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Abstract: Flower development is a vital developmental process in the life cycle of woody perennials,
especially fruit trees. Herein, we used transcriptomic, proteomic, and hormone analyses to investigate
the key candidate genes/proteins in loquat (Eriobotrya japonica) at the stages of flower bud differentiation
(FBD), floral bud elongation (FBE), and floral anthesis (FA). Comparative transcriptome analysis
showed that differentially expressed genes (DEGs) were mainly enriched in metabolic pathways of
hormone signal transduction and starch and sucrose metabolism. Importantly, the DEGs of hormone
signal transduction were significantly involved in the signaling pathways of auxin, gibberellins
(GAs), cytokinin, ethylene, abscisic acid (ABA), jasmonic acid, and salicylic acid. Meanwhile,
key floral integrator genes FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION
OF CONSTANS1 (SOC1) and floral meristem identity genes SQUAMOSA PROMOTER BINDING
LIKE (SPL), LEAFY (LFY), APETALA1 (AP1), and AP2 were significantly upregulated at the FBD
stage. However, key floral organ identity genes AGAMOUS (AG), AP3, and PISTILLATA (PI) were
significantly upregulated at the stages of FBE and FA. Furthermore, transcription factors (TFs)
such as bHLH (basic helix-loop-helix), NAC (no apical meristem (NAM), Arabidopsis transcription
activation factor (ATAF1/2) and cup-shaped cotyledon (CUC2)), MYB_related (myeloblastosis_related),
ERF (ethylene response factor), and C2H2 (cysteine-2/histidine-2) were also significantly differentially
expressed. Accordingly, comparative proteomic analysis of differentially accumulated proteins
(DAPs) and combined enrichment of DEGs and DAPs showed that starch and sucrose metabolism
was also significantly enriched. Concentrations of GA3 and zeatin were high before the FA stage,
but ABA concentration remained high at the FA stage. Our results provide abundant sequence
resources for clarifying the underlying mechanisms of the flower development in loquat.
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1. Introduction

Loquat (Eriobotrya japonica Lindl.), an important tropical and subtropical fruit tree species that
belongs to the family Rosaceae and is broadly cultivated in many countries such as China, Japan, Spain,
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the United States, and Australia [1]. Reproductive development of loquat is a continuous process that
is not interrupted by winter dormancy [2,3]. Moreover, almost all shoots that develop on the loquat
tree are flowering shoots, whereas the number of panicles remains practically constant every year [2].
Thus, it is used as an important material of floral development for evergreen perennials in the Rosaceae
family. Therefore, the regulatory mechanisms of floral development in loquat contributes to a better
understanding of the flowering process in the Rosaceae family.

Flowering time is critical for reproductive success and is therefore strictly regulated by endogenous
and environmental signal pathways [4–7]. In Arabidopsis, six major pathways, which include
photoperiod, vernalization, thermosensory, gibberellin, autonomous, and aging pathways, contribute
to the regulation of flower development [8–11]. For example, the photoperiod and vernalization
pathways are involved in light and cold to regulate flowering, respectively, and the flowering response
to temperature relies on the thermosensory pathway, which is crucial for mitigating the effects
of temperature change [12]. All of these pathways converge to activate a small number of floral
integrator genes, which control floral development by merging signals from various pathways [8,13].
Functional analysis of the floral integrators such as FLOWERING LOCUS T (FT) and SUPPRESSOR
OF OVEREXPRESSION OF CONSTANS 1 (SOC1), and floral meristem identity genes SQUAMOSA
PROMOTER BINDING LIKE (SPL), LEAFY (LFY), and APETALA1 (AP1), have revealed complex
regulatory networks of flower development [13–18]. Considerable progress in elucidating the flowering
mechanism in model plants has greatly improved our understanding of the molecular networks of flower
development [9,19,20]. At present, the regulatory mechanisms underlying the flower development of
loquat are sorely lacking.

