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Abstract

Purpose of Review Five years have passed since the World Health Organization released its Global Technical Strategy for
Malaria (GTS). In that time, progress against malaria has plateaued. This review focuses on the implications of antimalarial
drug resistance for the GTS and how interim progress in parasite genomics and antimalarial pharmacology offer a bulwark
against it.

Recent Findings For the first time, drug resistance—conferring genes have been identified and validated before their global
expansion in malaria parasite populations. More efficient methods for their detection and elaboration have been developed,
although low-density infections and polyclonality remain a nuisance to be solved. Clinical trials of alternative regimens for
multidrug-resistant malaria have delivered promising results. New agents continue down the development pipeline, while a
nascent infrastructure in sub-Saharan Africa for conducting phase I trials and trials of transmission-blocking agents has come to
fruition after years of preparation.

Summary These and other developments can help inform the GTS as the world looks ahead to the next two decades of its
implementation. To remain ahead of the threat that drug resistance poses, wider application of genomic-based surveillance and
optimization of existing and forthcoming antimalarial drugs are essential.

Keywords Malaria - Plasmodium - Drug resistance - World Health Organization Global Technical Strategy for Malaria

Introduction program largely excluded sub-Saharan Africa, and its ultimate

abandonment was driven by a host of factors including, in
Malaria stubbornly persists in tropical and subtropical regions ~ part, the emergence and spread of drug resistance to chloro-
of the world despite concerted global efforts that date back to ~ quine (CQ) and related 4-aminoquinolines in use at the time
the World Health Organization (WHO) Global Malaria  [3]. Over half a century later, the emergence of antimalarial
Eradication Programme in the 1950s and 1960s [1, 2]. The
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drug resistance remains an ever-present threat to global ma-
laria control.

In 2016, the WHO reaffirmed its vision of global malaria
eradication and provided a technical framework to guide local,
national, and regional efforts outlined in the Global Technical
Strategy for Malaria 2016-2030 [4]. The strategy centers on
universal access to malaria testing and treatment, acceleration
toward elimination where feasible, enhanced surveillance,
continued research and innovation, and infrastructural and
capacity-building investments. Soberly, it acknowledges the
imposing challenges to malaria control, manifest in the most
recent World Malaria Report that documented stalling and, in
certain areas ranging from South America to sub-Saharan
Africa, reversing progress [5]. The Global Technical
Strategy set a milestone of achieving a 40% reduction in ma-
laria mortality and case incidence by 2020 and a 90% reduc-
tion by 2030 [4]. The latest data suggests that these first mile-
stones will not be met. In response, the WHO updated its
agenda to increase focus on high-burden areas [5, 6].
Meanwhile, the current coronavirus pandemic is anticipated
to further harm malaria control prospects [7¢, 8¢].

Human malaria is caused by one of five Plasmodium spp.
of which P. falciparum and P. vivax are the most prevalent.
While P. vivax has a wider geographic range and a biology
that poses unique challenges to eradication, P. falciparum is
responsible for the vast majority of malaria-attributable deaths
and is the predominant species in sub-Saharan Africa, which
bears > 90% of the global malaria burden [5]. The other
human-infecting species, including P. ovale, P. malariae,
and the zoonotic P. knowlesi, are less prevalent, generally less
lethal (with the exception of P. knowlesi) and less studied in
terms of drug resistance. This review therefore focuses pri-
marily on drug resistance in P. falciparum, with additional
discussion of P. vivax.

Malaria, with few exceptions, is treated with combination
therapy (Table 1). Artemisinin-based combination therapies
(ACTs) are the current first-line agents for curative treatment
[9]. A complete course of ACT is also given in severe malaria
following induction with intravenous artesunate [9—11]. They
combine short-acting but highly potent artemisinin derivatives
with less potent, longer-acting agents. The coformulation of
agents with mismatched pharmacokinetics, while not unique
to antimalarial therapy, is expected to impede the develop-
ment of artemisinin resistance but comes with the potential
expense of promoting resistance to the partner agents which
linger for weeks to months at subtherapeutic concentrations
[12]. Pharmacologic autoinduction of artemisinins, whereby
the compounds upregulate their own metabolism with repeat-
ed dosing, may also help promote resistance by exposing par-
asites to subtherapeutic concentrations over the treatment
course [13].

