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Abstract: Down syndrome (DS) is the most common genetically-defined cause of intellectual
disability. Neurodevelopmental deficits displayed by individuals with DS are generally global,
however, disproportionate deficits in cognitive processes that depend heavily on the hippocampus
and prefrontal cortex are also well documented. Additionally, DS is associated with relative strengths
in visual processing and visuospatial short-term memory, and weaknesses in the verbal domain.
Although reports of pharmacological rescuing of learning and memory deficits in mouse models of
DS abound in the literature, proving the principle that cognitive ability of persons with DS can be
boosted through pharmacological means is still an elusive goal. The design of customized batteries
of neuropsychological efficacy outcome measures is essential for the successful implementation
of clinical trials of potential cognitive enhancing strategies. Here, we review the neurocognitive
phenotype of individuals with DS and major broad-based test batteries designed to quantify specific
cognitive domains in these individuals, including the one used in a pilot trial of the drug memantine.
The main goal is to illustrate the essential considerations in planning trials to enhance cognitive
functions in individuals with DS, which should also have implications for the design of similar
studies in individuals with other forms of intellectual disability.
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1. Introduction

Down syndrome (DS) is the set of phenotypic features of variable expressivity that typically
results from trisomy 21. It was first described by John Langdon Down in 1866 [1], and its genetic
basis, an extra chromosome 21, was discovered almost 60 years ago by Jérôme Lejeune, Raymond
Turpin, and Marthe Gautier [2]. DS occurs in 1 in 691 live births [3] and has a prevalence of 1 in 1000.
The combined prevalence of DS in the United States and Brazil is estimated to be between 500,000 and
600,000 [3–5]. This number is expected to continue rising in both countries due to projected increases
in the life expectancy of people with DS [5,6].

DS is the most common genetic cause of intellectual disability (ID) [3]. The brain phenotype for
adults with DS is characterized by microcephaly, with disproportionally larger volume reductions
seen in the hippocampus, prefrontal cortex, and cerebellum [7–9]. At birth, a wide range of studies
of individuals with and without DS showed little or no appreciable anatomical differences [8,10].
However, several significant differences become apparent in the first few months of life, and include
delayed demyelination, reduced growth of the frontal lobes, a narrowing of the superior temporal
gyrus, diminished size of the brainstem and cerebellum, and a major reduction (20–50%) in the number
of cortical granular neurons [7,8].

As individuals with DS age, they will inevitably develop a neuropathology indistinguishable
from Alzheimer disease [9], which initially manifests itself in the mid-thirties to early forties [11,12].
This neurodegenerative process is thought to lead to the observed high prevalence of early-onset
dementia in this population, most commonly occurring in the fifth or sixth decade of life [13,14].
The life expectancy of persons with DS is quickly approaching 60 years in the industrialized world
and in many developing countries [13,15], mostly due to recent advances in the surgical and clinical
management of the various comorbidities associated with DS [16]. Therefore, recognition and treatment
of the developmental and neurodegenerative components of the syndrome may well constitute the
two greatest unmet therapeutic needs of this population. Accordingly, there is an increasing demand
for translational research aimed at effective treatment outcomes, which should ultimately lead to
improved quality of life for individuals with DS and their families [17,18].

Our research team is particularly interested in the potential involvement of N-methyl-D-aspartate
(NMDA) receptors and the therapeutic use of memantine in DS. Based on behavioral and
electrophysiological data from mouse models of DS, we have hypothesized that NMDA receptor
dysfunction may play significant pathogenic roles in both the neurodevelopmental and neurodegenerative
components of DS [19]. These preclinical data led us to design a pilot clinical trial of memantine aiming
to enhance the cognitive abilities of individuals with DS [20]. Due to its small sample size, this
pilot study was expectedly inconclusive. However, post hoc power analysis of the resulting data
was encouraging enough to warrant a Phase II, follow-up multicenter clinical trial of memantine in
adolescents and young adults with DS [21].

The present paper critically reviews the current knowledge on cognitive deficits of individuals
with DS and some of the broad-based neuropsychological test batteries used to assess cognitive skills
in this population. We then describe the specific tests selected for the pilot memantine trial, their
psychometric properties, and the rationale for administering these tests to evaluate the effects of
memantine as a potential therapeutic agent in this population. The broader goal of the present work is
to illustrate the essential considerations in planning trials to enhance cognitive functions in individuals
with DS, which should also have implications for the design of similar studies for individuals with
other forms of ID of known origin.

In summary, in addition to reviewing the literature on the neuropsychological assessment of
individuals with DS, in the present work, we describe the psychometric properties of the test battery
used in a pilot randomized, double-blind, placebo-controlled study of memantine in adults with DS.
The data used here were derived retrospectively from deidentified, published material [20].
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2. Neurocognitive Phenotype of Persons with DS

2.1. Intellectual Quotient

The best data available report the mean intellectual quotient (IQ) of school-aged children with DS
to be in the low to mid 40s [22–24]. Carr [25] showed progressive reductions in IQ across the preschool
period with IQs declining from a mean standard score of 70 at 6 months of age to a mean standard score
of 50 by 4 years. These reductions are not due to an absence of learning, but correspond to an inability
to keep pace with the cognitive development of same-age peers. Although the ID observed in persons
with DS is indeed an across-the-board phenomenon, most studies examining the neurocognitive profile
have shown disproportionate deficits in late-developing systems, including the medial temporal lobe
(MTL), prefrontal cortex (PFC), and many of the neural systems that underlie language [8,26–29].

2.2. Hippocampus-Dependent Memory

The hippocampal complex is a neural structure that includes the hippocampus proper and
the dentate gyrus [30]. It plays a central role in binding memories to distinct spatial and temporal
contexts [31,32], which makes it critical for long-term memory (LTM) [33–36]. In humans, LTM
can be classified as explicit (declarative) or implicit (non-declarative) memory. Explicit memory is
recalled by a deliberate and conscious effort, such as factual knowledge of people, places and things.
Implicit memory is reflected in unconscious manifestations of previous learning, as in faster responses
to a previously cued category in making a perceptual judgment or in retention of a previously acquired
procedure [37].

