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Abstract

Family based association study (FBAS) has the advantages of controlling for population stratification and testing for linkage
and association simultaneously. We propose a retrospective multilevel model (rMLM) approach to analyze sibship data by
using genotypic information as the dependent variable. Simulated data sets were generated using the simulation of linkage
and association (SIMLA) program. We compared rMLM to sib transmission/disequilibrium test (S-TDT), sibling disequilibrium
test (SDT), conditional logistic regression (CLR) and generalized estimation equations (GEE) on the measures of power, type I
error, estimation bias and standard error. The results indicated that rMLM was a valid test of association in the presence of
linkage using sibship data. The advantages of rMLM became more evident when the data contained concordant sibships.
Compared to GEE, rMLM had less underestimated odds ratio (OR). Our results support the application of rMLM to detect
gene-disease associations using sibship data. However, the risk of increasing type I error rate should be cautioned when
there is association without linkage between the disease locus and the genotyped marker.
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Introduction

The identification of single-nucleotide polymorphism (SNP)

associated with complex diseases is an important goal of current

genetic studies. Two important designs are commonly used: one

recruits families (family-based association study, FBAS), and the

other uses unrelated individuals (population-based association

study) [1]. In terms of statistical power, the differences between the

two methods are generally small when the disease is common or

the minor allele frequency (MAF) is low [1,2]. FBAS has the

advantages of controlling for the effect of population stratification

and can be used to test the hypothesis of both linkage and

association. FBAS has also been used in genome-wide association

studies (GWAS) and whole-genome sequencing researches [3,4].

Several statistical methods have been proposed to analyze data

from FBAS. Transmission disequilibrium test (TDT) is used to

analyze case-parent trios data [5]. Sib transmission/disequilibrium

test (S-TDT) can be used to analyze case-sibling data when

parents’ genetic information is unavailable in studying late-onset

diseases [6]. Sibling disequilibrium test (SDT) can use the

information from large sibships containing more than one affected

individual [7]. However, neither of S-TDT and SDT is capable of

adjusting for covariates, such as environmental exposures, gender,

age, etc. Conditional logistic regression (CLR) is then a widely

accepted method as it can include covariates [8].

S-TDT, SDT and CLR all require discordant sibships (DSSs)

with at least one affected and one unaffected sibling. Thus the

sibships with all siblings affected (namely, concordant sibships,

CSSs) would be discarded, leading to a loss of information.

Hancock et al. compared generalized estimation equations (GEE)

to CLR using simulated family data [9]. Their findings showed

that GEE can incorporate the information of CSSs, thus

increasing the power to detect associations and gene-environmen-

tal interactions.

Multilevel model (MLM) could be a powerful tool for analyzing

sibship data, as sibships collected from FBAS are featured by

multilevel structure [10,11]. Individuals, say, the first level units,

are clustered within sibships (the second level units). It is also

possible that sibships are nested in higher level units, such as

communities or hospitals. The present study aims to examine some

basic statistical properties of MLM for sibship data in comparison

with existing methods such as S-TDT, SDT, CLR and GEE. The

examination will focus on 10 scenarios based on simulated sibship

datasets. Pros and cons of different methods will be discussed with

recommendation of methodology.

Methods

Multilevel Logistic Model
Suppose the data consist of n ascertained sibships and each

sibship has at least one affected individual. We use i = 1,2,..,n to

denote the ith sibship, j = 1,2,…J to denote the jth individual in

each sibship. When J = 2, the sibship becomes a sib pair. The

corresponding two-level multilevel logistic model for the proba-

bility of being affected conditional on genetic information and

other covariates is
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Here, Dij = 1 denotes that the jth individual in the ith sibship is

affected. Gij = 1 indicates that the corresponding individual carries

the minor allele at the locus under study and b1 is the regression

coefficient of Gij for the association between the disease and genetic

marker. The intercept term is denoted by b0. The regression

coefficients corresponding to environmental or demographic

covariates are denoted by c1,c2,… and cp. The bs and cs are

always referred to as the ‘‘fixed’’ parameters. The additional

random effect, ui, denotes the residual in the second level, which is

assumed to be a Gaussian distribution variable with a mean of

zero. Its variance, s2
u, the ‘‘random’’ parameter, measures the

variation among the sibships. A larger variance indicates a greater

clustering effect or a stronger dependence within the sibships.