Among threats to malaria control, the emergence and
spread of drug-resistant parasites require a response that

leverages innovations in parasite genomics, drug develop-
ment, and multinational collaborations to identify, track, con-
tain, and treat multidrug-resistant malaria (Table 2) [14, 15].
Here, we review and discuss the historical origins and spread
of drug-resistant malaria and their impacts on past control
efforts, a brief overview of mechanisms of resistance, methods
of drug resistance surveillance, the effects of resistance on
treatment and prevention, and how innovations in parasite
genomics and drug development can advance the Global
Technical Strategy.

Historical Origins and Present Distribution
of Drug-Resistant Malaria

Malaria parasite resistance to essentially all currently and pre-
viously available antimalarial drugs has arisen multiple times
throughout the course of the last century and more. Quinine
was the first commercial antimalarial, extracted from the bark
ofthe South American cinchona tree and first traded in Europe
in the seventeenth century. By the turn of the twentieth cen-
tury, quininization, the mass administration of quinine or its
relatives, was carried out in large tea estates, sugar and rubber
plantations, and similar settings where malaria-naive workers
migrated to malarious areas [16—18]. Early reports of
suspected quinine resistance emerged as early as 1910 [19].
Quinine and its relatives were then commonly combined with
the early 8-aminoquinolines, forebears to primaquine and
tafenoquine, but combination therapy was replaced by CQ
monotherapy with the drug’s advent during World War IL

In the middle of the WHO Global Malaria Eradication
Programme (1955-1969), the first reports of CQ-resistant
P. falciparum emerged independently in South America and
Southeast Asia [20, 21]. Within two decades, CQ-resistant
P. falciparum swept across the tropical and subtropical world
[22]. CQ was gradually replaced by sulfadoxine-
pyrimethamine (SP), but resistance to SP appeared rapidly
after its introduction [23-25]. The emergence of drug-
resistant P. falciparum in sub-Saharan Africa was devastating,
with doubling to tripling of case incidence and mortality (Fig.
1) [30]. As alternative agents were introduced—proguanil,
amodiaquine, mefloquine, piperaquine, atovaquone—the
identification of drug-resistant parasites followed closely
[31]. Malaria resurged worldwide, and the measurable prog-
ress that had been made against malaria during the eradication
effort was eroded, compounded by delays in replacing CQ and
SP on national formularies with ACTs [32].

After ACTs were introduced in the late 1990s and early
2000s, initial reports of partial artemisinin and ACT resistance
appeared in Southeast Asia [33, 34] and were followed by
frank treatment failures of artesunate-mefloquine (AS-MQ)
and later dihydroartemisinin-piperaquine (DHA-PPQ) due to
phenotype- and genotype-confirmed resistance to both the
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Table 1 P. falciparum blood schizonticides currently in use and their associated genetic markers of resistance

Drug class and Auvailable coformulations Timeline of resistance Molecular markers of resistance
agent
Introduction of First report of Implicated Polymorphism or
agent resistance genes variant

4-Aminoquinolines

Chloroquine CQ monotherapy 1945 1957 pfert SNPs
pfmdrl SNPs
Amodiaquine AS-AQ 1951 1971 pfert SNPs
pfmdrl SNPs
Arylamino alcohols
Lumefantrine AM-LF 1992¢ A pfert’ SNPs”
pfmdr1® Copy # variant’
Mefloquine MQ monotherapy, AS-MQ 1977 1982 pfimdrl Copy # variant
Quinine QN monotherapy 1632 1910 pfindrl SNPs
pfmdr6 SNPs
pfert SNPs
pfmrpl SNPs
pfnhel SNPs
Mannich base
Pyronaridine AS-PY 2014 8 pfert’ SNPs”
Artemisinins
Artemether AM-LF 1992¢ - prkl3 SNPs
Artesunate AS monotherapy, AS-SP, AS-MQ, 1978 2002¢ pfkl3 SNPs
AS-PY 2011°
Dihydroartemisinin DHA-PPQ 1997¢ 2010° pfkl3 SNPs
Bisquinoline
Piperaquine DHA-PPQ « « pfpm2 Copy # variant
pfert SNPs
Naphthoquinone
Atovaquone ATQ-PGL 1996 19978 pfeyth SNPs
Antifolates
Proguanil ATQ-PGL 1948 1949" pfdhfi SNPs
Pyrimethamine SP 1967 1967 pfdhfi SNPs
Sulfadoxine SP «“ «“ pfdhps SNPs