Individuals with DS perform especially poorly on tasks that fall into the category of explicit
memory, which requires the recall or recognition of new information and is dependent on the functional
integrity of the hippocampus [38,39]. In adults with DS, three studies analyzing various modalities
of cognitive function demonstrated disproportional impairment in hippocampal function relative
to global cognitive ability [40–42]. For example, Ellis et al. [42] compared individuals with DS to a
typically developing (TD) group matched by chronological age (CA) on a task involving the visual LTM
for pictures placed in different locations in a multi-page picture book. Consistent with hippocampal
dysfunction, the DS group (mean age 26.8; range 14–51) was less able than the comparison group to
recognize the pictures they had been shown or recall their locations.

In a study of adolescents, Carlesimo et al. [38] compared participants with DS to individuals
with other forms of ID and to mental-age (MA)-matched TD children. The adolescents with DS
performed less well on explicit memory tasks than both comparison groups. Compared to the ID
group, individuals with DS performed particularly poorly in organizing verbal material according
to its categorical structure and in actively retrieving stored information. The participants with DS
displayed less efficient retrieval strategies as measured by a smaller discrepancy in recall of related
vs. unrelated words, a reduced tendency to cluster words in recall, and higher scores on recognition
relative to free recall trials. These results suggest weaknesses in both encoding and retrieval abilities as
a potential basis for LTM deficits in persons with DS and are consistent with the structural MRI finding
of reduced hippocampal volumes in a small sample of adolescents with DS [43].

Explicit memory deficits were confirmed by Pennington et al. [8]. In this study, a battery of
18 neuropsychological measures of prefrontal and hippocampal functions were administered to a
sample of 20 school-aged individuals with DS (ages 11–19 years) and to 28 TD children (ages 3–6 years)
individually matched on MA. The hippocampus-dependent measures used were the List Learning
subtest of the NEPSY: A Developmental Neuropsychological Assessment, the Virtual Morris Water
Maze Test, the Pattern Recognition Memory (PRM) and Paired Associates Learning (PAL) subtests of
the Cambridge Neuropsychological Test Automated Battery (CANTAB), and the Ecological Memory
Questionnaire. In spite of the large group difference in chronological age, the DS group performed
worse than the MA group on all four of the hippocampal measures evaluated. Participants in the
DS group tended to learn fewer words on NEPSY List Learning and spent significantly less time
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searching for the target object in the correct quadrant on the Morris Water Maze task in comparison
with the MA controls. Compared to the MA-matched group, the participants with DS also had greater
difficulty recognizing a previously presented pattern on CANTAB PRM and scored more poorly on
CANTAB PAL. In contrast to the hippocampal measures, there were no significant group differences
on individual measures of prefrontal function. On five of six measures, participants in the DS group
tended to perform better than the MA-matched control participants. The authors interpreted the
findings as providing evidence for a dissociation in DS between hippocampus-mediated LTM and
prefrontal cortex-mediated working memory.

The timing of abnormalities in hippocampal development remains unclear [8]. Mangan [44]
found deficits in place learning in toddlers with DS but not in the ability to make use of other types
of cues as memory aides. The Place Learning Task required the use of cues in the surrounding
environment to guide the search for hidden objects, whereas the other conditions allowed for searches
that were driven by local landmarks and directional information in reference to the child’s own
body. Conversely, Roberts et al. [45] suggested that DS-specific memory deficits are not yet evident
in preschoolers with DS and emerge only gradually with age. The authors compared preschoolers
with DS to TD children matched on receptive language or non-verbal scores as a proxy for mental age.
Hippocampal function was assessed using a battery of eye-tracking and behavioral measures (object
location retention memory, deferred imitation, A-not-B task, eye tracking task, and statistical learning).
Findings failed to reveal significant group differences in either immediate or delayed memory on the
eye-tracking or behavioral measures.

2.3. Executive Functioning

In addition to disproportionate deficits in hippocampal-dependent memory, there is also evidence
for disproportionate prefrontal deficits in individuals with DS, although results have been mixed.
Prefrontal functions, often grouped under the label of executive functions (EF), include the ability to
hold information in the mind and manipulate it (i.e., working memory), inhibit actions for which a
response tendency has been established (inhibitory control), and flexibly switch between response sets
(set-shifting) [46].

Despite the lack of evidence from Pennington et al. [8] for disproportionate deficits in EF in
individuals with DS, Lanfranchi et al. [47,48] documented impairments on dual-task measures of
attention-switching in children and adolescents with DS compared to a TD group matched to the DS
group on verbal ability. In a subsequent study, Lanfranchi et al. [49] compared 15 adolescents with
DS to 15 TD children matched for MA on EF tasks assessing set shifting, planning/problem-solving,
working memory, inhibition/perseveration and fluency, and sustained attention. The group with DS
performed at a significantly lower level on tasks assessing set shifting, planning/problem-solving,
working memory and inhibition/perseveration. The adolescents with DS completed the same number
of pages on the sustained attention task as the TD children, but made a greater number of errors.

Rowe et al. [50] also found deficits on tasks assessing set-shifting, sustained attention and planning
in comparing adults with DS, ages 23–40 years to controls with other forms of ID who were matched to
these individuals on age and verbal ability. Similarly, Kogan et al. [51] found that adults with DS were
impaired on visuospatial working memory tasks and on tests of visual-perceptual and visual-spatial
reversal learning compared to individuals with Fragile X syndrome, but that the groups did not differ
significantly on measures of spatial learning and object discrimination.

Studies of adults with DS also suggest that deficits in EF might be associated with the presence
of dementia [49]. In a sample of 20 individuals with DS ages 22–58 years, Nelson et al. [52] found
associations of age and dementia with lower scores on an object reversal learning task. Das et al. [53]
compared a group of individuals with DS with controls without DS, matched for age and severity of
ID, on a battery of tasks assessing planning and attention. Both groups were divided into ‘younger’
(40–49 years) and ‘older’ (50–62 years) subgroups. The authors found that the older DS subgroup
performed more poorly on the measures than the younger DS subgroup. Because age was not
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associated with performance in the controls, the results were interpreted as evidence for early dementia
in the older DS subgroup.

2.4. Short-Term Memory and Working Memory

Despite the ongoing debate about how best to distinguish between short-term memory (STM)
and working (WM) memory, WM is generally regarded as a more active process in which mental
representations are manipulated, whereas STM is viewed as a limited-capacity and more passive
storage space [53]. These two types of memory are also considered to overlap, with STM serving
as a component of WM. This conceptualization is consistent with the WM model of Baddeley and
Hitch [54,55]. In this model, verbal-phonological (phonological loop) and visual-spatial (visuospatial
sketchpad) representations (referred to respectively as the phonological loop and visuospatial
sketchpad) are considered separate stores and are managed and manipulated with the help of
attention-related processes termed collectively as the central executive [56].

