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Meta‑analysis of epigenome‑wide 
association studies of major 
depressive disorder
Qingqin S. Li1,2*, Randall L. Morrison1,5, Gustavo Turecki3 & Wayne C. Drevets4

Epigenetic mechanisms have been hypothesized to play a role in the etiology of major depressive 
disorder (MDD). In this study, we performed a meta-analysis between two case–control MDD cohorts 
to identify differentially methylated positions (DMPs) and differentially methylated regions (DMRs) 
in MDD. Using samples from two Cohorts (a total of 298 MDD cases and 63 controls with repeated 
samples, on average ~ 1.8 samples/subject), we performed an EWAS meta-analysis. Multiple 
cytosine-phosphate-guanine sites annotated to TNNT3 were associated with MDD reaching study-
wide significance, including cg08337959 (p = 2.3 × 10–11). Among DMPs with association p values less 
than 0.0001, pathways from REACTOME such as Ras activation upon Ca2+ influx through the NMDA 
receptor (p = 0.0001, p-adjusted = 0.05) and long-term potentiation (p = 0.0002, p-adjusted = 0.05) 
were enriched in this study. A total of 127 DMRs with Sidak-corrected p value < 0.05 were identified 
from the meta-analysis, including DMRs annotated to TNNT3 (chr11: 1948933 to 1949130 [6 probes], 
Sidak corrected P value = 4.32 × 10–41), S100A13 (chr1: 153599479 to 153600972 [22 probes], Sidak 
corrected P value = 5.32 × 10–18), NRXN1 (chr2: 50201413 to 50201505 [4 probes], Sidak corrected 
P value = 1.19 × 10–11), IL17RA (chr22: 17564750 to 17565149, Sidak corrected P value = 9.31 × 10–8), 
and NPFFR2 (chr4: 72897565 to 72898212, Sidak corrected P value = 8.19 × 10–7). Using 2 Cohorts of 
depression case–control samples, we identified DMPs and DMRs associated with MDD. The molecular 
pathways implicated by these data include mechanisms involved in neuronal synaptic plasticity, 
calcium signaling, and inflammation, consistent with reports from previous genetic and protein 
biomarker studies indicating that these mechanisms are involved in the neurobiology of depression.

Previous genome-wide association studies and integrated genomic analysis have implicated the roles of synaptic 
structure especially excitatory synaptic pathways, neurotransmission, calcium signaling, and frontal brain region 
in depression1–3. In addition to genetic mechanisms, epigenetic mechanisms that alter chromatin structure and/
or modulate gene expression patterns also play a role in the disease etiology4. Early life adversity is a major risk 
factor for major depressive disorder (MDD) and influences crosstalk among multiple mechanisms of genomic 
regulation, including histone marks, DNA methylation, and the transcriptome5,6. An increase in histone H3 
acetylation and decrease in histone deacetylase 2 (HDAC2) in the nucleus accumbens, a limbic brain region 
implicated in reward processing, was reported in both preclinical mouse model of depression (chronic social 
defeat stress paradigm) and post-mortem brain of depressed patients7. Infusion of HDAC inhibitors into the 
nucleus accumbens increases histone acetylation and exerts antidepressant-like effects in the social defeat stress 
paradigm, which is accompanied by a reversal of gene expression pattern induced by chronic social defeat and 
mimicking the effect of antidepressant fluoxetine7. Another mechanism of epigenetic regulation is DNA meth-
ylation which also regulates gene expression changes. Genome-wide changes in the DNA methylation pattern 
reflect complex interactions between environment and genetics8. Epigenome-wide association study (EWAS), also 
known as Methylome-wide association study (MWAS), is a promising complement to genome-wide association 
study (GWAS) and chromatin remodeling by histone acetylation.

Aberg et al. conducted an EWAS study using methyl-CG binding domain sequencing (MBD-Seq) and MDD 
cases and controls from both blood (N = 1132) and postmortem brain tissues (N = 61 samples from the medial 
prefrontal cortical region of Brodmann Area 10 [BA10]), and showed significant overlap (p = 5.4 × 10–3) between 
the EWAS findings in blood and brain (i.e., BA10)9. Several EWAS studies of MDD have been conducted using 
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blood samples. EWAS using blood samples comparing current vs. never MDD status was performed among 
World Trade Center responders (trauma-exposed)10. Clark et al. conducted an MWAS using MBD-Seq and 581 
blood samples with current MDD at baseline and assess the profile with current MDD diagnosis status in year 6 
and identified themes on cellular responses to stress and signaling mechanisms linked to immune cell migration 
and inflammation11. Postpartum depression (PPD) was also studied including both prepartum euthymic and 
prepartum depressed samples and a cross-species translational mouse model (17β-estradiol (E2)) which impli-
cated hippocampal synaptic plasticity in PPD12. A small pilot study was also performed to study ECT response 
(n = 12)13. The largest EWAS study to date used self-reported antidepressant use as a surrogate for depression and 
used 6,428 samples from the Generation Scotland (GS) database and 2449 samples from the Netherlands Twin 
Registry and identified ten DMPs in the GS Cohort but only one of these DMPs was statistically confirmed in the 
meta-analysis between these two Cohorts14. In contrast, few EWAS studies have been conducted in brain tissue 
samples from depressed patients studied postmortem. One other EWAS study using brain samples for late-life 
depression status was conducted using brain samples from the ROSMAP Cohort15. A table summarizing the 
previously reported EWAS is provided in Supplementary Table 1.

Inspired by the brain-blood correlation, we set out to perform EWAS in two MDD Cohorts and performed a 
meta-analysis between these two Cohorts. Both DMPs and DMRs were identified, and the results were discussed 
in the context of enriched pathways.