AM artemether, AQ amodiaquine, AS artesunate, ATQ atovaquone, CQ chloroquine, DHA dihydroartemisinin, LF lumefantrine, MO mefloquine,
P pyrimethamine, PGL proguanil, PPQ piperaquine, PY pyronaridine, ON quinine, S sulfadoxine, SNPs single nucleotide polymorphisms
#No confirmed resistance

®From in vitro studies of experimentally generated resistance, unconfirmed role in field isolates

¢ Introduction of the combination AM-LF

9 Date applies to the combination AS-MQ

¢ Date applies to the combination AS-SP

"Date applies to the combination DHA-PPQ

€ Resistance to ATQ alone; resistance to the combination ATQ-PGL was detected in 2002

h Resistance to PGL alone; see note above

I Date applies to the combination SP

artemisinin derivates and partner drugs [35¢, 36-44].  other ACTs have variably found therapeutic failures > 10%,
Treatment failures well exceeded the threshold of 10% typical ~ but these studies were limited by small sample sizes and lack
for enacting policy change [41]. Drug efficacy studies of the ~ of phenotypic and/or genotypic correlates of resistance
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Table 2 Policy prescriptions for confronting antimalarial drug resistance using parasite genomics and clinical pharmacology

Parasite genomics

Antimalarial drug evaluation

Antimalarial pharmacology

Identification and validation of new
molecular markers and mechanisms of
resistance

Solutions for genotyping low parasitemia
infections and polyclonality

Development of low-cost genotyping
assays with genetic resolution for
tracking parasite importation

Optimization Streamlining genomic techniques to
enhance accessibility

Expansion of tools for assessing the
genetics of polyclonal infections

Innovation

Investment
sub-Saharan Africa
Training in bioinformatics and data
analysis
Development of data visualization tools
for genomic data for policy makers

drug quality

Establishing methods for continuous
culture of P. vivax

Development of in vitro models for
evaluating antimalarial efficacy for
non-falciparum species

Development of low-cost and simple
methods for monitoring drug quality

Strengthening regional collaborations for
resistance testing and surveillance

Discovery and development of novel
pharmacophores, classes, and mechanisms of
action

Updated paradigms of parasite clearance and
other pharmaco-dynamic parameters of drug
efficacy

Dose optimization in pediatric and pregnant
populations earlier in drug development

Broaden uptake of transmission-blocking
8-aminoquinolines (e.g., single low-dose
primaquine)

Retailor ACT posology and formulation to
prolong their utility (e.g., 6-day regimens,
sequential ACT, triple ACT)

Expansion of sequencing infrastructure in Expansion of infrastructure for ex vivo and Support of phase 1 and 2 clinical trials in
in vitro antimalarial resistance testing in
sub-Saharan Africa

Expansion of infrastructure for monitoring

endemic or endemic-adjacent areas
Instrumentation and human upskilling for
biochemical analysis
Investment in pharmacovigilance systems in
endemic countries

ACT artemisinin-based combination therapy

[45-48]. One exception is resistance to artesunate-
sulfadoxine-pyrimethamine (AS-SP) reported in areas of high
preexisting antifolate resistance; antifolate resistance effec-
tively reduces AS-SP to artemisinin monotherapy, which is
known to fail in up to 50% of cases due in part to its rapid
elimination and autoinduction with repeated doses [13, 49].
Antimalarial resistance in non-falciparum species has been
slower to emerge, thought due to lower parasite numbers in
the human host and hence fewer mutation events, and, for
P. vivax and P. ovale, the ability to evade blood schizonticides
through forming hypnozoites in the liver. In the late 1980s,
CQ resistance in P. vivax was first reported in non-immune
Australian travels to Papua New Guinea, and by the early
2000s, CQ resistance was also documented in P. malariae
[50-52]. Genetic signatures of P. vivax worldwide suggest
that, today, CQ resistance has expanded globally [53].
Today, the distribution of drug-resistant P. falciparum re-
mains variable across the globe, reflecting in part patterns in
drug deployment and transmission intensity. Resistance to
two of the ACTs, DHA-PPQ and AS-MQ), is well documented
in Southeast Asia [33, 40]. Reports of ACT treatment failures
in malaria-naive travelers who contracted P. falciparum ma-
laria in sub-Saharan Africa echo the first reports of CQ-
resistant malaria, though none contain definitive confirmation
of resistance and at least two of the reports included failures
attributable to subtherapeutic dosing rather than drug resis-
tance [54-56, 57+, 58, 59]. Evidence of genotypic and pheno-
typic correlates of resistance to one or more ACT components