An integrative analysis of transcriptome and proteome is an extremely effective method for
identifying differentially expressed genes (DEGs) from plant developmental phase at the whole genome
level [21,22]. This can provide further insight into the underlying mechanisms for flower development
in perennial woody plants. At present, transcriptomic analyses have been mainly reported in fruit
development in loquat, providing sequence resources that are involved in fruit setting, development,
and ripening processes [23,24]. Meanwhile, transcriptomic analysis of flower development has also been
used to select the DEGs in some eudicots, such as Camellia azalea, Rosa chinensis, and Annona squamosal.
In C. azalea, transcriptomic analysis revealed that some floral integrators and MADS-box (MCM1,
AGAMOUS, DEFICIENS and SRF) transcription factors (TFs) are involved in floral development [25].
Comparative transcriptome analysis of flower development in R. chinensis reported that DEGs are
involved in the pathways of circadian clock, sugar metabolism, and hormones [26]. Transcriptomic
analysis of A. squamosal indicated that various transcription factors are associated with floral transition
and flower development [27]. However, an integrative analysis of transcriptome and proteome in the
flower development of non-vernalization requiring loquat remains largely unknown and requires
further research.

In this study, we investigated the changes of gene expression dynamics and protein fluctuations
during flower development in loquat at three stages, i.e., flower bud differentiation (FBD), flower bud
elongation (FBE) and floral anthesis (FA), using transcriptome and proteome sequencing. Analyses
of some key DEGs, metabolic pathways, and endogenous hormones highlighted the effect of key
flowering genes and metabolic pathways on flower development. Our data provide abundant sequence
resources for further clarification of the underlying mechanisms of flower development in loquat and
other Rosaceae species.

2. Results

2.1. Morphological Characterization of Flower Development

To characterize flower development, we assessed morphological changes during the flower
development process. Nine morphologically distinct stages were defined. Vegetative apex development
was stage 1, which was embraced by rudimentary leaves (Figure 1S1). Floral meristem initiation and
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flower bud differentiation were stage 2 (Figure 1S2). Rapid differentiation of floral buds was stage
3, when the top leaves were dark green, and the flower buds elongated longitudinally (Figure 1S3).
Stage 4 was rapid panicle elongation (Figure 1S4). Then, floral bud elongation and visible floral buds
were stage 5 (Figure 1S5). Stage 6 was the elongation of branches in a panicle (Figure 1S6). Stage 7
was white corollas of floral buds (Figure 1S7). Stage 8 was floral anthesis and full bloom (Figure 1S8).
Stage 9 was petal fall (Figure 1S9).
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with an average length of 690.3 bp and an N50 of 1164 bp (Table S2). 

A total of 67,072 (44.65%) unigenes were matched to the Nr database by BLAST analysis, while 
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had top matches to sequences from M. domestica, and 23.11% to P. bretschneideri (Figure S1). 

2.3. Analysis of Differentially Expressed Genes (DEGs) 

To investigate the DEGs involved in flower development, we analyzed transcript levels of each 
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Figure 1. Morphological changes of flower development in loquat (excellent triploid line ‘CB-1 Q11’).
(S1) Vegetative apex. (S2) Floral meristem initiation and flower bud differentiation. (S3) Rapid
differentiation of floral buds. (S4) Panicle elongation. (S5) Floral bud elongation with visible floral
buds. (S6) Elongation of branches in a panicle. (S7) White corollas of floral buds. (S8) Floral anthesis
and full bloom. (S9) Petal fall.

2.2. Sequencing, Assembly, and Functional Annotation

To gain insight into the transcriptomic changes during flower development, we prepared cDNA
libraries independently from flower bud differentiation (FBD; stage 2), floral bud elongation (FBE;
stage 5), and floral anthesis (FA; stage 8). The RNA sequencing of each sample obtained over 6 GB
data with Q30 all higher than 92% (Table S1). A total of 47,234,952 clean reads were obtained for FBD,
47,775,636 for FBE, and 46,826,136 for FA. Assembly of the reads generated 150,219 unigenes, with an
average length of 690.3 bp and an N50 of 1164 bp (Table S2).

A total of 67,072 (44.65%) unigenes were matched to the Nr database by BLAST analysis,
while 26,102 (17.38%), 6714 (4.47%), 58,246 (38.77%), and 57,557 (38.32%) were annotated using the
Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), eggNOG, and Swiss-Prot
databases. Among them, 2.49% (3737) of unigenes were assigned to a homolog in all four databases
(Table S3). Meanwhile, a large number of annotated sequences in loquat showed high similarities to
the genes in Malus domestica and Prusy × bretschneideri. For example, 29.18% of the unique sequences
had top matches to sequences from M. domestica, and 23.11% to P. bretschneideri (Figure S1).