Results
Differentially methylated positions in peripheral blood.  Samples used in the EWAS analyses were 
described in Supplementary Table 2. 78.5% of the MDD cases and 34.4% of the healthy controls from cohort 1 
were of European ancestry. In cohort 2, 79.7% of the MDD cases and 79.4% of the healthy controls from cohort 
1 were of European ancestry. In the EWAS meta-analysis between the two cohorts, eight CpG sites including six 
annotated to TNNT3 (cg08337959 p = 2.29 × 10–11, cg01821149 p = 3.06 × 10–10), were associated with MDD case 
status passing Bonferroni correction threshold (p <  = 0.05/740, 121 ~ 6.76 × 10–8, Supplementary Fig. 1A [Cohort 
1 Q-Q plot], 2A [Cohort 1 Manhattan plot], genomic inflation factor lambda (lcohort1) = 1.048; Supplementary 
Fig. 1B [Cohort 2 Q–Q plot], 2B [Cohort 2 Manhattan plot], genomic inflation factor lambda (lcohort2) = 1.115; 
Fig. 1 [Meta-analysis Manhattan plot], Table 1, Supplementary Fig. 1C [Meta-analysis Q–Q plot]). cg08337959 
was associated with MDD in both cohort 1 (b = − 0.52, p = 2.37 × 10–4) and cohort 2 (b = − 0.71, p = 2.20 × 10–8). 
Hypomethylation of CpG sites annotated to TNNT3 was associated with MDD case status in both cohorts 
(Fig. 2, cg08337959, b = − 0.52, p = 2.37 × 10–4 in cohort 1 and b = − 0.71, p = 6.46 × 10–8 in cohort 2; Supplemen-
tary Fig. 3, cg01821149 b = − 0.24, p = 7.15 × 10–4 in cohort 1 and b = − 0.27, p = 1.02 × 10–7 in cohort 2, Table 1) 
and these associations remained unchanged after correcting the CpG probe cg05575921 annotated to AHRR, 
which serves as a surrogate for smoking status. Corrections for genetic population substructure or medication 
status did not significantly change the significance. A full list of DMPs with p value less than study wide signifi-
cance threshold in individual cohorts or p value < 1 × 10–6 in the meta-analysis are provided in Supplementary 
Tables 3 and 4, respectively.

Among the ten CpG sites significantly associated with self-reported antidepressant use reported from the 
Generation Scotland cohort14, two of them (cg03864397 annotated to CASP10 implicated in innate immune 
response, b = − 0.23, p = 0.03; cg26277237 annotated to KANK1, b = 0.24, p = 0.03) were nominally significant 
in this meta-analysis (p < 0.05) and with consistent direction in effect size (Supplementary Table 5). The cor-
relation of effect size/beta coefficient between the overlapping CpG sites (70 for cohort 1 and 71 for cohort 2) 
used for methylation score calculation14 and the individual cohort was insignificant, but the directionality was 
consistent for cohort 2 (r = 0.15, p = 0.21, Supplementary Fig. 4). The methylation score calculated using the 
same overlapping CpG sites weighted by the effect size did not distinguish cases from controls in a linear mixed 
model (b = 0.013, p = 0.18) but the directionality was consistent in cohort 2. For cohort 1, the methylation score 
for MDD was lower than controls (b = − 0.018, p = 0.04), suggesting that the weights of the methylation score 
could benefit from an even bigger study or EWAS meta-analysis in the future.

Pathway enrichment analysis.  Pathway enrichment analysis using logistic regression adjusting for the 
number of CpG sites per gene on the EPIC arrays using methylglm from methylglm and DMP with association 
p value less than 1 × 10–4 revealed enrichment of neuroligin family protein binding (p = 1.30 × 10–36, adjusted p 
value = 1.78 × 10–32), low voltage-gated calcium channel activity (p = 1.99 × 10–16, adjusted p value = 1.37 × 10–12), 
chemokine (C-X-C motif) ligand 1 production (p = 7.53 × 10–7, adjusted p value = 6.14 × 10–4) (Fig. 3 and Sup-
plementary Table 6).

Differentially methylated region (DMR) analysis.  DMR analysis enabled the identification of regions 
in the genome consisting of ≥ 3 probes with consistent signals associated with MDD. Overall, the analyses per-
formed using the comb-p algorithm identified 127 DMRs as being significantly associated with MDD at the 
Sidak-corrected p value < 0.05 from the meta-analysis. These results included DMRs annotated to TNNT3 (chr11: 
1,948,933 to 1,949,130 [6 probes], Sidak corrected P value = 4.32 × 10–41, Fig. 4A), S100 calcium-binding pro-
tein A13 (S100A13, chr1: 153599479 to 153600972 [22 probes], Sidak corrected P value = 5.32 × 10–18, Fig. 4B), 
neurexin 1 (NRXN1) (chr2: 50201413 to 50201505 [4 probes], Sidak corrected P value = 1.19 × 10–11, Fig. 4C), 
interleukin 17 receptor A (IL17RA) (chr22: 17564750 to 17565149, Sidak corrected P value = 9.31 × 10–8, Sup-
plementary Fig. 5), and neuropeptide FF receptor 2 (NPFFR2) (chr4: 72897565 to 72898212, Sidak corrected 
P value = 8.19 × 10–7). For IL17RA, one of the CpG sites cg07191900 giving rise to the DMR was hypermethyl-
ated in MDD (b = 0.55, p = 4.41 × 10–7), while two other CpG sites were likewise hypermethylated (cg20758542 
b = 0.45, p = 4.62 × 10–5; cg13595439 b = 0.21, p = 0.06). A full list of DMRs with Sidak-corrected p value < 0.05 
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Figure 1.   Manhattan plot of DMP analysis of MDD case–control EWAS meta-analysis.

Table 1.   MDD EWAS meta-analysis genome wide significant CpG sites. beta, estimated coefficients of the 
model; k, number of studies included in the analysis; pval, corresponding p values; tau2, estimated amount of 
(residual) heterogeneity; I2 statistics, estimates (in percent) how much of the total variability in the observed 
effect sizes (which is composed of heterogeneity plus sampling variability) can be attributed to heterogeneity 
among the true effects

chr pos Name
GencodeCompV12_
NAME pval beta se k I2 tau2

Cohort 1 Cohort 2

M-value b-value M-value M-value b-value M-value

beta AveMethylation beta AveMethylation P value beta AveMethylation beta AveMethylation P value

chr11 1948933 cg08337959 TNNT3 2.29E−11 − 0.74 0.11 2 0 0 − 0.52 1.86 − 0.05 0.77 2.37 E−04 − 0.71 1.98 − 0.06 0.78 2.21 E−08

chr11 1949130 cg15652404 TNNT3 3.87 E−11 − 0.73 0.11 2 0 0 − 0.43 1.14 − 0.05 0.68 2.73 E−04 − 0.47 1.14 − 0.07 0.68 3.27 E−08

chr11 1949113 cg18032502 TNNT3 9.24 E−11 − 0.72 0.11 2 0 0 − 0.49 1.83 − 0.05 0.77 5.21 E−04 − 0.67 1.98 − 0.06 0.78 4.11 E−08