The exponential of b1 is the odds ratio (OR), an estimate of the

genetic relative risk (GRR) when the disease prevalence is low.

The Wald test can be used to test the hypothesis of b1 = 0 [10].

Parameters of multilevel logistic model can be estimated using an

iteratively generalized least square method (IGLS) with Taylor

series expansions and marginal/penalized quasi-likelihood (MQL/

PQL) [12]. A simple improvement on IGLS gives restricted IGLS

(RIGLS), which will produce unbiased variance estimate if sample

size is limited. Goldstein and his colleagues developed the MLwiN

software package for multilevel modeling [13]. MLM can also be

fitted using other software packages, including SAS, Stata, S-Plus,

HLM and R. However, MLwiN is recommended because of its

high efficiency, friendly GUI and powerful macro languages [12].

It is also important to notice the difference between MLM and

GEE [14,15]. GEE estimates the marginal effect and produces

robust variance estimates of the regression coefficients by taking

the intra-cluster correlation into consideration. It specifies a

working correlation matrix for the data and treats the intra-cluster

correlation as nuisance. MLM estimates cluster-specific effects by

including an random term to vary with clusters. With the ability to

including random intercept or coefficients, MLM can model data

with complex hierarchical structures. The interpretation of OR

estimates derived from GEE and MLM are also different. In GEE,

OR can be interpreted as the odds of affected from a population

with the risk genotype compared to that from a population without

the risk genotype. As MLM adjusts for the heterogeneity among

subjects, it produces OR estimates which represents the change on

odds of affected due to the genotypes for a single person (say, the

odds of affected from a person with the risk genotype compared to

that from the SAME person if he does not carry the risk genotype.)

Retrospective Multilevel Logistic Model
However, in family based studies, it is common practice for the

samples to be collected using a proband-ascertained method, by

which the families are sampled through an affected member

(proband) [16]. All sibships in the sample would have at least one

affected individual. This may result in a high degree of within-

family correlation and a low degree of among-family variation.

Since the variation among sibships would be almost impossible to

extract from the total variation, the MLM would degenerate to an

ordinary unconditional logistic regression model, as shown by the

results of our simulations. In order to resolve this problem, a

retrospective multilevel logistic model (rMLM) is proposed.

RMLM uses genotypic information as the dependent variable

and disease status as the independent variable. A retrospective

two-level logistic model for the probability of carrying the minor

allele is
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In equation (2), the ‘‘r’’ in the superscripts indicates that the

corresponding coefficient is from a retrospective model. It is not

difficult to show that exp br
1

� �
~ exp b1

� �
[17].

Retrospective Generalized Estimation Equation
The idea of ‘‘retrospective’’ modeling can be easily applied to

GEE [18], which leads to retrospective GEE (rGEE). For

simplicity, we use GEEi, GEEe, rGEEi and rGEEe to denote

GEE with an independent, GEE with an exchangeable, retro-

spective GEE with an independent and retrospective GEE with an

exchangeable working correlation matrix, respectively.

Data Simulation
Simulated data sets were generated using the simulation of

linkage and association (SIMLA) software (V3.3) [19]. For each

data set in our simulation, we considered 4 standard hypotheses in

genetic association studies through the different relationships

among 4 markers (M1 to M4) and a disease locus (D) on two

simulated chromosomes. M1 was both linked and associated with

D, corresponding to the alternative hypothesis. The three null

hypotheses were linkage but no association (as simulated by M2),

association but no linkage (M3) and no linkage and no association

(M4). D, M1, M2 and M3 were all on the first chromosome. The

distances from D to M1, M2 and M3 were 0.01 cM (centimorgan),

0.01 cM and 5 Morgan, respectively. M4 was on the different

chromosome other than D. Perfect linkage disequilibrium (LD)

was simulated between M1 and D with r2 = 1, while moderate LD

(r2 = 0.26) was simulated between M3 and D. The disease allele

frequency (DAF) of D was fixed at 0.20. We specified the minor

allele frequencies (MAFs) of M1 and M3 to be 0.20 and 0.32,

respectively. Both MAFs of M2 and M4 were specified to be 0.5.

For simplicity, we considered a dominant genetic model for all the

scenarios. The prevalence of the disease was fixed at 5%.