Extensive research on verbal WM in individuals with DS reveals relative weaknesses on tests
requiring repetition of digits or words in correct serial order. The number of digits TD children can
remember in sequence increases from about three digits at the age 3 years to seven or eight digits
at 16 years [57]. By comparison, persons with DS remember on average three or four digits [58].
Significant deficits in verbal WM in individuals with DS can still be found even in comparisons made
with persons with ID of other etiologies matched by vocabulary knowledge [59–63] and non-verbal
ability [64].

Although visuospatial STM or WM abilities appear to be better developed than verbal WM
abilities, both types of skills are impaired relative to age-based normative standards [65]. Research
also suggests that STM for visual-sequential information, as assessed for example by the Corsi Block
Test, may be less impaired than memory for visual patterns [8,59,60,64,66–68].

2.5. Visuoconstructive Functions

Some spatial abilities are relative strengths for individuals with DS compared to mental
age-matched groups [8]. For example, Silverstein et al. [69] found that individuals with DS (ages
3–56 years) performed better on drawing and other visuoconstructive tasks from the Stanford-Binet
Intelligence Scale than individuals with ID matched on CA and MA who did not have DS.

2.6. Speech and Language

In contrast to relative strengths in visuospatial skills, individuals with DS have weaknesses in
development of speech and language skills relative to MA expectations, especially in comprehension
and use of the structural or morphosyntactical aspects of language [8]. Receptive and expressive
vocabulary development and fast mapping, which is the speed of learning new vocabulary, are
also impaired in relation to CA-matched controls, but are not compromised to the same extent as
syntax [70,71]. Although receptive vocabulary is an area of relative strength, the depth of semantic
processing may be more severely compromised in individuals with DS than anticipated based on their
MA [72]. A study by Cleave et al. [73] examined narrative development across 1 year in children with
DS aged 5–16 years. Across the year, the verbal narratives of children with DS developed in semantic
complexity and global structure, with no growth in syntactic complexity or narrative length [70,73].

3. Neurocognitive Batteries to Assess Cognition in Individuals with DS

One of the challenges in evaluating the treatment effects of drug therapies is the selection of
proper outcome measures to capture potential changes in clinical, cognitive and adaptive functioning in
individuals with DS. Pharmacological trials in DS require measures that can be repeatedly and reliably
administered across international sites to participants of varying ages and that are relatively unaffected
by repeat administrations of the same of similar test items (i.e., “practice effects”) and sensitive to
variations in skill in persons of both low and high general ability (i.e., devoid of “floor” or “ceiling”



Brain Sci. 2018, 8, 205 6 of 21

effects) [74]. Several studies have employed extensive test batteries to assess the neuropsychological
profiles of individuals with DS. This section provides a brief review of some of the most prominent ones.

3.1. The Study by Pennington and Colleagues

The study by Pennington et al. [8] can be seen as the prototype of large test batteries of measures
designed to elucidate the relative strengths and weaknesses of individuals with DS. This study of
school-aged children with DS and MA-matched TD controls employed the Scales of Independent
Behavior-Revised (SIB-R) [75] to assess functional independence and adaptive functioning. A working
group convened at the National Institutes of Health (NIH) [75] concluded that the SIB-R is an adequate
tool for assessing potential improvements in adaptive functioning domains. It is suitable for a
wide age range, has good psychometric properties, and has been used in previous intervention
trials for DS [20,76]. The other components of the test battery developed by Pennington et al. are
described below.

General intellectual ability was evaluated with the school-age version of the Differential Ability
Scales (DAS). Although the entire DAS has not been used in clinical trials for DS [75], the individual
subtests may be more appropriate for assessing cognitive strengths and weaknesses than test
composites. The DAS is sensitive to variations in skills at the lower end of the ability range, is
frequently used in studies with children with developmental delays, and has excellent reliability with
an internal consistency score of 0.95 for the school-age level core [76]. Evidence for the validity of the
DAS is provided by the high correlation of global scores with Full Scale IQ on the Wechsler Intelligence
Scale for Children-Third edition (WISC-III) [8] (r = 0.85).

Language skills were assessed using the Test for Reception of Grammar (TROG), which evaluates
receptive syntax skills. The TROG has an average internal consistency score of 0.77 across the ages of
4–9 years [77]. The TROG—second edition [78,79] is a promising measure but standard scores need to
be expanded downward to accommodate lower performing individuals, and the measures need to be
evaluated specifically for individuals with DS in terms of their psychometric properties [75].

The Word Structure subtest from the Clinical Evaluation of Language Fundamentals (CELF-3)
was used to evaluate expressive syntax. Both the preschool [80] and the school-age [81] versions of the
test were administered to avoid floor and ceiling effects. The CELF-3 Word Structure subtest has an
internal consistency score ranging from 0.80 to 0.82 between the ages of 6 to 8 years, and the test-retest
reliability is r = 0.76. Esbensen et al. [75] showed that in the DS population, expanded norms are
needed for the CELF-3 that cover a broader age range and lower levels of functioning over the entire
age range [8,75]. To evaluate verbal STM, participants completed the Recall of Digits subtest from
the DAS, which is also a promising measure for clinical trials but needs to be further evaluated in
individuals with DS [8,75].

The List Learning Test of the NEPSY (A Developmental Neuropsychological Assessment) was
used to assess verbal learning and memory. This test has excellent reliability (r = 0.91; [82]) and imaging
studies suggest the involvement of the posterior hippocampus in this type of supraspan learning
task [83]. Further evidence for validity is provided by impairments in list-learning ability in patients
with degeneration or damage to the hippocampus [8,84,85]. The List Learning Test is thus a promising
tool for clinical trials in the DS population, but requires further investigation [75].

One of the tasks used to evaluate spatial LTM was a computer-generated Virtual Morris Water
Maze Test [86], an adaptation of the Morris water maze task used as a rodent model of learning and
memory [8]. The PRM and PAL tests from the CANTAB provided additional measures of long-term
spatial memory. Prior research suggests that the PAL is a suitable task for individuals with DS and
that it is sensitive to impairments in this population [20,74,75,87,88].