2.3. Analysis of Differentially Expressed Genes (DEGs)

To investigate the DEGs involved in flower development, we analyzed transcript levels of each
unigene during three developmental stages (Figure 2). In comparison of FBE vs. FBD, 7409 DEGs were
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upregulated and 1845 DEGs were downregulated. In the FA vs. FBE comparison, 11,068 differentially
expressed, 4406 upregulated, and 6662 downregulated transcripts were detected. In the FA vs.
FBD comparison, 13,821 differentially expressed, 8055 upregulated, and 5766 downregulated transcripts
were identified. Meanwhile, 730 upregulated and 866 downregulated transcripts were identified in
both FBE vs. FBD and FA vs. FBE (Figure 2B,C).
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Figure 2. Numbers of differentially expressed genes (DEGs) involved in phase changes during flower
development of flower bud differentiation (FBD), floral bud elongation (FBE) and floral anthesis (FA).
(A) The numbers of DEGs in FBE vs. FBD, FA vs. FBE and FA vs. FBD. (B) The numbers of upregulated
DEGs in FBE vs. FBD and FA vs. FBE. (C) The numbers of downregulated DEGs in FBE vs. FBD and
FA vs. FBE.

To visualize the DEGs in metabolic pathways, we classified these DEGs on the basis of KEGG
pathway enrichment analysis. The DEGs for FBE vs. FBD were mainly enriched in carbon metabolism
(37 transcripts), plant hormone signal transduction (33 transcripts), and phenylpropanoid biosynthesis
(28 transcripts) (Figure 3A and Table S4). The DEGs for FA vs. FBE were mainly involved in
plant hormone signal transduction (54 transcripts), starch and sucrose metabolism (53 transcripts),
and phenylpropanoid biosynthesis (49 transcripts) (Figure 3B and Table S5). The DEGs for FA vs.
FBE were mainly plant hormone signal transduction (72 transcripts), starch and sucrose metabolism
(60 transcripts), and phenylpropanoid biosynthesis (48 transcripts) (Figure S2 and Table S6).

2.4. Analysis of Key Differentially Expressed Genes (DEGs) Involved in Pathways of Hormone Signal
Transduction

Transcriptional levels of hormone signal transduction showed the DEGs involved in the signaling
pathways of auxin, gibberellin (GA), cytokinin, ethylene, abscisic acid (ABA), jasmonic acid (JA),
and salicylic acid (SA) in three flower development stages in loquat (Figures 4 and 5). During the
flower development process, we identified a total of 14 key genes in the auxin-signaling pathway,
of which 10 were significantly upregulated at the FA stage (Figure 4A and Table 1). In the GA-signaling
and metabolism pathways, we identified seven key genes, of which GIBBERELLIN 20-OXIDASE 2
(GA20OX2), GIBBERELLIC ACID INSENSITIVE (GAI), and GIBBERELLIN 3-BETA-DIOXYGENASE 1
(GA3OX1) were significantly upregulated at the FBD stage (Figure 4B and Table 1). Meanwhile, four
key genes were identified, of which CYTOKININ OXIDASE/DEHYDROGENASE 5 (CKX5), LONELY
GUY 7 (LOG7), and LOG8 were significantly upregulated at the FBE stage (Figure 4C and Table 1).



Int. J. Mol. Sci. 2020, 21, 5107 5 of 22

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 21 

 

the FA vs. FBD comparison, 13,821 differentially expressed, 8055 upregulated, and 5766 
downregulated transcripts were identified. Meanwhile, 730 upregulated and 866 downregulated 
transcripts were identified in both FBE vs. FBD and FA vs. FBE (Figure 2B,C). 

 
Figure 2. Numbers of differentially expressed genes (DEGs) involved in phase changes during 
flower development of flower bud differentiation (FBD), floral bud elongation (FBE) and floral 
anthesis (FA). (A) The numbers of DEGs in FBE vs. FBD, FA vs. FBE and FA vs. FBD. (B) The 
numbers of upregulated DEGs in FBE vs. FBD and FA vs. FBE. (C) The numbers of downregulated 
DEGs in FBE vs. FBD and FA vs. FBE. 