Ten scenarios were considered in our simulations. For each

setting in each scenario, we simulated 1,000 replicates. In order to

generate the sibships which the data sets were comprised of, we

simulated three types of pedigrees, denoted by A, B and C,

respectively, by using three ascertainment criteria embedded in

SIMLA: proband, affected cousin pairs and at least one affected

sib pair. The size of sibship was set at 2 in most scenarios, except

for scenario 10, in which the sibships from 100 pedigrees (10%)

had 3 members. Specified numbers of pedigrees A, B and C were

then pooled, as shown by Table 1. Data from the grandparental

and parental generations were removed to reflect infeasible

ascertainment of older generations. For sibships in the latest

generation, only those with at least one affected individual were

retained. In scenarios 1–8, ‘‘hypothesized’’ proportion of discor-

dant sib pairs (DSPs) was defined as the proportion of pedigree A,

which approximately determined the proportion of DSPs in the

simulated data set. The hypothesized proportion of concordant sib

pairs (CSPs) was defined as one minus the hypothesized

proportion of DSPs. We named them ‘‘hypothesized’’ proportion

because the proband ascertainment did not necessarily ensure the

Multilevel Model of Sibship Data
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simulated data sets consisting only of DSPs. Thus even in scenarios

1 and 5 with hypothesized proportions of DSPs being 100%, the

actual proportions of CSPs were both around 5%. In scenarios 4

and 8 with hypothesized 70% of DSPs, the actual proportions of

CSPs were around 32%.

We only considered the single gene disease model in our

simulation. The first 8 scenarios were designed to simulate the

situations when there were specified hypothesized proportions of

CSPs in the data sets. In scenarios 1–4, data sets were simulated

with a GRR of the disease locus of either 1.5 or 2. In scenarios 5–

8, the GRR was fixed at 1.5, and a continuous environmental

factor was also simulated with a relative risk (RR) of 1.5 to

examine the performance of each method when there was

heterogeneity among families due to some environmental

exposure in familial aggregation. We assumed the exposure was

a random variable sampled from a Gaussian distribution, with a

within-pedigree correlation of 0.5. We considered two special

situations in the last two scenarios. Scenario 9 simulated the data

sets with dependent sibships by including pedigrees of type B. In

scenario 10, 100 pedigrees were designed to have sibships with 3

individuals to reflect the situation when there were various sizes of

sibships in the data. Just like scenarios 5–8, an environmental

factor correlated within pedigrees was also simulated in each of the

last two scenarios.

Statistical Analysis
MLwiN (version 2.13, Bristol, UK) was used to perform MLM

and rMLM analysis. Two-level logistic regression models were

used to fit the simulated data, with individuals as the first and

sibships as the second level units. Although an environmental

factor was simulated in scenario 5–10, it was not included in the

model to reflect an unknown/un-measurable factor within family.

Parameters were estimated using RIGLS with a 2nd-order

linearization and PQL approach. A sample code for rMLM

modeling can be found in Text S1.

The SAS system (Version 9.1.3, Cary, NC) was used for the

other analyses. The Family procedure was used to implement S-

TDT and SDT, the PHReg procedure was used to implement

CLR with a robust variance estimate to evaluate the significance

[8]. The GENMOD procedure was used to implement GEE and

rGEE.

Basic statistical properties of each method were examined in

terms of power, type I error, estimation bias and standard error.

For every 1,000 replicates, type I error rate was calculated as the

proportion of rejecting the null hypothesis in the model with

unlinked and/or un-associated marker (M2, M3 or M4). Power

was calculated as the proportion of rejecting the null hypothesis

in the model with linked and associated marker (M1). We

computed the average odds ratio (OR) using exp
�̂
bb̂bb
� �

, in which

b̂b is the regression coefficient of the marker in MLM, CLR,

GEEi or GEEe, and of the disease status in rMLM, rGEEi or

rGEEe. Estimation bias was examined by comparing the

average OR to the corresponding true GRR defined in our

simulations. We also computed the empirical standard error

over the 1,000 replicates to measure the variation of the

estimates. Limits of empirical 95% CI were estimated as the

2.5th and 97.5th percentiles of the OR estimates from the 1,000

replicates.

Results

Influence of concordant sibships
Figure 1 shows the results of power, type I error rate and

parameter estimate when GRR = 1.5 for scenarios 1–4, in which

the hypothesized proportion of CSPs are 0%,10%, 20% and 30%,

respectively. Full descriptions of the results are listed in Table S1

and Table S2.