Several tasks of prefrontal function were also used. The CANTAB Stockings of Cambridge Test
was administered to assess planning ability. Based on its similarity to the Tower of London (TOL)
this task is assumed to reflect the integrity of the dorsal prefrontal cortex [8,89], although further
research is needed to determine its utility in clinical trials for DS [75]. Verbal fluency was assessed
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using the NEPSY Verbal Fluency and Design Fluency tasks. NEPSY Verbal Fluency has a reliability
of 0.74 for children aged 5 to 12 years and a Design Fluency task reliability of 0.59 in this same age
range [8,90]. The NIH working group concluded that the NEPSY Verbal Fluency Test is an adequate
test in individuals with DS [75]. The Stopping Task [91,92] was used to assess inhibition and CANTAB
Spatial Working Memory (SWM) to assess spatial WM [93]. In the Stopping Task, the participant is
required to press a button in response to a go signal, but on some trials is cued to inhibit this response.
Inhibition is measured by the time needed to suppress the go response. CANTAB SWM requires
participants to search under a series of colored boxes to locate a “blue token” hidden underneath one
of the boxes. Although the psychometric properties of the stopping task for individuals with DS are
largely unknown, SWM has been used in clinical trials and is an appropriate test in participants with
DS [20,74,75,87,88]. Verbal WM was assessed using the Counting Span Task [94].

3.2. The Arizona Cognitive Test Battery (ACTB) for DS

Another test battery for individuals with DS, which was derived historically from the original
work of Pennington et al. [8], was developed by Edgin and colleagues to assess prefrontal, hippocampal
and cerebellar neuropsychological functions [88]. Given its origins, the ACTB is also based in
part on tests from the CANTAB and it was designed to be sensitive to areas of specific cognitive
impairments in individuals with DS [8,88,95,96]. To assess test-retest reliability (ICC) and practice
effects, Edgin et al. [97] administered the ACTB to 54 youths with DS (ages 7–20 years) with a repeat
administration of the battery 3 months after the initial assessment.

The ACTB includes the CANTAB PAL and the computer-generated Virtual Morris Water Maze
Test from the Pennington et al. [8] test battery to assess hippocampal functioning. Although test-retest
reliability was high for the PAL (ICC = 0.75), test-retest correlations for the Virtual Morris Water Maze
Test indicated poor reliability (ICC = 0.43). Measures of prefrontal function include the CANTAB
Intra-Extra Dimensional (IDED) Set Shift and Modified Dots tasks. IDED Set Shift task assesses
set-shifting by requiring the participant to respond to different dimensions of a visual pattern in
making a forced-choice discrimination. Previous research indicates differential impairment in patients
with frontal lobe lesions, relative to lesions in patients with temporal lobe lesions or those with
Alzheimer disease [98]. The Modified DOTS task [99] measures inhibitory control and WM and is
suitable for participants aged 4 years to adulthood. The task requires the participant to press a button
below a picture of a cat and to then shift to require pressing to a new location by the picture of a frog.
The CANTAB IDED had low test-retest reliability (ICC = 0.48) as did the inhibitory control phase of
Modified DOTS (ICC = 0.59). A further limitation of these and other tests of EF is their vulnerability to
practice effects [75].

Tests of cerebellar function included in the ACTB are the CANTAB Simple Reaction Time (SRT)
task, NEPSY Visuomotor Precision, and Finger Sequencing Task. The CANTAB SRT task measures
simple reaction time. Participants press a button when a stimulus appears on a computer screen.
Slowing of motor response time is typical with cerebellar dysfunction and studies have reported
slowed reaction times in individuals with DS in comparison with MA controls and those with other
developmental disabilities, such as autism [100]. This test has minimal language involvement and
satisfactory test-retest reliability with no reported practice effects [101], suggesting that it would be
suitable for clinical trials for DS. However, because this task would be difficult for persons with
significant motor deficits, a simple reaction task requiring little to no fine-motor dexterity may have
wider applicability [75,97]. The Finger Sequencing and the NEPSY Visuomotor Precision [82] and
Finger Sequencing [102] also had good test-retest reliability [97] but are subject to this same limitation.
Finger Sequencing requires the participant to generate sequences by tapping a number of fingers
(1, 2, 3, 4) to a lever in succession. Visuomotor Precision is a timed measure hand-eye coordination
that requires drawing of lines on paper within the borders of narrow tracks.
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Several secondary measures are also part of the ACTB. Verbal comprehension and production
were measured by the Kaufman Brief Intelligence Test, second edition (KBIT-II) verbal subscales [103],
problem solving by KBIT-II Matrices, and immediate spatial memory by the CANTAB Spatial Span, a
test modeled after the Corsi Block Task. The KBIT-II raw scores and CANTAB Spatial Span forward all
demonstrated good to very good levels of reliability (ICC > 0.70 for all). Most Spatial Span measures
had acceptable reliability, although reliability was low for errors (ICC = 0.42) and there was evidence
that this test was more subject to floor effects than other CANTAB tasks. To decrease floor effects,
CANTAB Spatial Span could be replaced by a table-top or more engaging version of the task such as
actual Corsi blocks [104].

Caregiver ratings of participant behavior in the ACTB are the SIB-R [105] to evaluate adaptive
behavior; Behavioral Rating Inventory of Executive Functioning (BRIEF) [106] to measure behavioral
regulation and metacognition; and Nisonger Child Behavior Rating Form-Parent to assess conduct
problems, hyperactivity, anxiety, sensitivity, ritualistic, stereotypic, social adaptive skill, and
compliance [107]. Although most of these measures were stable across the follow-up period
(ICCs > 0.8), some of the individual scales, such as BRIEF Working Memory T-score and Nisonger
Self-Injury/Stereotypic, had poor reliability or were subject to large practice effects. Parent reports can
provide useful information as secondary measures and may enhance ecological validity because of
their relevance to daily life functioning and well-being. However, these measures are also susceptible
to placebo effects [108] and thus are unlikely to be useful as quantitative measures of primary outcome
in clinical trials.