To visualize the DEGs in metabolic pathways, we classified these DEGs on the basis of KEGG 
pathway enrichment analysis. The DEGs for FBE vs. FBD were mainly enriched in carbon 
metabolism (37 transcripts), plant hormone signal transduction (33 transcripts), and 
phenylpropanoid biosynthesis (28 transcripts) (Figure 3A and Table S4). The DEGs for FA vs. FBE 
were mainly involved in plant hormone signal transduction (54 transcripts), starch and sucrose 
metabolism (53 transcripts), and phenylpropanoid biosynthesis (49 transcripts) (Figure 3B and Table 
S5). The DEGs for FA vs. FBE were mainly plant hormone signal transduction (72 transcripts), starch 
and sucrose metabolism (60 transcripts), and phenylpropanoid biosynthesis (48 transcripts) (Figure 
S2 and Table S6). 

 

Figure 3. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of 
DEGs. (A) Enrichment analysis of DEGs for floral bud elongation (FBE) vs. flower bud differentiation 
(FBD). The pathway of plant hormone signal transduction was mainly enriched (black arrow). (B) 
Enrichment analysis of DEGs for floral anthesis (FA) vs. FBE. The pathways of plant hormone signal 
transduction (black arrow) and starch and sucrose metabolism (green arrow) were mainly enriched. 
Rich factor is a ratio of the number of DEGs annotated with a pathway relative to the total number of 

Figure 3. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs.
(A) Enrichment analysis of DEGs for floral bud elongation (FBE) vs. flower bud differentiation (FBD).
The pathway of plant hormone signal transduction was mainly enriched (black arrow). (B) Enrichment
analysis of DEGs for floral anthesis (FA) vs. FBE. The pathways of plant hormone signal transduction
(black arrow) and starch and sucrose metabolism (green arrow) were mainly enriched. Rich factor is a
ratio of the number of DEGs annotated with a pathway relative to the total number of genes annotated
with this pathway. The larger value of the rich factor represented, the greater the enrichment of this
KEGG pathway.
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Figure 4. Expression level changes of the DEGs involved in the auxin, gibberellin (GA), and cytokinin
signaling and metabolism pathways in three flower development stages in loquat. (A) Expression levels
of DEGs of auxin signaling pathways. (B) Expression levels of DEGs of GA signaling and metabolism
pathways. (C) Expression levels of DEGs of cytokinin signaling pathways.

Compared with FBD, we identified four key genes in the ethylene-signaling pathway,
of which ERF62, ERF92, and ERF106 were significantly upregulated at the FBE and FA stages
(Figure 5A and Table 2). In the ABA-signaling pathway, we identified four key genes, including
ABSCISIC ACID 8’-HYDROXYLASE 2 (ABAH2), ABAH4, ABSCISIC ACID-INSENSITIVE 5 (ABI5),
and ABSCISIC ACID-INSENSITIVE 5-LIKE PROTEIN 1 (AI5L1), of which ABAH2, ABAH4, and ABI5
were significantly upregulated at the FBE and FA stages (Figure 5B and Table 2). In the JA-signaling
pathway, we identified four key genes, including JASMONATE O-METHYLTRANSFERASE (JMT),
LIPOXYGENASE 6 (LOX6), LOX15, and LOX21, of which JMT, LOX6, and LOX15 were significantly
upregulated at the FA stage (Figure 5C and Table 2). In the SA-signaling pathway, we identified SABP2,
which was significantly upregulated at the FA stage (Figure 5D and Table 2).
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Table 1. Differentially expressed genes (DEGs) involved in the signaling pathways of auxin, GA, and cytokinin.

Gene_ID Annotation Fold Change (FBE/FBD) Fold Change (FA/FBE) Fold Change (FA/FBD)

Auxin signaling pathway
DN62407_c0_g2 Auxin-induced protein 10A5 (A10A5) 1.50 4.88 7.35
DN53030_c0_g1 Indole-3-acetic acid-induced protein ARG7 (ARG7) 0.83 3.35 2.77
DN68900_c2_g4 Auxin-induced protein 6B (AX6B) 1.23 9.02 11.11
DN68900_c3_g2 Auxin-induced protein X10A (AX10A) 3.43 6.90 23.65
DN63607_c3_g1 Auxin-induced protein 15A (AX15A) 0.14 0.39 0.05
DN65976_c2_g3 Auxin-induced protein 22D (AX22D) 1.21 4.76 5.74
DN72894_c3_g5 Indole-3-acetic acid-amido synthetase GH3.6 (GH36) 0.51 1.49 0.76
DN39057_c0_g1 Auxin-responsive protein IAA32 (IAA32) 1.13 7.82 8.82
DN63908_c0_g1 Auxin transporter-like protein 2 (LAX2) 1.05 2.29 2.40
DN62802_c0_g1 Auxin transporter-like protein 3 (LAX3) 2.77 0.85 2.37
DN70362_c2_g3 Auxin-responsive protein SAUR32 (SAU32) 2.25 2.44 5.49
DN70025_c0_g2 Auxin-responsive protein SAUR36 (SAU36) 1.58 5.52 8.74
DN70819_c6_g3 Auxin-responsive protein SAUR50 (SAU50) 0.42 1.07 0.45
DN66182_c1_g5 Auxin-responsive protein SAUR71 (SAU71) 1.85 1.42 2.64

