RPPP (See Supplementary for RP∪ PP). We 
performed pathway enrichment analysis on the resultant clusters. The Newman algorithm optimizes the quality 
function known as “modularity” over the possible divisions of a network, expressing modularity in terms of the 
eigenvectors of a characteristic matrix for the network (called the modularity matrix), and this expression leads to 
a spectral algorithm for community detection. We visualized our clustering analysis using Cytoscape96.
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