3.3. The Test Battery by Liogier d’Ardhuy and Colleagues

In a 6-month longitudinal and multinational study of cognitive function in individuals with
DS, Liogier d’Ardhuy et al. [74] used subtests of the Repeatable Battery for the Assessment of
Neuropsychological Status (RBANS) to assess immediate memory (List Learning) and language
capacities (Picture Naming and Semantic Fluency) [109]. Findings indicating that List Learning had
good test-retest reliability (ICC 0.69 for adolescents and ICC 0.64 for adults), are not subject to floor
effects, and are sensitive to variations in age and IQ, suggesting that it is suitable for clinical trials for
DS [75]. Semantic Fluency was also reliable (ICC adolescents 0.59; ICC adults 0.73), with no evidence of
floor effects, while Picture Naming had low test-retest reliability (ICC < 0.53 in both groups). Although
the Story Memory Test from this battery had moderate reliability (ICC 0.69 for adolescents and ICC
0.67 for adults), it was subject to floor effects. Practice effects were also evident in gains in scores in
adolescents with DS over the 6-month follow-up period.

WM was assessed by Liogier d’Ardhuy and colleagues using the CANTAB Spatial Span (SSP),
a measure that has also been used in clinical trials for attention deficit hyperactivity disorder [110].
Participants with DS performed poorly on both the digits forward and backwards components of the
test, with many unable to recall any digits in reverse order. The ICC for the forward digits portion
of SSP was 0.67 for adolescents and 0.55 for adults and is considered a good measure of frontal
function [75]. Reliability for the backward portion was low with evidence for floor effects.

Liogier d’Ardhuy et al. used the Clinical Evaluation of Language Fundamentals-Preschool-2
(CELF-P2) [111] to assess language. Normed for preschool-aged children 3-6 years, the CELF-P2
comprises tests of different aspects of language. Word Classes evaluates the participant’s ability to
understand and express relationships between semantically related words. This measure is stable,
reliable, and sensitive to age and IQ variations in individuals with DS, although it is subject to ceiling
effects in adults.

These authors had caregivers complete the preschool version of the BRIEF (BRIEF-P) to assess
behavioral correlates of executive dysfunction. The BRIEF-P yields a summary measure of executive
dysfunction, the Global Executive Composite (GEC), as well as scales for specific types of deficits in
behavioral self-regulation and organizational skills [106]. In one study, the BRIEF-P yielded a unique
pattern of strengths and weaknesses in young children with DS, showing impairments in WM and
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planning but not in inhibition or emotional control [96]. The BRIEF-P is reliable, stable and sensitive to
age differences. This measure can be used to detect impairment in the WM domain and is suitable for
adolescents with DS aged 12–17 years.

The Leiter International Performance Scale Revised (Leiter-R) [112] was used by Liogier
d’Ardhuy et al. to explore the influence of age variations (adolescents vs. adults) on non-verbal
IQ level, although findings for the original version suggested a floor effect. However, scores on
the more recent version of this test, the Leiter-3, were well distributed without evidence for a floor
effect and thus may be more suitable for measuring variations in ability at the lower end of the IQ
range [74,75].

3.4. The TESDAD Study Group’s Test Battery

De Sola et al. [87] administered a test battery referred to as TESDAD to 86 young adults (ages
16-34 years) with DS and an age-matched control group of normally developing adults. Similar to the
ACTB, this battery consisted of several tests from the CANTAB [113] along with standardized paper
and pencil tests. CANTAB Motor Screening was administered to assess psychomotor speed. Measures
of EF included the SRT and SSP from the CANTAB, and Digit Span Forward and Backward from the
Wechsler Adult Intelligence Scales, 3rd Edition (WAIS-III) to assess attention span, STM, and WM; a
word generation task requiring production of animal names to assess semantic fluency; the Drexel
University version of the Tower of London (child’s version) to assess planning; Weigl Color-Form Sort
Test to evaluate mental flexibility; and Cats and Dogs Test to measure response inhibition. Measures
of visual episodic memory and learning were obtained using the CANTAB PAL and PRM. Verbal
episodic memory was assessed using the Cued Recall Test (CRT), a test requiring participants to recall
verbal information (98). Most of these measures are regarded as appropriate tests to use in assessing
individuals with DS, although CANTAB PRM and the Weigl Color-Form Sort Test are considered
promising but in need of further study [75]. In addition, other investigators have shown test-retest
reliability to be low for CANTAB SSP backward recall [74]. Measures of expressive and receptive
language in the TESDAD included the Boston Naming Test and Token Test. The Boston Naming Test
has proven to be an appropriate task for individuals with DS [75]. Specific test-retest analysis and
evaluation of potential practice effects for the TESDAD are not yet available.

4. Pilot Clinical Trial of Memantine in Young Adults with DS

Preclinical evidence of the efficacy of memantine in the Ts65Dn mouse model of DS led to the
design of a pilot, phase IIa clinical trial to investigate if these findings have therapeutic implications
for individuals with DS [20]. Memantine is a drug approved by the United States’ Food and
Drug Administration (FDA), the European Medicines Agency Europe, Brazil’s National Health
Surveillance Agency (ANVISA), and federal agencies in several other markets for the treatment
of moderate-to-severe dementia caused by Alzheimer disease [19]. In spite of its small scale, the
memantine pilot trial was historically relevant as the first clinical study in DS to benefit fully from the
lessons learned from both preclinical work in animal models and contemporary neuropsychological
research on this population.

The Ts65Dn mouse is still the best-studied and the most complete mouse model for DS in
terms of displaying phenotypes mimicking what is observed in persons with DS [114]. Studies on
these mice suggest that learning and memory deficits on tests dependent on the functional
integrity of the hippocampus may be attributable, at least in part, to altered signaling via
N-methyl-D-aspartate (NMDA) receptors [115]. Furthermore, pharmacological experiments with
the uncompetitive, moderate-affinity N-methyl-D-aspartate (NMDA) receptor antagonist, memantine,
have produced rescued performance in behavioral tests of learning and memory in Ts65Dn
mice [116–118]. Additionally, alterations in two types of synaptic plasticity in the hippocampus, NMDA
receptor-dependent long-term depression (LTD) and theta-burst stimulation-induced long-term
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potentiation (LTP), can be reset to levels comparable to those observed in euploid control mice with
the use of therapeutically relevant doses of memantine [119,120].