GA signaling and metabolism pathway
DN62963_c0_g1 Gibberellin 20 oxidase 1 (GA20OX1) 13.47 2.67 35.97
DN69182_c1_g4 Gibberellin 20 oxidase 2 (GA20OX2) 0.30 0.28 0.08
DN70029_c1_g4 Gibberellic acid-insensitive (GAI) 0.85 0.32 0.27
DN53975_c0_g1 Gibberellin 2-beta-dioxygenase 2 (GA2OX2) 3.97 10.70 42.43
DN66786_c1_g1 Gibberellin 2-beta-dioxygenase 8 (GA2OX8) 9.42 3.48 32.78
DN52581_c0_g1 Gibberellin 3-beta-dioxygenase 1 (GA3OX1) 0.02 0.27 0.01
DN65482_c3_g1 Gibberellin receptor GID1B ( GID1B) 1.93 1.30 2.50

Cytokinin signaling pathway
DN69821_c1_g5 Cytokinin oxidase/dehydrogenase 3 (CKX3) 0.32 11.69 3.76
DN58587_c0_g1 Cytokinin oxidase/dehydrogenase 5 (CKX5) 29.33 0.10 2.97
DN64500_c1_g3 Lonely guy 7 (LOG7) 2.34 0.03 0.08
DN58587_c0_g1 Lonely guy 8 (LOG8) 29.33 0.10 2.97
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Table 2. DEGs involved in the ethylene-, ABA-, JA-, and SA-signaling pathways.

Gene_ID Annotation Fold Change (FBE/FBD) Fold Change (FA/FBD) Fold Change (FA/FBE)

Ethylene signaling pathway
DN3184_c0_g1 Ethylene-responsive transcription factor ERF62 (ERF62) 5.81 13.97 2.40

DN65937_c1_g5 Ethylene-responsive transcription factor ERF92 (ERF92) 2.07 3.60 1.74
DN65178_c3_g5 Ethylene-responsive transcription factor ERF106 (ERF106) 2.60 9.34 3.60
DN66697_c3_g4 Ethylene-responsive transcription factor ESR1 (ESR1) 0.19 0.09 0.46

ABA signaling pathway
DN49553_c0_g1 Abscisic acid 8’-hydroxylase 2 (ABAH2) 2.65 1.38 0.52
DN66767_c1_g1 Abscisic acid 8’-hydroxylase 4 (ABAH4) 3.12 19.82 6.36
DN67864_c2_g4 Abscisic acid-insensitive 5 (ABI5) 13.63 6.27 0.46
DN48609_c0_g1 Abscisic acid-insensitive 5-like protein 1 (AI5L1) 2.66 0.45 0.17

JA signaling pathway
DN68639_c0_g1 Jasmonate O-methyltransferase (JMT) 7.70 61.13 7.94
DN65561_c1_g2 Lipoxygenase 6 (LOX6) 1.20 3.33 2.78
DN68565_c0_g4 Lipoxygenase 15 (LOX15) 1.50 7.72 5.14
DN71255_c1_g1 Lipoxygenase 21 (LOX21) 1.10 0.05 0.05

SA signaling pathway
DN62662_c1_g1 Salicylic acid-binding protein 2 (SABP2) 1.37 2.33 1.70
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2.5. Identification of Flowering Pathway-Related Genes and Transcription Factors (TFs)

Expression levels of key genes of flowering pathway and floral molecular networks were further
analyzed in flower development. In the vernalization pathway, we identified VERNALIZATION 1
(VRN1), VERNALIZATION-INDEPENDENT INSENSITIVE 2 (VIN2), and EMBRYONIC FLOWER 2
(EMF2), of which VRN1 and EMF2 were significantly upregulated at the FBD stage (Figure 6A). In the
autonomous pathway, we identified DICER-LIKE 2 (DCL2) and DCL3. Meanwhile, in the photoperiod
pathway, we identified two unigenes, LATE ELONGATED HYPOCOTYL (LHY) and PHYTOCHROME
B (PHYB), which were significantly upregulated at the FBD stage (Figure 6A).