chr11 1949039 cg06503573 TNNT3 1.13 E−10 − 0.71 0.11 2 0 0 − 0.49 1.28 − 0.06 0.70 8.53 E−05 − 0.48 1.27 − 0.06 0.70 2.89 E−07

chr11 1949032 cg06679296 TNNT3 2.79 E−10 − 0.70 0.11 2 0 0 − 0.51 2.35 − 0.04 0.82 1.00 E−03 − 0.70 2.51 − 0.05 0.83 6.46 E−08

chr11 1949090 cg01821149 TNNT3 3.06 E−10 − 0.70 0.11 2 0 0 − 0.24 0.75 − 0.03 0.63 7.15 E−04 − 0.27 0.63 − 0.04 0.61 1.02 E−07

chr10 129653554 cg17210803 7.08 E−09 − 0.64 0.11 2 0 0 − 0.08 0.19 − 0.01 0.53 4.29 E−03 − 0.11 0.21 − 0.02 0.54 3.92 E−07

chr13 30689528 cg11283819 3.11 E−08 0.61 0.11 2 0 0 0.14 − 1.69 0.02 0.24 4.99 E−04 0.14 − 1.79 0.02 0.23 1.49 E−05



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18361  | https://doi.org/10.1038/s41598-022-22744-6

www.nature.com/scientificreports/

Figure 2.   Association of cg08337959 annotated to TNNT3 with MDD case–control status in (A) cohort 1, (B) 
cohort 2.

Figure 3.   Enriched gene sets from the GO database (min gene set size = 4) among DMP associated with MDD 
case status with a p value less than 1 × 10–4 in the EWAS meta-analysis.
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is available in Supplementary Table 7. The probes underlying each DMR are also provided in Supplementary 
Table 8.

Discussion
In the meta-analysis across two cohorts, CpG sites annotated to TNNT3 passed the genome-wide significance 
threshold. There was no prior report linking TNNT3 to psychiatry conditions. We additionally identified 127 
DMRs associated with MDD, among which several of the implicated genes warrant additional discussion.

Among the DMPs associated with MDD in the meta-analysis, neuroligin family protein binding was among 
the top pathways enriched in this study. These proteins of the neuroligin family are neuronal cell surface proteins. 
They act as splice site-specific ligands for b-neurexins and may be involved in synaptogenesis. Neurexin 1 variants 
were previously implicated as risk factors for suicide death based on shared chromosomal segment analysis16. A 
functional genomic experiment showed that two Neurexin variants increased binding to the postsynaptic binding 
partner LRRTM2 in vitro17. Other variants (SNVs and CNVs) in NLGN1 and/or other family members NLGN3 
and NLGN4 were previously associated with suicide, PTSD, autism, obsessive–compulsive disorder (OCD), and 
depression18–25. The variant rs6779753 in NLGN1 underlying the gene-based PTSD association was also associ-
ated with the intermediate phenotypes of higher startle response and greater functional magnetic resonance 
imaging (fMRI) activation of various brain regions including the amygdala and orbitofrontal cortex in response to 

Figure 4.   DMR annotated to TNNT3 (A), S100A13 (B), and NRXN1 (C) association with the MDD case–
control status. Top panel: individual CpG association P values; middle panel: gene structure; bottom panel: 
pairwise correlation between CpG sites in this DMR. CpG, cytosine-phosphate-guanine; DMR, differentially 
methylated region.
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fearful face. A rare variant in NLGN1 was also implicated in autism26. Presynaptic NRXN122,27,28, NRXN2, NRXN3, 
and cytoplasm partners SHANK129, SHANK230, SHANK331,32, EPAC33, MDGA34, DLG4, and DLGAP2 were also 
implicated in autism35, mental retardation30, and/or schizophrenia28. Overall, there is substantial genetic evidence 
implicating the NRXN-NLGN pathway in suicide and other psychiatric conditions. In addition, transcriptional 
activity in neurexin and neuroligin genes is regulated by methylation36. Sleep deprivation has caused a shift in 
methylation patterns in both neurexin and neuroligin in animals37. NLGN1 was also implicated in the animal 
model of depression38. Herein we additionally provide epigenetic evidence in the involvement of this pathway 
by demonstrating differentially methylated region in NRXN1 in peripheral blood and the pathway enrichment 
of neuroligin family protein binding.

Among the other DMRs associated with MDD, S100A13 plays a role in the central nervous system (CNS) 
development and it is especially expressed in the developing human hippocampus and temporal cortex39 and 
is differentially expressed in the orbitofrontal cortex of suicide victims40. Neuroinflammation and T-helper 17 
(Th17) cells and IL17-A have been implicated in depression41. Th17 cells increased in preclinical depression ani-
mal models (learned helplessness and chronic restraint stress paradigms) and blockage of Th17 cell differentiation 
by a deficiency in retinoic acid receptor-related orphan receptor (ROR)γT transcription factor and inhibition 
of RORγT transcription factor pharmacologically or using IL17-A antibody rendered the animal resistant to 
learned helplessness42. IL1b and TGFb are required for Th17 cell differentiation and Th17 cells produce IL17, 
IL21, and IL22. Both TGFb and IL17 levels were reported to be elevated in depressed patients in a small study 
(41 MDD patients vs. 40 healthy controls)43. Another small study (40 MDD patients and 30 healthy controls) 
also showed increased peripheral Th17 cell count and reduced T-reg cell count (hence imbalance of Th17/Treg 
ratio), higher mRNA level of RORγT transcription factor, and increased serum IL17 in MDD patients compared 

Figure 4.   (continued)
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to healthy controls44. IL17RA encodes a low-affinity receptor for IL17A. IL17A and its receptor could play a 
pathogenic role in many inflammatory and autoimmune diseases including multiple sclerosis, autism spectrum 
disorders, epilepsy, Alzheimer’s disease, and rheumatoid arthritis41. We herein provide epigenetic evidence for a 
DMR annotated to IL17RA although the underlying probes were hypermethylated in MDD, which could result 
in down-regulation of IL17RA. This could be a reflection of a compensatory mechanism to combat inflamma-
tion in MDD. Other inflammatory pathways such as chemokine (C-X-C motif) ligand 1 production were also 
enriched in this study.