The pilot memantine clinical trial failed to reveal significant differences between the memantine
and placebo groups on the two primary outcome measures. However, significant performance
improvements were seen in the memantine group on the California Verbal Learning Test-II (CVLT-II)
Short Form (p = 0.046) compared with the placebo group. The CVLT-II measures supraspan word
learning ability as an index of episodic verbal LTM. Similar to the List Learning Test of the NEPSY,
scores on this test are known to reflect posterior hippocampal functioning (also based on neuroimaging)
and are impaired in patients with various forms of degeneration or damage to the hippocampus [20].
Additionally, group differences on one of the primary outcome measure scores, the number of stages
completed on the PAL (a measure requiring learning of the locations of abstract visual patterns),
approached significance, with a p-value of <0.10. The Recall of Digits Forward Test from the Differential
Ability Scales, 2nd Edition (DAS-II) also approached significance [20]. In this task, the participant was
asked to repeat, in the same order, an increasingly longer string of single-digit numbers verbally read
aloud by the examiner.

Equally important for the objectives of the trial, the use of memantine was well tolerated, with only
infrequent and mild adverse events noted. According to caregivers, two participants showed increased
anxiety, one complained of dizziness for a few days, and one displayed increased self-talk. Thirty-seven
of the 40 enrolled participants completed the trial. This trial was one of very few placebo-controlled
trials to be performed in individuals with DS and was a necessary step toward the establishment
of a bridge between preclinical work with animal models and the investigation of a fuller range of
pharmacotherapies to improve the quality of life of individuals with DS [20].

4.1. Selection of the Test Battery for the Pilot Memantine Trial

The neuropsychological tests used for the memantine pilot trial were selected in consultation with
Professor Bruce Pennington. Therefore, this test battery shared many components found in the original
work led by him. The primary efficacy measures of this trial consisted of potential improvement in
CANTAB PAL and PRM test scores from the baseline session to the second testing session at 16 weeks
of memantine treatment. Two secondary measures of hippocampus-dependent function were also
administered: the CVLT-II Short Form [121] and the Rivermead Behavioral Memory Test-Children’s
version (RBMT) [20]. Although the battery had a similar composition to what had been used in other
research with individuals with DS, such as the ACTB [88], it was designed to be comprehensive while
avoiding undue burden on the trial participants.

There are some aspects of this test battery that are important to highlight. First, the measures
were selected in order to minimize floor effects in participants with DS. Therefore, approximate mental
age was used to gauge the appropriateness of a measure, and existence of chronological age norms
was only a secondary consideration. Given that the battery was designed to be used longitudinally in
a clinical trial, participants acted as their own controls, and comparison of raw scores over time was
the critical comparison.

Second, some few measures were selected primarily to characterize the sample. These are the
PPVT, Matrices of the DAS-II, and SIB-R. The PPVT and SIB-R have norms that span a wide age range,
and include the chronological age range of our targeted participants. The Matrices subtest of the
DAS-II does not go into adulthood, but uses a Rasch modeling approach that selects an appropriate
item set for each participant based on his or her ability level, in order to prevent floor or ceiling effects.
Ability scores can be compared, and mental ages can also be derived.

Third, the battery was devised to include measures of cognitive domains (i.e., discriminant
measures) that were not hypothesized to be affected by the drug memantine. Based on prior medical
literature as well as animal work with the DS mouse model, the mechanism of action of memantine
was hypothesized to affect temporal lobe-dependent memory primarily. Thus, having measures of
other domains, such as language, would allow us to detect whether memantine had a specific effect on
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targeted cognitive domains, rather than affecting all domains. If the latter were the case, alternative
mechanisms would have to be explored.

Fourth, STM, episodic memory, and executive function domains were measured using at least
two measures each, in order to be able to capture some of the heterogeneity of these domains. In the
STM area, we included both verbal and non-verbal tasks. For episodic memory, our primary outcome
domain in the clinical trial, two scores from the CVLT-II, were used, one capturing total items correctly
recalled during learning trials, and the other taking into account false positives (i.e., intrusions). In the
visual domain, a lower level pattern recognition task was used, as well as a higher order task that
required pairing non-namable stimuli to a specific location. This approach to battery selection allows
flexibility in creating composite scores; one can compute them by domain (e.g., STM vs. episodic
memory) or by modality of presentation (e.g., verbal vs. visual).

Lastly, the contents of the battery were selected with pragmatic considerations in mind. It is
mostly visual, which is an easier modality to administer to participants with DS. Computer-based tasks
(such as the CANTAB) are generally colorful, interesting and interactive, which helps keep participants
motivated and engaged. Half of the verbal tasks only required motor responses (e.g., pointing), which
minimized confounds introduced by common dysarthric, apraxic and articulatory deficits. Even the
two tasks that required verbal production had a constrained set of responses. The target items of the
CVLT-II and the digits to be repeated during Recall of Digits are known to the examiner, thus making
it easier to code responses. Only intrusion errors were open ended, and our administration protocol
has a parent or caregiver write down responses alongside the examiner, maximizing the probability of
correctly identifying the participant’s verbalization.

4.2. Test-Retest Reliabilities for Measures Used in the Pilot Memantine Trial

In cognitive studies, an inter-rater reliability coefficient greater than 0.9 is considered excellent, a
coefficient between 0.8 and 0.9 is considered good, and a coefficient between 0.7 and 0.8 represents
adequate reliability. Here, we performed a test-retest reliability (Pearson r) analysis on the data
obtained from 19 participants in the placebo arm of the pilot memantine study. Results of this analysis
are summarized in Table 1. As can be seen in this table, four of the measures used had excellent
reliability (SIB-R, NEPSY Verbal Fluency, PPVT-III receptive vocabulary, and CANTAB SWM Between
errors score). The TROG-2, measuring comprehension of grammar and syntax, and the CANTAB PAL
Stages Completed (one of the scores for episodic visual memory) had good reliability. Most other
measures had adequate test-retest reliability (i.e., approximating, or above 0.7), whereas only one of
the indices from the CANTAB SWM Test (i.e., Strategy score) had poor test-retest reliability (r = 0.33).

Table 1. Pearson r values for test-retest reliability for various measures used in the pilot memantine trial.