is beginning to emerge in sub-Saharan Africa, South Asia, and
South America including a recent report from Rwanda where
P. falciparum kelchi3 (pfkl3) R561H, P574L, and C469Y
alleles—previously linked to a delayed clearance phenotype
[60°]—were detected [33, 40, 61, 62¢, 63¢]. Resistance to
the antifolates remains widespread, while reversion of CQ-
resistant parasite populations to the CQ-susceptible wild type
followed in the wake of withdrawing CQ from national for-
mularies in eastern and central-southern Africa [64—71].

Mechanisms of Antimalarial Resistance

At the molecular level, the emergence and propagation of
drug-resistant Plasmodium spp. are intrinsically tied to the
diverse forms assumed by the parasite and the variety of en-
vironments it traverses, from the mosquito midgut and sali-
vary glands to human hepatocytes and erythrocytes [31]. The
malaria parasite spends most of its life in a haploid state, only
briefly diploid during sexual recombination in mosquitoes
[72]. The propagation of drug resistance through a parasite
population requires mutant parasites to successfully undergo
gametocytogenesis and sporogony, two of the parasite
lifecycle bottlenecks. Mutations that hamper these or other
vital functions will propagate poorly or not at all, as with
atovaquone resistance—conferring mutations in the
Plasmodium cytochrome b complex which appear to render
the parasite intransmissible [73].
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B Malaria deaths
per 1,000 children

M Inpatient pediatric
case fatality due to

I Malaria case
incidence per 10

Malaria deaths per
100 total deaths

Fig. 1 Trends in malaria case
incidence, deaths, and case

fatality after the introduction and child-years malaria
spread of chloroquine-resistant
malaria into sub-Saharan Africa.
Data are from four historical 16
studies [26¢, 27-29]
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Comprehensive reviews of the mechanisms and genotypic
markers of antimalarial drug resistance were recently pub-
lished elsewhere by Conrad and Ross [74, 75¢]. Mechanisms
of resistance in malaria parasites include similar mechanisms
to those described in other microorganisms (e.g., drug efflux,
alteration to the drug target, enzymatic degradation or modi-
fication of the drug) as well as less common mechanisms that
relate to the parasite’s lifecycle and metabolism [76]. For ex-
ample, mutations in pfk/3 mediate susceptibility to
artemisinins by prolonging the time the parasite spends in its
earlier, less drug-susceptible ring stage and upregulating the
unfolded protein response, essentially arresting development
while the artemisinin is rapidly eliminated and artemisinin-
damaged peptides are cleared [77, 78¢].

Drug resistance in P. vivax and P. malariae is less well
characterized than in P. falciparum. In vivax malaria, relapse
from hypnozoites complicates the interpretation of treatment
outcomes, further made difficult by the current lack of

@ Springer
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methods for continuous culture of P. vivax [52, 79]. Given
these challenges, standardized methods for evaluating the ef-
ficacy of antimalarials for P. vivax are necessary [80].
Historical comparative studies of quinine and chloroquine
for vivax malaria support a definition of treatment failure as
any recurrent P. vivax parasitemia occurring within a certain
window of time after treatment (e.g., treatment failure if with-
in 16 days, likely treatment failure if within 17-28 days, pos-
sible treatment failure if after 28 days) [81].

Therapeutic failures of CQ for P. vivax infection and can-
didate drug resistance mutations have been documented in
most endemic areas [82-91, 92¢], prompting some national
programs to adopt ACTs as first line for vivax malaria [80].
There are no firmly established molecular markers of drug-
resistant P. vivax, but population genomic studies of P. vivax
hint not only at drug pressure from CQ, the first-line P. vivax
treatment in most countries, but also genetic signatures of
possible MQ, antifolate, and artemisinin resistance in areas
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of co-endemic P. falciparum [53, 93]. There is increasing
recognition that mechanisms of drug resistance may differ in
substantial ways between different Plasmodium spp. While
CQ resistance in P. falciparum is strongly linked to the
K76T mutation in the CQ resistance transporter gene (pfcrr)
[94, 95], CQ resistance in P. vivax appears to be via an un-
known mechanism mediated by transcriptional changes in the
orthologous pvcrt-o, suggesting interspecies differences in the
native function of the transporter, which still is unknown [96,
97-, 98, 99].