There are several limitations of this study that merit comment. First, the healthy control sample size is rela-
tively small despite the sample size for MDD cohorts being moderate. Secondly, the MDD cases were pooled 
together for meta-analysis to enhance the power, but there was heterogeneity between cohort 1 and cohort 2. 
Cohort 1 came from a naturalistic longitudinal follow-up study where samples at baseline were recently respond-
ing to antidepressant treatment (within three months), but approximately one-quarter of the samples relapsed 
during the follow-up period. Cohort 2 came from an antidepressant treatment study, and therefore samples at 
baseline were acutely ill, and samples at week 8 may or may not be responding to the treatment. In addition, 
although we attempted to control for medication status as a sensitivity analysis and the kind of medication 
exposed in cohort 2, we cannot rule out there is an influence of methylation status from prior medication expo-
sure despite there was a wash-out period prior to subsequent treatment exposure. Treatment naïve samples would 
be in a better position to address this caveat. Lastly, early life adversity is known to influence DNA methylation. 
It is possible that the surrogate variables included in the statistical model capture some aspects of the systematic 

Figure 4.   (continued)
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changes induced by early-life adversity. Systematically collecting this environmental factor for direct modeling of 
early life adversity in the epigenetic analysis will enable interaction analysis to study the impact of disease pathol-
ogy and environmental factor simultaneously. Future epigenetic studies and meta-analyses with other MDD 
cohorts in the scientific community will further elucidate the epigenetic mechanisms associated with depression.

Methods
Study cohorts.  Cohort 1.  A total of 191 blood samples from 112 patients with MDD were collected up 
till the interim analysis from an observational clinical study OBSERVEMDD0001 (ClinicalTrials.gov Identifier: 
NCT02489305), where a patient must have met DSM-V criteria for nonpsychotic, recurrent MDD within the 
past 24 months (ie, the start of the most recent major depressive episode (MDE) must be ≤ 24 months before 
screening); have a Montgomery Asberg Depression Rating Scale (MADRS) total score ≤ 14 at screening and 
baseline visits; have evidence of recent response (within the past 3 months) to an oral antidepressant treatment 
regimen (taken at an optimal dosage and for an adequate duration, and be currently taking and responding to an 
oral antidepressant treatment regimen. The samples from the participants with MDD could have been obtained 
from either a baseline visit or a follow-up visit. 32 samples from 32 healthy controls self-reported to be free of 
MDD were collected by BioIVT and used as control samples for this Cohort. The institutional review boards of 
all participating clinical trial sites reviewed and approved the study and patients provided informed consent for 
DNA sample collection.

Cohort 2.  A total of 359 MDD samples from 186 patients were drawn from the Molecular Biomarkers of Anti-
depressant Response study45,46, where a patient must have had a diagnosis of a current major depressive episode 
(MDE) as per the SCID-I and Hamilton Rating Scale for Depression (HAMD-21) ≥ 20, while 68 control samples 
from 31 patients were recruited through advertisement. Two or more samples from the same patient could have 
been collected (Supplementary Table 2).

The OBSERVEMDD0001 study was approved by the respective local or central Institutional Review Boards 
(IRBs) overseeing the clinical sites participating in the study, these included the University of Pennsylvania Office 
of Regulatory Affairs IRB, University of Iowa IRB, Baylor College Of Medicine IRB, University of Michigan IRB, 
University of Cincinnati IRB, Sharp HealthCare IRB, Springfield Committee for Research Involving Human Sub-
jects (SCRIHS), Western IRB, University of Kansas School of Medicine—Wichita Human Subjects Committee, 
Rush University Medical Center IRB, Hartford Hospital IRB, University of Massachusetts Medical School IRB, 
and Sterling IRB. In addition, the BioIVT samples were collected with IRB approval from Schulman IRB. Lastly, 
the Molecular Biomarkers of Antidepressant Response study was approved by Douglas Hospital Research Ethics 
Board. All clinical studies and sample collections were carried out following the ethical principles outlined in the 
Declaration of Helsinki and are consistent with Good Clinical Practices and applicable regulatory requirements. 
All patients provided written informed consent before entry into the study.

Genotyping of samples.  All samples from both cohorts were genotyped in a single batch using PsychAr-
ray (Illuminia, Inc., San Diego, CA). Standard QC was applied to remove samples with call rate less than 95%, 
variants with call rate less than 95%, minor allele frequency less than 1%, and variants deviating from Hardy–
Weinberg equilibrium. Variants were thinned using PLINK v1.947,48 using parameters “-indep-pairwise 1500 150 
0.2” and variants in long-range linkage disequilibrium (LD) regions in chromosomes 6, 8, 5, and 11 reported 
previously were removed.49 The remaining variants were used to derive population substructure using eigenstrat 
v6.1.450,51 using default parameters except adding the options of “nsnpldregress: 3 and maxdistldregress: 1” with-
out outlier removal to preserve as many samples as possible since genetic ancestry does not seem to influence 
epigenetic profile significantly. The first two principal components were included as additional covariates in a 
sensitivity analysis described later.

DNA methylation profiling.  Whole blood samples were collected, and DNA was extracted for methyla-
tion profiling. DNA methylation was measured using Infinium® MethylationEPIC BeadChip (Illumina, Inc., San 
Diego, CA, USA) at 850 000 CpG sites throughout the genome. The assay for each cohort (both cases and con-
trols) was performed in one batch. Genomic DNA samples were bisulfite-converted using the EZ-DNA Meth-
ylation Kits (Zymo Research, Irvine, CA, USA) and subsequently analyzed using the Illumina Infinium® HD 
methylation protocol on the HiScan™ system (Illumina, Inc, San Diego, CA, USA).

Data pre‑processing.  Epigenetic data was analyzed separately for each Cohort. Quality control of the EPIC 
array data was performed using R package ChAMP52. Probes with detection p value ≥ 0.01 in one or more sam-
ples (nCohort1 = 14,421 and nCohort2 = 22,386, respectively), or with bead count less than 3 in at least 5% of samples 
(nCohort1 = 8999 and nCohort2 = 2104), non-CG probes (nCohort1 = 2625 and nCohort2 = 2586), probes with known SNP 
sites or with cross-reactivity53 (nCohort1 = 93,722 and nCohort2 = 93,024), probes align to multiple locations on the 
genome54 (nCohort1 = 15 and nCohort2 = 11), as well as probes located on the sex chromosomes (nCohort1 = 16,532 and 
nCohort2 = 16,186) were filtered out.