Measure Test-Retest Reliability (Pearson r)

CVLT-II—Total Recall Discriminability 0.75
CVLT-II—Total Recall Score 0.76

CANTAB PRM—Raw Score Correct 0.68
CANTAB SWM—Between Errors 0.93
CANTAB SWM—Strategy Score 0.33

CANTAB PAL First Trial Memory Score 0.72
CANTAB PAL Stages Completed 0.81

Rivermead Total Score 0.62
DAS-II Recall of Digits Ability Score 0.74

DAS-II Matrices Ability Score 0.62
TROG-II Item Correct Raw Score 0.81

PPVT-III Standard Score 0.93
NEPSY Verbal Fluency Total Raw Score 0.92

SIB-R Total Independence Standard Score 0.95
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It is interesting to note, that if one looks at tests for which various sub-measures were generated,
different indices may produce similar or different levels of reliability. For example, the two scores
for the CVLT-II displayed adequate test-retest reliability. In contrast, the CANTAB SWM has one
score that had excellent reliability (between errors), while the strategy score was poor. One way of
interpreting this discrepancy in the latter subtest is that it is primarily measuring a simpler aspect of
WM (i.e., closer to spatial span). In other words, participants may keep track of where they have just
looked for a chip, and where the computer may have hidden previous chips, but they are not consistent
in applying higher order strategies. Therefore, the strategy score is probably not very meaningful for
this population.

Also interesting was the finding that the Matrix Reasoning Test from the DAS-II had lower
test-retest reliability than expected, especially given its non-verbal nature. Other batteries used with
participants with DS have attempted to minimize the verbal loading of tests, but in fact, all the tests in
our battery that had verbal loading or measured verbal skills directly had higher test-retest reliabilities
than the Matrices Test (i.e., PPVT-III, NEPSY Verbal Fluency, TROG-2, CVLT-II, Recall of Digits).

Measures that had a verbal loading/verbal content can be divided into those requiring a verbal
response (CVLT-II; Recall of Digits) and those that just required a motor (pointing) response (PPVT-III,
TROG-II). As expected, reliability coefficients for the latter were slightly higher than for the former,
but even the ones for which a verbal response was necessary had adequate reliability. One caveat,
however, is that the examiners in the pilot memantine study were highly trained neuropsychologists
who were experienced in testing patients with verbal and articulatory deficits.

Lastly, it was useful to learn that parent/caregiver ratings of the adaptive functioning of participants
with DS using the SIB-R were highly reliable across a 16-week interval. It should be noted that the broad
independence standard score captures adaptive skills across domains. A reliability coefficient for the
maladaptive scores of the SIB-R cannot be computed as the scores are not normally distributed.

4.3. Follow-up Memantine Trial in Adolescents and Young Adults with DS

Because of the promising findings from the pilot study, and memantine’s positive safety
profile [20], the research team planned and initiated a larger follow-up trial. One set of Post hoc
power analyses of the results obtained in the pilot study showed the requirement of a minimum
sample size of 48 participants per group to demonstrate a significant difference in CVLT-II Short
Form scores between the medication and placebo arms of the study with 80% power and a two-tailed
hypothesis. For the Recall of Digits Forward test, this number increases to 55 participants per group.
For the number of stages completed on the PAL, the target number would be 79 participants per
therapeutic arm. The specific calculation results of required sample sizes that we are presenting
here for the follow-up memantine study were performed using the sample size calculator from the
ai-therapy.com website [122] using the effect sizes (Cohen’s d) from the neuropsychological variables
assessed in the pilot memantine trial [20]. (Other Post hoc power analysis methods were also used
with similar results.) In accordance with these calculations, we determined that in the follow-up,
confirmatory study, we would be recruiting a total of 200 individuals with DS (i.e., 100 participants
in the memantine arm and 100 participants in the placebo arm). This new trial [21] is a prospective,
double-blind, placebo-controlled, randomized 16-week test, which follows a protocol modeled after
the one used in the pilot trial.

The larger sample size is currently being recruited at two sites (University Hospitals Cleveland
Medical Center, Ohio, USA and Albert Einstein Israelite Hospital, São Paulo, Brazil). As with the pilot
study, the drug dosage follows the standard titration of memantine for the treatment of Alzheimer
disease. In this trial, we have expanded the age range of the participants from 18–32 years to 15–32 years.
The test battery for the ongoing follow-up memantine trial includes measures assessing skills in five
domains: memory, intellectual functioning, language and vocabulary, visual and verbal WM, and
adaptive/behavioral functioning. Some measures were selected based on their sensitivity to the
types of changes anticipated from the putative mechanisms of action of the drug, whereas some
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were simply selected based on results from the pilot trial [20]. We hypothesize that the participants
in the memantine arm of the trial will show a greater improvement from baseline to the 16-month
visit than the placebo group on measures of declarative episodic memory, and that this improvement
may also be evident on measures of WM. Because of the trend toward significance for the Recall of
Digits test, this test will also be administered in the new trial, along with two additional prefrontal
tasks: CANTAB SSP and a Go/No-go test. We have also selected measures of receptive semantics and
grammatical understanding that we predict will remain relatively stable, thus acting as benchmarks
against which to compare the anticipated improvements in memory and WM. A secondary hypothesis
is that memantine may decrease the frequency or severity of behavioral difficulties, although we found
no indication of this potential in the previously mentioned pilot trial. To test this hypothesis, the SIB-R
will also be administered. We plan to discuss the design of this follow-up study in a separate paper.

5. Discussion

The average IQ of school-aged children with DS is in the low to mid 40s [22–24], which clearly
means that the cognitive deficits associated with this genetic disorder are global in nature. However,
findings from multiple studies challenge the view that these individuals have similar impairments
across cognitive domains [26] and suggest disproportionate deficits in hippocampal and prefrontal
cortex-dependent functions in the context of this global cognitive deficit [8,22,104]. In the present
report, we described the range of neurodevelopmental deficits associated with DS and previous
neuropsychological test batteries that have been developed for this population.

Research on potential therapies aimed at addressing the neurodevelopmental and neurodegenerative
components of DS are beginning to benefit from insights gained through translational studies in
the Ts65Dn and other mouse models of DS. For example, findings stemming from studies of the
Ts65Dn mouse, together with the FDA approval of memantine as a treatment for Alzheimer disease,
raised the possibility that this drug could be of benefit to persons with DS and paved the way for a
pilot clinical trial to determine if similar effects would be observed in individuals with this genetic
disorder. In that study, neuropsychological assessment was performed at the beginning of the study
and after the 16-week trial of either memantine or placebo. The test battery was based on the one used
by Pennington et al. [8], and examined a wide range of neuropsychological abilities. Although the
benefits of memantine were much less impressive that those found in Ts65Dn mice, improvement in
a supraspan measure of word learning assessing episodic verbal LTM was significantly greater for
individuals treated with memantine. In addition, two other measures approached significance and the
treatment was well tolerated. This pilot study was one of the very few placebo-controlled trials to be
performed in individuals with DS, and was a necessary bridge between the preclinical work on animal
models of DS and more intensive investigations of pharmacotherapies to improve the quality of life in
individuals with DS [20].