The expression levels of eight SPLs were significantly upregulated at the FBD stage (Figure 6B).
Floral integrator genes FT and SOC1; floral meristem identity genes AP1, AP2, and LFY; and meristem
maintenance gene WUSCHEL-related homeobox gene WOX4 were identified and were found to be
significantly upregulated at the FBD stage. Meanwhile, floral organ identity genes AP3, PI, AG, AGL,
and SEPALLATA (SEP) were identified and were found to be mainly upregulated at the FBE and FA
stages (Figure 6C).
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Transcription factors (TFs) are crucial for all stages of flower development. Therein, we identified
TF genes regulating flower development in loquat. A total of 8136 TF genes were identified in three
development stages (Table S7). On the basis of the expression levels of TF genes, we further analyzed
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the five TF families most highly represented in the DEGs. Among them, bHLH (basic helix-loop-helix,
874 members), NAC (no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF1/2)
and cup-shaped cotyledon (CUC2), 624 members), MYB_related (myeloblastosis_related, 536 members),
ERF (ethylene response factor, 508 members), and C2H2 (cysteine-2/histidine-2, 400 members) genes
were identified (Table S8).

2.6. Proteomic Analysis and Identification of Differentially Accumulated Proteins (DAPs)

A total of 32,655 spectra were matched to unique peptides (Table S9). Ultimately, a total of
8853 proteins were identified in FBD, FBE, and FA stages (Table S10). On the basis of analysis of
GO enrichment, we classified the identified proteins into cellular component, molecular function,
and biological process (Figure 7). The biological processes were mainly enriched in the metabolic process
(26.87%), cellular process (23.53%), and organic substance metabolic process (20.28%). The molecular
functions of proteins were mainly classified into catalytic activity (27.76%) and binding (23.99%).
The cellular components were mainly focused on cell (22.46%), cell part (23.02%), and cytoplasm
(15.57%). Meanwhile, the identified proteins were mapped to KEGG pathways and were found to be
mainly involved in ribosome, protein processing in endoplasmic reticulum, spliceosome, starch and
sucrose metabolism, amino sugar and nucleotide sugar metabolism, and RNA transport (Figure S3).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 21 
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Proteomic analysis of FBE vs. FBD, FA vs. FBE, and FA vs. FBD was used to detect differentially
accumulated proteins (DAPs). In the comparison of FBE vs. FBD, we identified 403 DAPs, which were
mainly involved in protein processing in the endoplasmic reticulum, photosynthesis, amino sugar and
nucleotide sugar metabolism, flavonoid biosynthesis, carbon fixation in photosynthetic organisms,
and starch and sucrose metabolism (Figure S4A and Table S11). Comparison of FA vs. FBE showed a
total of 684 DAPs were identified and enriched in protein processing in the endoplasmic reticulum,
carbon fixation in photosynthetic organisms, phenylpropanoid biosynthesis, starch and sucrose
metabolism, and glycolysis/gluconeogenesis (Figure S4B and Table S12). In the FA vs. FBD comparison,
we identified a total of 992 DAPs, which were mainly involved in starch and sucrose metabolism,
phenylpropanoid biosynthesis, amino sugar and nucleotide sugar metabolism, flavonoid biosynthesis,
and glycolysis/gluconeogenesis (Figure S4C and Table S13).
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2.7. Key Gene Cross-Talk Between the Protein and Transcription Levels