The methylation levels were normalized using the Dasen method in the R package wateRmelon55. The blood 
cell composition was estimated using the estimateCellCounts function in minfi56 which used a reference blood 
dataset of fluorescence-activated cell sorting (FACS) sorted CD8T, CD4T, NK, B cell, monocytes, granulocytes, 
and eosinophils57. Surrogate variables are covariates inferred from high-dimensional data that are used in subse-
quent analyses to adjust for unknown and/or unmodeled sources of noise58,59. We used R package sva (v3.38)60,61 
to estimate surrogate variables for unknown sources of variation to remove artifacts in the epigenetic profile 
experiments. Removing batch effects using surrogate variables before downstream differential analysis has been 
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shown to improve reproducibility62. One sample from cohort 2 with discrepant gender between case report form 
(CRF) and what was inferred based on epigenetic data was excluded from downstream analysis.

Identification of DMPs.  M-value, which provides higher detection rates and true positive rates for both 
highly methylated and unmethylated CpG sites and is considered statistically more valid than beta-value63, was 
used to identify DMPs using the R package limma64. However, the model fit using beta-value was also fit to 
report the effect size in beta-value only to ease biological interpretation. The primary analysis used the statisti-
cal model, adjusting for age, sex, cell composition, and surrogate variables (5 for cohort 1 and 10 for cohort 2) 
aiming to capture systematic technical variations was used to generate the contrast between MDD cases and 
healthy controls. Alternative statistical models additionally correcting for (1) smoking status using AHRR probe 
cg0557592165, (2) population substructure as represented by the first two principal components of the corre-
sponding genetic data, (3) medication status (for the second cohort only) as an additional covariate was imple-
mented as well as a sensitivity analysis. In all scenarios, sample relatedness was corrected by using the duplicate-
Correlation function in limma. This was followed by a meta-analysis between the 2 Cohorts using the R package 
metafor66. DMPs with association p values less than the Bonferroni correction threshold (i.e. 0.05/number of 
CpG sites passing QC included in the analysis) were considered study-wide significant. The discovered DMPs 
were assessed for consistency in three ways: (1) the top DMPs discovered in a recent largest MWAS study14 were 
used to look for replication evidence from this study; (2) the effect sizes from this study were compared with 
the reported penalized regression coefficient14 from the full sample; (3) methylation score based on the same 
penalized regression coefficient14 was calculated and contrast between MDD cases and controls was assessed via 
a linear mixed model using R package lme4.

Identification of DMRs.  DMRs in the genome consisting of ≥ 3 probes were identified using comb-p67 with 
a distance of 500 bp and a seeded p value of 1.0 × 10–4. The DMRs with Sidak corrected p less than 0.05 were 
considered significant and reported.

Gene set enrichment analysis.  Gene set enrichment analysis was performed using methylglm function 
within R package methylGSA that accounts for length bias correction using logistic regression68 and DMPs 
with association p value less than 0.0001.Gene ontology databases used included KEGG database69 and c2.cp (a 
superset of BIOCARTA, KEGG, and REACTOME70 and a few other data sources) subsets of Molecular signa-
tures database (MSigDB, v7.0)71.

Data availability
Data used in the preparation of this article could be obtained from NCBI GEO under accession number 
GSE198904.

Received: 6 April 2022; Accepted: 19 October 2022

References
	 1.	 Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance 

of the prefrontal brain regions. Nat. Neurosci. 22, 343–352. https://​doi.​org/​10.​1038/​s41593-​018-​0326-7 (2019).
	 2.	 Howard, D. M. et al. Genome-wide association study of depression phenotypes in UK Biobank identifies variants in excitatory 

synaptic pathways. Nat. Commun. 9, 1470. https://​doi.​org/​10.​1038/​s41467-​018-​03819-3 (2018).
	 3.	 Wingo, T. S. et al. Brain proteome-wide association study implicates novel proteins in depression pathogenesis. Nat. Neurosci. 24, 

810–817. https://​doi.​org/​10.​1038/​s41593-​021-​00832-6 (2021).
	 4.	 Fass, D. M., Schroeder, F. A., Perlis, R. H. & Haggarty, S. J. Epigenetic mechanisms in mood disorders: Targeting neuroplasticity. 

Neuroscience 264, 112–130. https://​doi.​org/​10.​1016/j.​neuro​scien​ce.​2013.​01.​041 (2014).
	 5.	 Lutz, P. E. et al. Association of a history of child abuse with impaired myelination in the anterior cingulate cortex: Convergent 

epigenetic, transcriptional, and morphological evidence. Am. J. Psychiatry 174, 1185–1194. https://​doi.​org/​10.​1176/​appi.​ajp.​2017.​
16111​286 (2017).

	 6.	 Lutz, P. E. et al. Non-CG methylation and multiple histone profiles associate child abuse with immune and small GTPase dysregula-
tion. Nat. Commun. 12, 1132. https://​doi.​org/​10.​1038/​s41467-​021-​21365-3 (2021).

	 7.	 Covington, H. E. 3rd. et al. Antidepressant actions of histone deacetylase inhibitors. J. Neurosci. 29, 11451–11460. https://​doi.​org/​
10.​1523/​JNEUR​OSCI.​1758-​09.​2009 (2009).

	 8.	 Hoffmann, A., Sportelli, V., Ziller, M. & Spengler, D. Epigenomics of major depressive disorders and schizophrenia: Early life 
decides. Int. J. Mol. Sci. https://​doi.​org/​10.​3390/​ijms1​80817​11 (2017).

	 9.	 Aberg, K. A. et al. Methylome-wide association findings for major depressive disorder overlap in blood and brain and replicate in 
independent brain samples. Mol. Psychiatry 25, 1344–1354. https://​doi.​org/​10.​1038/​s41380-​018-​0247-6 (2020).

	10.	 Kuan, P. F. et al. An epigenome-wide DNA methylation study of PTSD and depression in World Trade Center responders. Transl. 
Psychiatry 7, e1158. https://​doi.​org/​10.​1038/​tp.​2017.​130 (2017).

	11.	 Clark, S. L. et al. A methylation study of long-term depression risk. Mol. Psychiatry 25, 1334–1343. https://​doi.​org/​10.​1038/​s41380-​
019-​0516-z (2020).

	12.	 Guintivano, J., Arad, M., Gould, T. D., Payne, J. L. & Kaminsky, Z. A. Antenatal prediction of postpartum depression with blood 
DNA methylation biomarkers. Mol. Psychiatry 19, 560–567. https://​doi.​org/​10.​1038/​mp.​2013.​62 (2014).