As is generally the case for small-scale clinical studies, the results of the memantine pilot study
were used to inform the design of a larger trial. The detailed description of the test battery of
neuropsychological assessments being used in this phase II, follow-up memantine clinical trial is
beyond the scope of the present review and will be discussed in a future paper.

We would like to acknowledge that latent trait modeling and confirmatory factor analyses, instead
of the calculation of a simple Pearson r, would have been more reflective of the current methodological
best practices related to understanding the reliability of neuropsychological measures in the pilot
memantine trial. However, it is almost impossible to do this type of analysis with the small sample
size from the pilot study, which had 40 participants in total and only 20 participants in the placebo
arm. In contrast, latent trait modeling typically requires sample sizes of 100 or more for the models to
have a good chance of converging and producing convincing fit statistics. Accordingly, we definitely
plan to attempt to perform these more sophisticated analyses on the data to be derived from our Phase
II, follow-up memantine study, given that we should have a large enough sample when that study
is concluded.
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It is easy to argue that harmonization of test batteries across studies would be highly desirable,
so that at least baseline results could be compared and aggregated across sites performing trials of
different pharmacological agents. Although this is undoubtedly true in present international efforts
to better understand the neurodevelopmental profile of individuals with DS in general, these are
early days in the area of pharmacological interventions aimed at enhancing cognitive skills in these
individuals. Much is still needed to be learned in terms of what is the minimum set of informative
measures that needs to be included in each trial, and it is equally important not to stifle innovation in
this emerging field of inquiry. Present attempts to create standardized comprehensive test batteries
are at a very preliminary stage. The few batteries that have been developed, including the ones we
have used in our own clinical trials, are variations of those employed in the descriptive studies that
were reviewed here. This previous research has guided the selection of our test battery by providing
information on the psychometric properties of our measures and has reinforced the need to examine
the potential benefits of a clinical intervention on multiple cognitive domains.

In the same year the pilot memantine trial was published, Hanney et al. [123] published another
clinical trial with memantine in adults with DS 40 years of age or older. This was a randomized,
double-blind, placebo-controlled trial to assess the safety and efficacy of memantine in improving
cognitive and adaptive function in older individuals with DS. The primary endpoints were changes
in cognitive and adaptive functioning as measured by the Down Syndrome Attention, Memory and
Executive Function Scales (DAMES) and the Adaptive Behavior Scale (ABAS) parts I and II. The authors
found that the treatment with memantine was well tolerated in their participant sample, but that the
treatment produced no significant improvement on neither the primary nor the secondary efficacy
measures. A likely explanation for the lack of efficacy in that well-designed trial (as well as in many
Alzheimer disease trials) is that irreversible neurodegenerative cascades were already well underway
to the point that functioning could no longer be restored by the time pharmacological treatment was
attempted [20]. Still, more recent work by this same research team has shown that anti-dementia drug
treatment with relevant drugs (donepezil, galantamine, rivastigamine, and memantine) delivered a
significant survival advantage to individuals with DS and dementia compared to those who were
not prescribed these medications [14]. This provides evidence that even in older individuals with DS,
anti-dementia drug treatment may not be futile.

It will be important to consider conducting trials on younger children with DS. Treatment
of DS-specific memory deficits, for example, may be most effective if administered earlier in life
as a means for preventing or reducing progressive worsening of these problems with age [45].
Early attempts to expand trials to younger participants are illustrated by studies by Spiridigliozzi
and colleagues [124] and Kishnani and colleagues [125], who examined the effects of rivastigmine
and donepezil, respectively, to improve cognitive function in school-aged children with DS. Although
these studies failed to demonstrate improvements in performance on the selected measures, their
methodologies were innovative and merit consideration in future trials of drug and other therapeutic
strategies to enhance cognitive function and quality of life in individuals with DS and their families.
Clinical trials targeting functional change over extensive follow-up periods will also be needed, as
positive effects of interventions may require several years to fully manifest [20].

Finally, irrespective of recent or future advancements in the area of pharmacological therapeutics,
it is quite clear that developmental interventions involving speech, physical and occupational therapies,
as well as special educational programs, will likely continue to be the mainstay approaches to improve
cognition and adaptive skills in young children with DS for the foreseeable future [126,127]. However,
it is also important to note that evaluating intervention studies in these areas faces the same challenges
encountered in the study of potential pharmacological interventions, and that efficacy is often not
assessed as rigorously as one would like in the field of habilitative interventions in DS.
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6. Conclusions

In the present study, we have critically reviewed the current knowledge on cognitive deficits of
individuals with DS and some of the broad-based neuropsychological test batteries that have been
used to assess cognitive skills in this population. We also described the specific tests selected for a
pilot trial of the drug memantine on enhancing the cognitive skills of young adults with DS, including
brief descriptions of the psychometric properties of each measure and the rationale for administering
such tests in the context of clinical trials in this population. The broader goal of the present work was
to illustrate essential considerations in planning trials to enhance cognitive functions in individuals
with DS, such as a follow-up phase II trial of the drug memantine currently underway. The field
of pharmacological enhancement of cognitive abilities of persons with DS is still in its infancy, with
the basic principle that such interventions are even possible still awaiting to be strongly proven.
In examining several broad-based neuropsychological test batteries, some basic agreement emerges
in terms of the choice of a few computer-based tests (e.g., CANTAB PAL and PRM). However, much
remains to be learned in terms of what is the minimum set of informative measures that should be
included in each trial, and how much customization, based on for example knowledge of mechanisms
of drug action, will be necessary for each study. Therefore, one cannot overemphasize how critical it is
for the few active groups in this area to remain humble. We should acknowledge how little we still
know in this early stage of our shared journey of designing pharmacological interventions designed to
enhance the quality of life of those with DS and their families, which is perhaps the best argument
against any premature attempts to stifling innovation in this fledgling field. We should also concede
that there is no shortage of knowledgeable and well-intentioned professionals who still believe that
each of such attempts is no more than a fool’s errand. Not to mention those who, for various historical
reasons, would go out of their way to prevent the implementation or try to abort new studies in
this area.
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