For the hypothesis of both linkage and association (M1), S-

TDT, SDT and CLR were all valid methods if almost all sib pairs

were discordant. Power from the three methods was around 80%

or 100% when GRR = 1.5 or 2.0. However, their powers were

reduced by the increasing proportion of CSPs. When GRR = 1.5

and the hypothesized proportion of CSPs was 30% (namely, the

hypothesized proportion of DSPs was 70%), none of S-TDT, SDT

and CLR had power greater than 80%. In contrast, rMLM, GEEi,

rGEEi and rGEEe had almost the same level of power, which was

greater than 90%, almost independent of the proportion of CSPs.

The OR estimates of M1 by rMLM, GEEi, rGEEi and rGEEe

Table 1. Parameter settings of the 10 scenarios.

Pedigree Type#

Scenario A1 B C Genetic Relative Risk Environmental Relative Risk

1 1000 0 0 1.5;2 -

2 900 0 100 1.5;2 -

3 800 0 200 1.5;2 -

4 700 0 300 1.5;2 -

5 1000 0 0 1.5 1.5

6 900 0 100 1.5 1.5

7 800 0 200 1.5 1.5

8 700 0 300 1.5 1.5

9 900 100 0 1.5 1.5

10* 900A2+100A3 0 0 1.5 1.5

#A, B and C denote pedigrees ascertained by proband, affected cousin pair and at least one affected sib pair, respectively.
1In scenarios 1–8, the proportion of pedigree A (‘‘hypothesized’’ proportion of DSPs) approximately determined the proportion of discordant sib pairs in the simulated
data set.

*In scenario 10, pedigrees were all ascertained by proband. However, 900 of the 1000 pedigrees had the sibships’ size of 2, while the other 100 pedigrees had the size of
3.
doi:10.1371/journal.pone.0031134.t001
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were lower than the true GRR and those by CLR, while the

degree of the underestimate became less with the increasing

proportion of CSPs. By comparing the average OR estimates of

M1 in Figure 1 and Table S2 to the true GRRs, we found that

rMLM was the least biased among the three retrospective

methods. OR estimates from CLR were more variable than those

from the other methods, as shown by the empirical estimates of the

standard error of OR in Table S2.

Figure 1. Measures of power (M1), type I error (M2) and parameter estimate of scenarios 1 to 4. The left panel of the figure shows the
measures of power and type I error rate of rMLM, MLM, S-TDT, SDT, CLR, GEEi, rGEEi and rGEEe when there were different hypothesized proportions
of CSPs in the data sets in scenarios 1 to 4 with GRR = 1.5. The right panel shows the parameter estimates of rMLM, MLM, CLR, GEEi, rGEEi and rGEEe.
In each plot, the x-axis denotes the hypothesized proportions of CSPs (one minus the hypothesized proportions of DSPs). As GEEi and rGEEi had the
same results throughout our simulation, they are represented by the same color. GEEe is not shown due to its unstable results.
doi:10.1371/journal.pone.0031134.g001

Multilevel Model of Sibship Data
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Type I error rates were compared with the results of M2, M3 and

M4. For M2 and M4, all methods protected the type I error rate at

the significant level of 0.05. However, for M3, the type I error rates

of both GEEi and rGEEi showed trends of slightly inflating with the

increasing proportion of CSPs. The degree of inflation became

prominent when GRR = 2.0, as shown by Table S1. Although

rMLM and rGEEe both slightly overestimated OR of M3, their

type I error rates were lower than GEEi and rGEEi, even when

GRR = 2.0 and the hypothesized proportion of CSPs was 30%.

Conclusions derived from scenarios 5–8 (Table S3 and Table

S4) are very similar to those from scenarios 1–4. The powers of

rMLM were all greater than 90%, with less underestimated

parameters than those of GEE and rGEE. Additionally, rMLM

was less likely to have inflated type I error on M3 than rGEE

would. Again, CSPs in the simulated data sets reduced the power

and increased the variation of the OR estimates of CLR.