	13.	 Moschny, N. et al. Novel candidate genes for ECT response prediction-a pilot study analyzing the DNA methylome of depressed 
patients receiving electroconvulsive therapy. Clin. Epigenet. 12, 114. https://​doi.​org/​10.​1186/​s13148-​020-​00891-9 (2020).

	14.	 Barbu, M. C. et al. Methylome-wide association study of antidepressant use in Generation Scotland and the Netherlands Twin 
Register implicates the innate immune system. Mol. Psychiatry https://​doi.​org/​10.​1038/​s41380-​021-​01412-7 (2021).

	15.	 Huls, A. et al. Association between DNA methylation levels in brain tissue and late-life depression in community-based partici-
pants. Transl. Psychiatry 10, 262. https://​doi.​org/​10.​1038/​s41398-​020-​00948-6 (2020).

	16.	 Coon, H. et al. Genome-wide significant regions in 43 Utah high-risk families implicate multiple genes involved in risk for com-
pleted suicide. Mol. Psychiatry https://​doi.​org/​10.​1038/​s41380-​018-​0282-3 (2018).

https://doi.org/10.1038/s41593-018-0326-7
https://doi.org/10.1038/s41467-018-03819-3
https://doi.org/10.1038/s41593-021-00832-6
https://doi.org/10.1016/j.neuroscience.2013.01.041
https://doi.org/10.1176/appi.ajp.2017.16111286
https://doi.org/10.1176/appi.ajp.2017.16111286
https://doi.org/10.1038/s41467-021-21365-3
https://doi.org/10.1523/JNEUROSCI.1758-09.2009
https://doi.org/10.1523/JNEUROSCI.1758-09.2009
https://doi.org/10.3390/ijms18081711
https://doi.org/10.1038/s41380-018-0247-6
https://doi.org/10.1038/tp.2017.130
https://doi.org/10.1038/s41380-019-0516-z
https://doi.org/10.1038/s41380-019-0516-z
https://doi.org/10.1038/mp.2013.62
https://doi.org/10.1186/s13148-020-00891-9
https://doi.org/10.1038/s41380-021-01412-7
https://doi.org/10.1038/s41398-020-00948-6
https://doi.org/10.1038/s41380-018-0282-3


10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18361  | https://doi.org/10.1038/s41598-022-22744-6

www.nature.com/scientificreports/

	17.	 William, N. et al. Neurexin 1 variants as risk factors for suicide death. Mol. Psychiatry https://​doi.​org/​10.​1038/​s41380-​021-​01190-2 
(2021).

	18.	 Kilaru, V. et al. Genome-wide gene-based analysis suggests an association between Neuroligin 1 (NLGN1) and post-traumatic 
stress disorder. Transl. Psychiatry 6, e820. https://​doi.​org/​10.​1038/​tp.​2016.​69 (2016).

	19.	 Jamain, S. et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat. Genet. 
34, 27–29. https://​doi.​org/​10.​1038/​ng1136 (2003).

	20.	 Laumonnier, F. et al. X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the 
neuroligin family. Am. J. Hum. Genet. 74, 552–557. https://​doi.​org/​10.​1086/​382137 (2004).

	21.	 Yan, J. et al. Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients. Mol. Psychiatry 10, 329–332. 
https://​doi.​org/​10.​1038/​sj.​mp.​40016​29 (2005).

	22.	 Glessner, J. T. et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459, 569–573. 
https://​doi.​org/​10.​1038/​natur​e07953 (2009).

	23.	 Lewis, C. M. et al. Genome-wide association study of major recurrent depression in the UK population. Am. J. Psychiatry 167, 
949–957. https://​doi.​org/​10.​1176/​appi.​ajp.​2010.​09091​380 (2010).

	24.	 Gazzellone, M. J. et al. Uncovering obsessive-compulsive disorder risk genes in a pediatric cohort by high-resolution analysis of 
copy number variation. J. Neurodev. Disord. 8, 36. https://​doi.​org/​10.​1186/​s11689-​016-​9170-9 (2016).

	25.	 Li, Q. et al. 89. Genome wide meta-analysis of suicide behaviors. Eur. Neuropsychopharmacol. 51, e88 (2021).
	26.	 Nakanishi, M. et al. Functional significance of rare neuroligin 1 variants found in autism. PLoS Genet. 13, e1006940. https://​doi.​

org/​10.​1371/​journ​al.​pgen.​10069​40 (2017).
	27.	 Bena, F. et al. Molecular and clinical characterization of 25 individuals with exonic deletions of NRXN1 and comprehensive review 

of the literature. Am. J. Med. Genet. B Neuropsychiatr. Genet. 162B, 388–403. https://​doi.​org/​10.​1002/​ajmg.b.​32148 (2013).
	28.	 Coelewij, L. & Curtis, D. Mini-review: Update on the genetics of schizophrenia. Ann. Hum. Genet. 82, 239–243. https://​doi.​org/​

10.​1111/​ahg.​12259 (2018).
	29.	 Sato, D. et al. SHANK1 Deletions in males with autism spectrum disorder. Am. J. Hum. Genet. 90, 879–887. https://​doi.​org/​10.​

1016/j.​ajhg.​2012.​03.​017 (2012).
	30.	 Berkel, S. et al. Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat. 

Genet. 42, 489–491. https://​doi.​org/​10.​1038/​ng.​589 (2010).
	31.	 Leblond, C. S. et al. Meta-analysis of SHANK mutations in autism spectrum disorders: A gradient of severity in cognitive impair-

ments. PLoS Genet. 10, e1004580. https://​doi.​org/​10.​1371/​journ​al.​pgen.​10045​80 (2014).
	32.	 Durand, C. M. et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum 

disorders. Nat. Genet. 39, 25–27. https://​doi.​org/​10.​1038/​ng1933 (2007).
	33.	 Bacchelli, E. et al. Screening of nine candidate genes for autism on chromosome 2q reveals rare nonsynonymous variants in the 

cAMP-GEFII gene. Mol. Psychiatry 8, 916–924. https://​doi.​org/​10.​1038/​sj.​mp.​40013​40 (2003).
	34.	 Bucan, M. et al. Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility 

genes. PLoS Genet. 5, e1000536. https://​doi.​org/​10.​1371/​journ​al.​pgen.​10005​36 (2009).
	35.	 Peca, J. & Feng, G. Cellular and synaptic network defects in autism. Curr. Opin. Neurobiol. 22, 866–872. https://​doi.​org/​10.​1016/j.​