Drug Resistance Surveillance: Clinical,
Phenotypic, and Genotypic Detection

The detection of antimalarial drug resistance relies on clinical,
phenotypic, and genotypic data, yet it can be challenging to
acquire all three in the resource-deprived settings where ma-
laria is endemic. Current antimalarial resistance surveillance
activities therefore often operate using one or two of the three
approaches.

Clinical resistance relates to therapeutic failure, wherein a
patient experiences persistent or recurrent parasitemia after
treatment, and is defined in terms of early or late reappearance
of parasites on blood smear and the presence or absence of
symptoms [100]. Confirmation of therapeutic failure requires
matching the parasite strains from the initial and recurrent
episode to distinguish failure from a new infection, which
presents sizeable challenges due to multiple-strain
(polyclonal) infections, and the often small number of para-
sites in recurrent episodes [101]. Phenotypic correlates of drug
resistance require drug sensitivity testing of in vitro or ex vivo
parasite cultures from patients, not currently performed in the
course of clinical care nor are the laboratory methods readily
available, many of which require specialized assays for indi-
vidual drugs [102, 103]. Once specific gene mutations are
linked to clinical and phenotypic correlates of drug resistance
and validated in field-isolated parasites, genotyping parasites
for genetic markers of resistance is a third means of surveil-
lance and the most scalable [104].

In practice, drug resistance surveillance has historically
been done through therapeutic efficacy studies (TES) of
first-line agents that follow a prespecified WHO protocol, rec-
ommended every two years in endemic areas [41]. Today,
TES commonly combines clinical outcomes with molecular
(genotypic) information [105, 106]. In China and Southeast
Asia where containment of already-identified ACT resistance
is a high priority, protocols for integrated drug efficacy sur-
veillance that incorporates data from imported as well as local
cases are under development [107].

The identification and validation of partial artemisinin
resistance-conferring mutations in pfk/3 have enabled moni-
toring for the emergence of artemisinin resistance worldwide

[108]. This is the first time a validated molecular marker of
antimalarial drug resistance is available prior to its widespread
dissemination. There have now been multiple reports of pfki3
mutations outside of Southeast Asia, though not always ac-
companied by phenotypic or clinical evidence of drug resis-
tance [61, 109—-111]. More recent reports from Guyana,
Rwanda, Uganda, and Tanzania have documented validated
resistance polymorphisms in pfkl3 [61e, 63, 112-114,
115¢].

Drug Resistance and Malaria Chemotherapy
and Chemoprevention

The WHO Global Technical Strategy calls for universalizing
access to malaria chemotherapy and chemoprevention, and
revisits an old notion of using chemoprophylaxis in endemic
populations, an approach historically reserved for short-term
use in malaria-naive travelers to endemic areas [4]. Expanding
the use of antimalarials in such ways should go hand in hand
with expanding surveillance for antimalarial drug resistance.
The Global Technical Strategy outlines a timeline (every 2
years) and threshold of effectiveness (90%) for TES of first-
line agents [4]. The strategy also emphasizes the need for
expanding the genetic library of molecular markers of drug
resistance to facilitate early detection. This is particularly rel-
evant in pre-elimination settings where sustained low-level
transmission may be more likely to foster resistant parasites,
but low malaria incidence precludes antimalarial efficacy
studies [116].

As CQ and SP resistance spread, their replacement by
ACTs as first-line treatment for uncomplicated malaria con-
tributed to the regained progress against malaria during the
first decade and a half of this century [117]. To help preserve
ACT efficacy, several alternatives to conventional ACT regi-
mens have been proposed including sequential double combi-
nation ACT, prolonged and/or increased daily frequency of
ACT dosing, and triple ACT. Recently, clinical trials of triple
ACT have demonstrated their safety and efficacy, including in
the treatment of multidrug-resistant malaria (NCT03355664
and NCT02453308) [118, 119]. Co-therapy with a second
agent to potentiate parasite killing or reverse drug
resistance—such as ACTs or CQ with macrolide antibiotics,
or CQ with calcium channel blockers—has also been studied
but with unpromising results [120, 121].