In FBE vs. FBD, FA vs. FBE, and FA vs. FBD, the R values of correlation coefficient were 0.3759,
0.3364, and 0.4138 between proteome and transcriptome (Figure 8A–C), but the R values of correlation
coefficient were 0.8514, 0.7742, and 0.8178 between DAPs and DEGs (Figure 8D–F), respectively.
Combined analysis of proteome and transcriptome in FBE vs. FBD were mainly enriched in protein
processing in the endoplasmic reticulum, photosynthesis, amino sugar and nucleotide sugar metabolism,
flavonoid biosynthesis, carbon fixation in photosynthetic organisms, and starch and sucrose metabolism
(Figure 9A). The combined enrichment of proteome and transcriptome in FA vs. FBE were mainly
involved in protein processing in the endoplasmic reticulum, carbon fixation in photosynthetic
organisms, phenylpropanoid biosynthesis, starch and sucrose metabolism, glycolysis/gluconeogenesis,
and amino sugar and nucleotide sugar metabolism (Figure 9B). In FA vs. FBD, the combined
enrichment of proteome and transcriptome were mainly enriched in starch and sucrose metabolism,
phenylpropanoid biosynthesis, amino sugar and nucleotide sugar metabolism, ribosome, flavonoid
biosynthesis, and glycolysis/gluconeogenesis (Figure 9C).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 10 of 21 
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Figure 8. Correlation for proteome and transcriptome, differentially accumulated proteins (DAPs), and
DEGs of FBE vs. FBD, FA vs. FBE, and FA vs. FBD. (A–C) Correlation for proteome and transcriptome
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Figure 9. Combined enrichment of proteome and transcriptome in FBE vs. FBD, FA vs. FBE, and FA
vs. FBD. (A) Combined enrichment of proteome and transcriptome in FBE vs. FBD. (B) Combined
enrichment of proteome and transcriptome in FA vs. FBE. (C) Combined enrichment of proteome and
transcriptome in FA vs. FBD. Starch and sucrose metabolism is marked by red arrows.

2.8. Validation of the Expression Levels of Several Key Flower Development-Related Genes

To validate the reliability of the RNA-Seq data, we randomly selected a total of 12 flower
development-related unigenes from the DEGs and detected them using qRT-PCR. These DEGs
are associated with the flowering-related genes and signaling pathways of plant hormone signal
transduction. The same change trends of these DEGs were shown between qRT-PCR and fragments
per kilobase per million (FPKM) values (Figure 10), suggesting the expression trends of most unigenes
corresponded well between the two methods.
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2.9. Measurements of Endogenous GA3, zeatin (ZT), and ABA Concentrations

GA3, ZT, and ABA concentrations were further examined at the FBD, FBE, and FA stages (Figure 11).
The GA3 and ZT concentrations were high before the FA stage (Figure 11A,B). However, from the FBD
to the FBE stage, the ABA concentration increased significantly from 15.67 nmol g−1 fresh weight (FW)
to 85.40 nmol g−1 FW (Figure 11C). This indicated a high correlation between the endogenous hormone
concentration changes and expression levels of hormone signal transduction pathway-related genes.
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3. Discussion

3.1. Illumina Sequencing in Flower Development of Loquat

Transcriptomics provides a global analysis of gene fluctuations for analyzing the DEGs during
flower development. In this study, we used transcriptome and proteome technology to investigate
the changes of key gene expression and proteins during flower development at the FBD, FBE, and FA
stages. The results revealed that DEGs include floral integrators, floral meristem identity, floral organ
identity genes, and genes/proteins involved in the key pathways of hormone signal transduction and
starch and sucrose metabolism associated with flower development (Figure 12). This enabled us to
identify key DEGs and metabolic pathways, and further clarify the molecular mechanisms underlying
flower development in loquat.
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3.2. Key Genes of TFs and Floral Integrators Associated with Flower Development

Expression level of floral integrator genes FT and SOC1; floral meristem identity genes SPLs,
LFY, AP1, and AP2; and meristem maintenance gene WOX4 were significantly upregulated at the
FBD stage in loquat, suggesting their important roles in the FBD stage. Previous studies have shown
that FT activates the floral integrator gene SOC1 and floral meristem gene AP1 to initiate the floral
transition and flower bud differentiation in Arabidopsis [8,28,29]. Then, SOC1 activates floral meristem
identity gene LFY, which promotes the phase transition from vegetative to floral meristems [7,8,30].
Meanwhile, SPLs directly bind to SOC1 and LFY promoters and activate their transcription and regulate
the initiation of floral meristem [31]. Furthermore, AP2 is regulated by LFY, and plays a central role
in promoting floral meristem determinacy [32–34]. Previously, it was also reported that FT, SOC1,
SPL4, SPL5, and SPL9 orthologs are upregulated in flower bud differentiation in loquat [2,35,36].
These similar results indicate that the RNA-Seq data and expression changes of the DEGs involved
in floral transition are reliable in our study. On the basis of previously published studies and our
data, we also provide a conceptual model for regulatory network of flower development in loquat
(Figure 12).