Results from GEEi and rGEEi were numerically identical

throughout our simulation. They are represented by the same

color in Figure 1 and summarized in the same column in Tables 2

and S1, S2, S3, S4, and S5. Their results were the same even when

a discrete or continuous environmental factor was included as a

fixed effect in the model (not shown in this article). GEEe had the

most unstable results with reduced power on M1 and inflated type

I error on M3 under most scenarios. Although MLM had the same

OR estimates as GEEi, its power was much lower. The estimates

of s2
u of MLM in all scenarios were 0 s, indicating that the

multilevel logistic models in the simulations degenerated to

standard unconditional logistic regression models.

Dependent sibships and sibships with various sizes
The results from scenarios 9–10 are presented in Table 2 and

Table S5, respectively. RMLM continued to gain more power

than CLR, SDT and S-TDT. When compared to GEEi, rGEEi

and rGEEe, although rMLM had slightly lower power, it had less

underestimated OR.

Discussion

To test for the association using sibship data, traditional

methods require data consisting of DSPs or DSSs [6,7,20]. Both

GEE and MLM are designed for data with clustering effects, and

can handle data with both DSSs and CSSs in theory. Previous

study has already showed the advantage of GEE over CLR [9].

The present study advances the methodology field further by

showing that MLM, comparable to GEE in many aspects, is a

valid approach with good statistical properties in analyzing sibship

data. We propose to analyze the sibship data by a retrospective

multilevel model (rMLM) which estimates the genotypic outcome

conditional on the disease status. Simulations showed that rMLM

and GEE gained more power than SDT, S-TDT and CLR when

the data set contained CSSs. The increased power of rMLM is

likely due to the enlarged effective sample size. Both of rMLM and

GEE can ‘‘borrow’’ information across sibships, thus have the

advantage of utilizing information from CSSs by comparing cases

to their sibling controls and to controls across the population. In

contrast, traditional methods compare cases only to their sibling

controls and sibships with all members affected will be ignored.

Our simulations also demonstrated that rMLM had increased

power than SDT, S-TDT and CLR when the data set contained

dependent sibships or sibships with various sizes. Compared to

GEE and rGEE, rMLM is preferable. Although its power was

slightly lower, rMLM had parameter estimates much closer to the

true GRR defined in our simulations.

GEE, rGEE and rMLM all produced negatively biased OR

estimates of genetic effect in our simulation, and the degree of

bias was greater when the genetic effect was large. There are

several issues needed to be clarified on this bias. Firstly, none of

the OR estimates resulting from these methods, including CLR,

GEE, rGEE, MLM and rMLM, may be reliably interpreted as

accurate estimates of GRR in the population. OR is an

approximation of RR only when the disease is rare. Secondly,

the ascertainment procedure may be inadequately modeled. The

sample does not represent the general population but the

ascertained one [21]. An ascertained population is a subset of

the general population and is comprised of all the families in the

general population with at least one affected individual.

Retrospective modeling takes the ascertainment procedure into

consideration by using disease status as the predictor, thus

providing estimates closer to the true parameters than those using

disease status as the outcome. Thirdly, rMLM gave less biased

estimates than rGEEi and rGEEe. The reason is that GEE is a

population average (PA) method, while MLM is a cluster-

specified method [14,22]. In most situations, the former is closer

Table 2. Measures of power (M1), type I error (M2–M4) and parameter estimate (average OR, empirical standard error and 95%CI)
of scenario 9 in which the simulated datasets contain affected cousin pairs.

Marker S-TDT SDT CLR MLM GEEe GEEi & rGEEi rGEEe rMLM

Power and type I error rate M1 0.839 0.850 0.900 0.925 0.781 0.973 0.957 0.946

M2 0.044 0.046 0.053 0.019 0.053 0.053 0.055 0.036

M3 0.051 0.049 0.058 0.024 0.069 0.056 0.060 0.057

M4 0.059 0.057 0.043 0.012 0.048 0.048 0.045 0.036

Parameter estimation M1 - - 1.5160.19 1.3060.09 1.1460.05 1.3060.09 1.2660.08 1.4560.14

- - (1.18,1.93) (1.14,1.48) (1.03,1.24) (1.14,1.48) (1.12,1.42) (1.20,1.75)

M2 - - 1.0160.14 1.0060.08 1.0060.05 1.0060.08 1.0060.08 1.0060.11

- - (0.76,1.29) (0.86,1.17) (0.90,1.11) (0.86,1.17) (0.86,1.16) (0.81,1.23)

M3 - - 1.0160.12 1.0260.07 1.0360.05 1.0260.07 1.0160.07 1.0260.10

- - (0.79,1.28) (0.89,1.17) (0.94,1.12) (0.89,1.17) (0.88,1.15) (0.83,1.24)

M4 - - 1.0160.13 1.0060.07 1.0060.05 1.0060.07 1.0060.07 1.0060.10

- - (0.78,1.27) (0.88,1.14) (0.92,1.10) (0.88,1.14) (0.88,1.14) (0.82,1.22)

doi:10.1371/journal.pone.0031134.t002
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to the null hypothesis, and it would be more apparent when the

within-family correlation is high [23].