The efficacy and durability of ACTs hinge on several fac-
tors. Underdosing of some antimalarial drugs in children and
pregnant women is thought to have contributed to drug resis-
tance; thus, pediatric formulations and early dose optimization
studies in both children and pregnant women should be count-
ed as a means of forestalling drug resistance and preserving
drug efficacy [122, 123]. The most recent example of this is in
PPQ, shown to be suboptimally dosed in the youngest age
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groups, since rectified with newer dosing schedules for DHA-
PPQ products that nearly double the conventional dose for the
smallest children [124]. Other immediately available means of
combatting drug resistance are efforts to curtail the circulation
of substandard, falsified, and obsolete (e.g., artemisinin or
pyrimethamine monotherapy) antimalarial drugs [125-127].

Transmission-blocking interventions are essential to curb-
ing the spread of drug-resistant parasites, some strains of
which have shown greater transmissibility than wild-type par-
asites [128, 129]. Chemotherapeutically, this entails the use of
agents with activity against gametocytes, the transmissible
stage of the parasite. The only true P. falciparum
gametocytocides currently available are the 8-
aminoquinolines, primaquine, and tafenoquine. Different
ACTs appear to have differing anti-gametocyte efficacies,
but fail to clear gametocytes to the extent of 8-
aminoquinolines [130, 131]. The threat of drug resistance
should motivate the global community to more ardently pro-
mote wider adoption by national malaria control programs of
single low-dose (SLD) primaquine as recommended, in 2012,
by the WHO for arecas of low transmission and arecas of
artemisinin resistance [132—134]. This will require further
demonstration of SLD primaquine’s safety in areas with prev-
alent glucose-6-phosphate dehydrogenase (G6PD) deficiency,
associated with drug-induced hemolytic anemia, as recently
done in South Africa, Tanzania, and Central America
[135-137], and would benefit from affordable point-of-care
tests of G6PD activity.

The WHO endorses three strategies for chemopreven-
tive or presumptive treatment in high-risk groups: inter-
mittent preventive treatment in infants (IPTi), intermittent
preventive treatment in pregnancy (IPTp), and seasonal
malaria chemoprevention (SMC) [138-140]. IPTi and
IPTp are recommended in areas of moderate to high
P. falciparum transmission, and the IPTi guidelines limit
its use to areas where the frequency of the dihydropteroate
synthase (dhps) KS40E mutation is < 50% [140]. SMC is
recommended in areas of high seasonal transmission and
is currently carried out in the Sahel region of Africa [141].
Thirty-nine million children live in areas where SMC is
recommended, and modeling suggests that SMC, if wide-
ly implemented, could avoid over 21 million malaria
cases and 95 thousand deaths annually [142].

Current guidelines for the three preventive strategies
propose SP or SP in combination with amodiaquine
(AQ) [138-140]. Declines in efficacy have occurred in
connection with increasing prevalence of mutations in
the antifolate resistance genes dhps and dihydrofolate re-
ductase (dhfr) [143ee, 144e¢]. Alternatives to SP and AQ-
SP have therefore been examined—including ACTs, CQ
combined with azithromycin, and others [145¢, 146, 147,
148+, 149-152]—with a particular focus on PPQ-
containing regimens given its relatively long half-life,
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but the readiness with which PPQ resistance may arise
warrants caution. All told, IPTi, IPTp, and SMC programs
should follow a coherent antimalarial policy that adheres
to the principles of anti-infective stewardship and relies
on up-to-date drug resistance surveillance data, avoiding
first-line agents to minimize drug pressure and thereby
helping preserve their efficacy in clinical use.

Lastly, the history of mass drug administration
(MDA) for malaria and controversies around its role in
malaria control—and in promoting drug resistance—
extend back almost 100 years and remain a topic for
debate [153]. The bulk of the evidence indicates against
its utility except under very constrained circumstances,
reflected in current WHO recommendations which limit
MDA to complex emergency situations and to areas on
the verge of malaria elimination with robust malaria
control measures already in place and minimal risk of
reimportation [153, 154].