conb.​2012.​02.​015 (2012).
	36.	 Runkel, F., Rohlmann, A., Reissner, C., Brand, S. M. & Missler, M. Promoter-like sequences regulating transcriptional activity in 

neurexin and neuroligin genes. J. Neurochem. 127, 36–47. https://​doi.​org/​10.​1111/​jnc.​12372 (2013).
	37.	 Massart, R. et al. The genome-wide landscape of DNA methylation and hydroxymethylation in response to sleep deprivation 

impacts on synaptic plasticity genes. Transl. Psychiatry 4, e347. https://​doi.​org/​10.​1038/​tp.​2013.​120 (2014).
	38.	 Feng, P., Akladious, A. A. & Hu, Y. Hippocampal and motor fronto-cortical neuroligin1 is increased in an animal model of depres-

sion. Psychiatry Res. 243, 210–218. https://​doi.​org/​10.​1016/j.​psych​res.​2016.​06.​052 (2016).
	39.	 Chan, W. Y., Xia, C. L., Dong, D. C., Heizmann, C. W. & Yew, D. T. Differential expression of S100 proteins in the developing human 

hippocampus and temporal cortex. Microsc. Res. Technol. 60, 600–613. https://​doi.​org/​10.​1002/​jemt.​10302 (2003).
	40.	 Thalmeier, A. et al. Gene expression profiling of post-mortem orbitofrontal cortex in violent suicide victims. Int. J. Neuropsychop-

harmacol. 11, 217–228. https://​doi.​org/​10.​1017/​S1461​14570​70078​94 (2008).
	41.	 Beurel, E. & Lowell, J. A. Th17 cells in depression. Brain Behav. Immunol. 69, 28–34. https://​doi.​org/​10.​1016/j.​bbi.​2017.​08.​001 

(2018).
	42.	 Beurel, E., Harrington, L. E. & Jope, R. S. Inflammatory T helper 17 cells promote depression-like behavior in mice. Biol. Psychiatry 

73, 622–630. https://​doi.​org/​10.​1016/j.​biops​ych.​2012.​09.​021 (2013).
	43.	 Davami, M. H. et al. Elevated IL-17 and TGF-beta serum levels: A positive correlation between T-helper 17 cell-related pro-

inflammatory responses with major depressive disorder. Basic Clin. Neurosci. 7, 137–142. https://​doi.​org/​10.​15412/J.​BCN.​03070​
207 (2016).

	44.	 Chen, Y. et al. Emerging tendency towards autoimmune process in major depressive patients: A novel insight from Th17 cells. 
Psychiatry Res. 188, 224–230. https://​doi.​org/​10.​1016/j.​psych​res.​2010.​10.​029 (2011).

	45.	 Sun, Y., Drevets, W., Turecki, G. & Li, Q. S. The relationship between plasma serotonin and kynurenine pathway metabolite levels 
and the treatment response to escitalopram and desvenlafaxine. Brain Behav. Immun. 87, 404–412. https://​doi.​org/​10.​1016/j.​bbi.​
2020.​01.​011 (2020).

	46.	 Ju, C. et al. Integrated genome-wide methylation and expression analyses reveal functional predictors of response to antidepres-
sants. Transl. Psychiatry 9, 254. https://​doi.​org/​10.​1038/​s41398-​019-​0589-0 (2019).

	47.	 Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 4, 7. https://​doi.​
org/​10.​1186/​s13742-​015-​0047-8 (2015).

	48.	 Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 
559–575. https://​doi.​org/​10.​1086/​519795 (2007).

	49.	 Fellay, J. et al. A whole-genome association study of major determinants for host control of HIV-1. Science 317, 944–947. https://​
doi.​org/​10.​1126/​scien​ce.​11437​67 (2007).

	50.	 Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190. https://​doi.​org/​10.​1371/​journ​
al.​pgen.​00201​90 (2006).

	51.	 Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 
904–909. https://​doi.​org/​10.​1038/​ng1847 (2006).

	52.	 Morris, T. J. et al. ChAMP: 450k chip analysis methylation pipeline. Bioinformatics 30, 428–430. https://​doi.​org/​10.​1093/​bioin​
forma​tics/​btt684 (2014).

	53.	 Zhou, W., Laird, P. W. & Shen, H. Comprehensive characterization, annotation and innovative use of infinium DNA methylation 
BeadChip probes. Nucleic Acids Res. 45, e22. https://​doi.​org/​10.​1093/​nar/​gkw967 (2017).

	54.	 Nordlund, J. et al. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome 
Biol. 14, r105. https://​doi.​org/​10.​1186/​gb-​2013-​14-9-​r105 (2013).

	55.	 Pidsley, R. et al. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genom. 14, 293. https://​
doi.​org/​10.​1186/​1471-​2164-​14-​293 (2013).

	56.	 Aryee, M. J. et al. Minfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation 
microarrays. Bioinformatics 30, 1363–1369. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btu049 (2014).

https://doi.org/10.1038/s41380-021-01190-2
https://doi.org/10.1038/tp.2016.69
https://doi.org/10.1038/ng1136
https://doi.org/10.1086/382137
https://doi.org/10.1038/sj.mp.4001629
https://doi.org/10.1038/nature07953
https://doi.org/10.1176/appi.ajp.2010.09091380
https://doi.org/10.1186/s11689-016-9170-9
https://doi.org/10.1371/journal.pgen.1006940
https://doi.org/10.1371/journal.pgen.1006940
https://doi.org/10.1002/ajmg.b.32148
https://doi.org/10.1111/ahg.12259
https://doi.org/10.1111/ahg.12259
https://doi.org/10.1016/j.ajhg.2012.03.017
https://doi.org/10.1016/j.ajhg.2012.03.017
https://doi.org/10.1038/ng.589
https://doi.org/10.1371/journal.pgen.1004580
https://doi.org/10.1038/ng1933
https://doi.org/10.1038/sj.mp.4001340
https://doi.org/10.1371/journal.pgen.1000536
https://doi.org/10.1016/j.conb.2012.02.015
https://doi.org/10.1016/j.conb.2012.02.015
https://doi.org/10.1111/jnc.12372
https://doi.org/10.1038/tp.2013.120
https://doi.org/10.1016/j.psychres.2016.06.052
https://doi.org/10.1002/jemt.10302
https://doi.org/10.1017/S1461145707007894
https://doi.org/10.1016/j.bbi.2017.08.001
https://doi.org/10.1016/j.biopsych.2012.09.021
https://doi.org/10.15412/J.BCN.03070207
https://doi.org/10.15412/J.BCN.03070207
https://doi.org/10.1016/j.psychres.2010.10.029
https://doi.org/10.1016/j.bbi.2020.01.011
https://doi.org/10.1016/j.bbi.2020.01.011
https://doi.org/10.1038/s41398-019-0589-0
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1086/519795
https://doi.org/10.1126/science.1143767
https://doi.org/10.1126/science.1143767
https://doi.org/10.1371/journal.pgen.0020190
https://doi.org/10.1371/journal.pgen.0020190
https://doi.org/10.1038/ng1847
https://doi.org/10.1093/bioinformatics/btt684
https://doi.org/10.1093/bioinformatics/btt684
https://doi.org/10.1093/nar/gkw967
https://doi.org/10.1186/gb-2013-14-9-r105
https://doi.org/10.1186/1471-2164-14-293
https://doi.org/10.1186/1471-2164-14-293
https://doi.org/10.1093/bioinformatics/btu049