Our simulations indicated that rMLM, GEE and rGEE all

gained more power than CLR with the increasing proportion of

CSPs. It may be possible that there are more than 5% of CSPs in

the ascertained sample. As an example, the prevalence of total

diabetes and prediabetes in China is about 9.7% [24]. Thus

theoretically, the possibility that two individuals from the same sib

pair are both affected is 0.94%. Due to the fact that a sib pair

would be sampled only if it has at least one affected member, the

proportion of CSPs in the sample would be about 5.10%, a figure

very close to scenario 1 and 5 in our simulations. And the

proportion of CSPs will be greater in some behavior genetic

researches. Even in the most ‘‘extreme’’ situation in which all the

CSPs were removed in scenario 1, the power of rMLM was only

slightly lower than CLR (87% vs 90%, not shown in this article).

Given that rMLM provides less biased estimates than GEE and

rGEE and is more flexible for modeling complex hierarchical

structures, we believe that rMLM has practical value.

However, when the markers and the disease locus were under

association without linkage (M3), both rMLM and rGEE seemed

to have inflated type I error rates, especially when GRR = 2.0. M3

is an extreme example of population stratification. To achieve this

level, allele frequency and disease prevalence between sub-

populations should be ‘‘drastically’’ different [9,25]. Although

the type I error rate of rMLM was only slighted inflated when

genetic effect is modest, we should still be cautious to use rMLM in

these situations. If there is prior information that does suggest the

existence of population stratification, involving the stratification

factor as covariates should be considered. If the chip used in the

study has a large number of markers or contains ancestry

information markers (AIMs), some powerful methods have been

proposed to detect and adjust for population stratification, such as

genomic control [26] and EIGENSTRAT [27]. Hinrichs et al.

showed that genetically related individuals may induce bias to the

decomposition of principal components in EIGENSTRAT

analysis under certain circumstances (e.g., small sample), and they

suggested to use a weighted principal component analysis (PCA)

under these conditions [28]. Another possible solution is to use a

subset of unrelated individuals sampled from the overall sample to

extract the information on population stratification.

This study has several limitations. Firstly, we only used the

dominant genetic model in our simulations. Within MLM

framework using MLwiN, we can in theory fit a retrospective

multilevel ordinal logistic model for additive genetic model, or a

retrospective multilevel multinomial logistic model for co-domi-

nant genetic model. However, some methodological issues need

clarification. The coefficients of retrospective ordinal logistic

model may not be easy to explain. Equations to convert them to

gene’s ORs may not be as straightforward as that in retrospective

logistic model for dichotomous outcome. Meanwhile, multilevel

ordinal logistic model may fail to converge if small proportion

presents in some category of the outcome. A possible solution is

using the allele instead of the genotype as the outcome in the first

level and treating individuals as the second level units. It could

‘‘produce’’ more data for the outcome and may increase the

chance of convergence. This model can also account for the

correlation between alleles. Secondly, retrospective models may

have difficulties in handling the simultaneous effects of several

markers. One possible solution for this is to use cumulative

polygenetic effects as the outcome. Under the multilevel

framework, we also think it is possible to simultaneously treat

the SNPs as outcomes by using a multiple responses multilevel

model [29].

With recent advancements in genotyping technologies, it is

possible to genotype thousands, even millions of SNPs simulta-

neously. We also notice the potential value of rMLM in analyzing

disease-SNP set association, which is an important issue in gene-

based and pathway-based analysis [30,31], even when data sets are

from population-based case control studies. In the retrospective

framework, SNP information from the same individual is on the

left side of the equation, thus making it possible to use the

covariance to account for the LD among SNPs. However, further

investigation is needed to clarify the application of MLM in these

fields.
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