Drug Discovery and Development to Counter
Antimalarial Resistance

Countering antimalarial drug resistance requires new ef-
fective therapies. An active antimalarial drug development
pipeline has been fostered through private-public partner-
ships, open-source access to compound libraries, and ad-
vances in high-throughput screening that includes the
ability to assess stage specificity of candidate compounds
[155, 156°+, 157]. Groundbreaking work in parasite geno-
mics and transcriptomics has accelerated the identification
of potential drug targets [158¢s, 159]. Antimalarial drug
development has also harnessed the latest in clinical phar-
macology science, including phase 0 microdose studies,
novel nanoformulations of antimalarial compounds, the
development of antimalarial biologics, and both in vitro
and in silico pharmacometric simulations [160-162].
Updated pharmacodynamic models of parasite clearance
and antimalarial activity supplement conventional ap-
proaches to how drug efficacy is assessed, helping to in-
form rational drug development and posology [163—165].
Growing capacity in sub-Saharan Africa for locally con-
ducted phase 1 and 2, studies, which included the first-in-
human study of a novel Plasmodium phosphatidylinositol
4-kinase (PI4K) inhibitor, lends promise that early drug
development can increasingly take place in clinically rel-
evant populations [116, 166]. These efforts have led to a
robust pipeline of next-generation and novel classes of
antimalarials with activity against artemisinin-resistant
Plasmodia that includes the synthetic ozonides, inhibitors
of PI4K, and monoclonal antibodies [166—168, 169,
170-172].
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Advances in Molecular Surveillance
and Bioinformatics

Molecular surveillance relies on Plasmodium genomics for
the identification of drug resistance markers. The use of
genome-wide association studies (GWAS) and other popula-
tion genetic tools to characterize the emergence, mechanisms,
and movement of drug-resistant parasites has revolutionized
our understanding of the molecular epidemiology of antima-
larial resistance with implications for the Global Technical
Strategy and national malarial control programs [173].

Next-generation sequencing (NGS) methods, such as
targeted amplicon deep sequencing (TADS), are increasingly
used to monitor molecular markers of resistance [174—178].
By enabling high-sensitivity, high-throughput analysis of mo-
lecular markers, the declining costs and increasing data yield
of NGS have positioned it to replace traditional PCR-based
methods [179]. Pooled sequencing of individual samples from
infected individuals using NGS substantially boosts the num-
ber and rate of sample analysis [180-182]. Keeping apace of
these innovations in sequencing technology are innovations in
bioinformatic methods for the analysis of TADS data [174,
183-185].

At present, several hurdles remain for the widespread im-
plementation of NGS-based methods of molecular surveil-
lance of antimalarial drug resistance. These challenges have
recently been reviewed by Ishengoma et al. [186]. The re-
quirement for advanced infrastructure and training amplifies
these challenges in the resource-deprived settings where ma-
laria is endemic.

Translational Genomics for Malaria Control

Like in other areas of antimicrobial drug resistance research,
GWAS has become an essential tool for the identification of
genetic regions and loci related to antimalarial resistance.
Recently reviewed elsewhere by Volkman et al. [187],
GWAS has been used to confirm previously suspected drug
resistance polymorphisms and identify mechanisms of resis-
tance to new classes of antimalarials [109, 188—195]. Because
the emergence of resistance leaves specific signatures in the
parasite genome, GWAS and other population linkage ap-
proaches can provide clues to how antimalarial resistance
emerges and spreads [196-202]. This provides practicable
knowledge that can inform surveillance for, anticipatory strat-
egies against, and containment of drug resistance.

For example, with the identification of polymorphisms in
pfkl3, population linkage studies provided evidence that the
mutations associated with artemisinin resistance emerged in-
dependently multiple times throughout the Greater Mekong
Subregion of Southeast Asia, alerting programs to the fact that
containment alone will be insufficient [193]. Subsequent

studies showed that successful artemisinin-resistant lineages
spread across the region outcompeting other parasites
[203-205]. Genomic data can be translated into actionable
information for malaria control through use of different visu-
alization tools such as landscape genetics. For artemisinin
resistance in the Greater Mekong Subregion, the use of esti-
mated effective migration surfaces has been proposed to de-
marcate barriers and corridors for parasite migration [206,
207¢]. These kinds of approaches have the potential to identify
key locations at national and regional levels where interven-
tions should be prioritized for halting the spread of resistance.