11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18361  | https://doi.org/10.1038/s41598-022-22744-6

www.nature.com/scientificreports/

	57.	 Guintivano, J., Aryee, M. J. & Kaminsky, Z. A. A cell epigenotype specific model for the correction of brain cellular heterogeneity 
bias and its application to age, brain region and major depression. Epigenetics 8, 290–302. https://​doi.​org/​10.​4161/​epi.​23924 (2013).

	58.	 Leek, J. T. & Storey, J. D. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 3, 1724–
1735. https://​doi.​org/​10.​1371/​journ​al.​pgen.​00301​61 (2007).

	59.	 Leek, J. T. & Storey, J. D. A general framework for multiple testing dependence. Proc. Natl. Acad. Sci. U.S.A. 105, 18718–18723. 
https://​doi.​org/​10.​1073/​pnas.​08087​09105 (2008).

	60.	 Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted 
variation in high-throughput experiments. Bioinformatics 28, 882–883. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bts034 (2012).

	61.	 Leek, J. T. et al. sva: Surrogate Variable Analysis (R package version 3.30.1, 2019).
	62.	 Leek, J. T. et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 11, 733–739. 

https://​doi.​org/​10.​1038/​nrg28​25 (2010).
	63.	 Du, P. et al. Comparison of beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC 

Bioinform. 11, 587. https://​doi.​org/​10.​1186/​1471-​2105-​11-​587 (2010).
	64.	 Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 

43, e47. https://​doi.​org/​10.​1093/​nar/​gkv007 (2015).
	65.	 Tantoh, D. M. et al. AHRR cg05575921 methylation in relation to smoking and PM2.5 exposure among Taiwanese men and women. 

Clin. Epigenet. 12, 117. https://​doi.​org/​10.​1186/​s13148-​020-​00908-3 (2020).
	66.	 Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
	67.	 Pedersen, B. S., Schwartz, D. A., Yang, I. V. & Kechris, K. J. Comb-p: Software for combining, analyzing, grouping and correcting 

spatially correlated P-values. Bioinformatics 28, 2986–2988. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bts545 (2012).
	68.	 Mi, G., Di, Y., Emerson, S., Cumbie, J. S. & Chang, J. H. Length bias correction in gene ontology enrichment analysis using logistic 

regression. PLoS ONE 7, e46128. https://​doi.​org/​10.​1371/​journ​al.​pone.​00461​28 (2012).
	69.	 Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and 

drugs. Nucleic Acids Res. 45, D353–D361. https://​doi.​org/​10.​1093/​nar/​gkw10​92 (2017).
	70.	 Fabregat, A. et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 46, D649–D655. https://​doi.​org/​10.​1093/​nar/​gkx11​

32 (2018).
	71.	 Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740. https://​doi.​org/​10.​1093/​bioin​forma​

tics/​btr260 (2011).

Acknowledgements
We thank the clinical investigators and research coordinators who ran the clinical studies and collected the blood 
samples used in this study, as well as study participants and their families, whose help and participation made 
this work possible. We thank the staff from Cancer Genetic Institute and HD Bioscience for performing the DNA 
extraction from whole blood samples, plating, QC, and the staff from Illumina to perform the epigenetic assay 
and genotyping assay to enable the data generation.

Author contributions
Q.S.L. contributed to the study concept and design of cohort 1, while Q.S.L. and G.T. contributed to the study 
concept and design of cohort 2. R.M. led the clinical study of cohort 1 and G.T. led the clinical study of cohort 
2. Q.S.L. analyzed data and wrote the first draft of the manuscript. All authors reviewed, provided feedback, and 
approved the final draft of the manuscript.

Funding
This study was funded by Janssen Research & Development, LLC.

Competing interests 
QSL, WD are employees of Janssen Research & Development, LLC, RM was an employee of Janssen Research & 
Development, LLC and currently serves as a consultant for Janssen Research & Development, LLC. QSL, RM, 
and WD may own stock and/or stock options in Johnson & Johnson. GT has received research funding from 
Janssen Research & Development, LLC in 2016–2017 for generating the molecular data from cohort 2 including 
those analyzed in this study.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​22744-6.

Correspondence and requests for materials should be addressed to Q.S.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.4161/epi.23924
https://doi.org/10.1371/journal.pgen.0030161
https://doi.org/10.1073/pnas.0808709105
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1038/nrg2825
https://doi.org/10.1186/1471-2105-11-587
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/s13148-020-00908-3
https://doi.org/10.1093/bioinformatics/bts545
https://doi.org/10.1371/journal.pone.0046128
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1093/nar/gkx1132
https://doi.org/10.1093/nar/gkx1132
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1038/s41598-022-22744-6
https://doi.org/10.1038/s41598-022-22744-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Meta-analysis of epigenome-wide association studies of major depressive disorder
	Results
	Differentially methylated positions in peripheral blood. 
	Pathway enrichment analysis. 
	Differentially methylated region (DMR) analysis. 

	Discussion
	Methods
	Study cohorts. 
	Cohort 1. 
	Cohort 2. 

	Genotyping of samples. 
	DNA methylation profiling. 
	Data pre-processing. 
	Identification of DMPs. 
	Identification of DMRs. 
	Gene set enrichment analysis. 

	References
	Acknowledgements