While genomic-based approaches have predominantly
been used in areas of low transmission where infections tend
to be monoclonal, advances in bioinformatics have allowed
for similar studies to be undertaken in high-transmission re-
gions in sub-Saharan Africa where infections with multiple
strains are common. New deconvolution methods for genomic
data allow for more robust interpretations of genomes in poly-
clonal samples [208, 209]. These early methods have already
been used to trace parasite migration between Tanzania and
the Zanzibar archipelago [210]. Another approach has lever-
aged molecular inversion probes to describe long-range mi-
gration of parasites and temporal changes in antimalarial re-
sistance in the Democratic Republic of the Congo [115¢,
211, 212]. Methods for estimating the propagation of resis-
tance in these high-transmission settings require further devel-
opment before being routinely deployed.

The continual surveillance of parasite population by geno-
mics has the potential to help identify new mechanisms of
resistance early in the course of drug deployment and formu-
lary changes. In combination with other genomics-based ap-
proaches, this could hasten the recognition of concerning sig-
nals for antimalarial resistance in parasite populations. Recent
studies using a combination of in vitro resistance evolution
and whole genome sequencing (IVIEWGA) have started to
map the P. falciparum “resistome” [213ee, 214]. This ap-
proach identified new potential resistance mechanisms and
possible drug targets. Several of the putative genes associated
with resistance have now been shown to have signals of se-
lection in population genomics studies [190, 211e°].
Meanwhile, the identification of novel mechanisms of resis-
tance and new artemisinin-resistance candidates is under in-
vestigation using IVIEWGA [215-217]. There is an ongoing
need to identify alternative resistance mechanisms in sub-
Saharan Africa where clinical signs of partial resistance
(prolonged parasite clearance) have been described without
evidence of pfkl3 mutations [60e, 218].

Advances in gene editing have also proven pivotal. The
ability to deliver single point mutations and gene deletions
with modern gene editing platforms, such as zinc finger endo-
nuclease and CRISPR/Cas9, has accelerated and expanded
genetic studies of antimalarial resistance [219-224]. Gene
editing was key to understanding the functional impacts of
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individual mutations in pfk/3, a significant achievement given
the complex genetic backdrop of the gene which has a high
degree of underlying variations with little to no functional
roles [61, 110, 225]. Functional genomics has also been used
to validate resistance mutations for other antimalarials includ-
ing CQ, PPQ, ozonides, and piperazine compounds [226-229,
230, 231]. While much of this work has been in
P. falciparum, gene-editing technologies are also being ap-
plied to other human malaria parasites [232]. Current ap-
proaches, however, are limited by low efficiency and high
numbers of unexpected recombination events. Gene editing
in Plasmodium spp. is uniquely challenging due to the para-
sites” AT-rich genome, lack of canonical DNA repair path-
ways, absence of nuclear genomic RNAI, and attrition of
transfecting plasmids during cell division [233-235]. Over
the last couple of years, innovations in CRISPR/Cas9-based
tools in P. falciparum and other species have begun to over-
come these challenges [236e, 237].

Conclusion

Centuries before Paul Erlich ushered in the era of antimicro-
bial chemotherapy, malaria remedies were gotten by our an-
cestors from Cinchona and Artemisia plant species, original
sources of what remain the two most widely used antimalarial
pharmacophores. Signs of antimalarial drug resistance were
first evident over 100 years ago, and a punctuated march of
drug resistance across the globe proceeded from almost every
new introduction of antimalarials in the years that followed
[19, 31]. Today, we have increasingly sophisticated tools for
surveilling, containing, and combatting the emergence,
spread, and harms of antimalarial drug resistance. Yet malaria
control is backsliding. The contravening forces of political
instability, donor fatigue, climate change, and, recently, com-
peting public health priorities and economic recession caused
by the coronavirus pandemic are complicit. The expansion of
drug resistance to ACTs poses at least an equal threat. Updates
in drug development, clinical pharmacology, parasite geno-
mics, transcriptomics, and bioinformatics, with their efficient
and judicious application, can reclaim lost ground in the WHO
Global Technical Strategy. A forward-looking agenda that
helps preserve inasmuch as possible the efficacy of current
agents through increased antimalarial stewardship, speeds
the arrival of new agents and treatment regimens, and fully
exploits nimble and scalable genomics-based platforms for
discovery and surveillance can replace vulnerability with
opportunity.
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