In our work, expression levels of floral organ identity genes AG, AP3, and PI orthologs were
mainly upregulated at the FBE stage, suggesting that these genes play important roles in flower
organ development in loquat. Previously, AG, AP3, PI, and AGL orthologs have been reported to
be mainly transcribed in flower organs, playing crucial roles in floral organ identity specification.
For example, the expression of AG orthologs was strongly detected in reproductive organs including
stamens and carpels in different clades of angiosperms, such as TrAG of Taihangia rupestris, PsAG of
Prunus serotine, and KjAG of Kerria japonica in rosids [37–39]; TAG1 of Solanum lycopersicum and CpAG
in Cyclamen persicum in asterids [40,41]; MAwuAG of Magnolia wufengensis and ThtAG1 of Thalictrum
thalictroides in basal eudicots [42,43]; and AhMADS6 of Alpinia hainanensis and LMADS10 of lily
and in monocots [44,45]. Meanwhile, AP3 and PI orthologs were transcribed only in petals and
stamens in other core eudicots, such as Arabidopsis [46,47], Antirrhinum [48,49], Torenia fournieri [50,51],
and S. lycopersicum [52]. Therefore, we conclude that these presented studies indicate conservative
expression pattern of floral organ identity genes between loquat and other eudicots.

3.3. Expression Analysis of Key Differentially Expressed Genes (DEGs) Involved in Plant Hormone Signal
Transduction Pathways

Plant hormones participate in all stages of flower development. In our study, DEGs involved in
auxin-, GA-, cytokinin-, ethylene-, ABA-, JA-, and SA-signaling pathways were significantly enriched
during flower development in loquat. Consistent with these results, concentrations of GA3 and ZT
were high before the FA stage, but ABA concentration remained high at the FA stage. In particular,
previous studies have also reported that GA3 concentration was significantly changed in homeotic
transformation of flower organ in double-flower loquat, and flowers under GA3 treatment significantly
increased fruit setting in triploid loquat [23,53]. These data indicated that the GA3 might play important
roles in flower development in loquat.

In plants, GA is involved in various developmental processes, including the initiation of flowering
transition, floral primordia, and the identification of floral organs [54,55]. In our work, genes of
GA signaling and metabolism pathways and the GA content were mainly upregulated at the FBD
stage, indicating the fact that GA plays important roles in the early stage of flower development.
In Arabidopsis, GAs control floral induction through regulating floral integrator genes SOC1 and
FT and floral meristem identity gene LFY [56–58]. In M. domestica, it was previously reported
that the concentration changes of GA are involved in the transition from vegetative buds to floral
buds [59]. Previously, transcriptomic analysis of flower development demonstrated that floral
organ development is regulated by GA signaling in Gerbera hybrida [60]. In Dendrobium nobile,
comparative transcriptomic analysis revealed that DEGs of GA signaling pathways are involved in
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floral transition [61]. These previous studies and our data suggest that key genes of GA signaling and
metabolism pathways are associated with flower bud differentiation.

Genes of cytokinin signaling pathways and cytokinin content were mainly upregulated at the FBE
stage in loquat. In Arabidopsis, cytokinin regulates many aspects of flower growth, and the genes of
cytokinin signaling pathways were mainly upregulated in modulating flower development [62,63].
However, cytokinin concentration is high and the genes of cytokinin biosynthesis are upregulated
in early flower bud differentiation in Litchi chinensis [64,65]. In Brassica napus, cytokinin level is
significantly increased in vernalization-induced shoot apices and is involved in floral transition [66].
The difference of cytokinin biosynthesis and content between non-vernalization requiring loquat
and vernalization requiring L. chinensis and B. napus might be due to different flower development
characteristics or far genetic relationship.

In our study, genes of ABA signaling pathway and ABA content were significantly upregulated
after the FA stage. Previously, it was reported that both genes of the ABA signaling pathway and ABA
content were upregulated in later stages of flower development in Lonicera japonica [67]. In the later
stage of flower development, ABA acts as a positive regulator for the senescence [68]. The increase in
ABA concentration in the later stage of loquat flower development may be related to the involvement
of ABA in petal senescence.

3.4. Key DEGs and DAPs Involved in Starch and Sucrose Metabolism Pathways

In our work, comparative transcriptome analysis showed that DEGs were mainly enriched in the
pathways of starch and sucrose metabolism. Consistent with the enrichment of DEGs, comparative
proteomic analysis and combined enrichment of DEGs and DAPs showed that starch and sucrose
metabolism were also significantly enriched in comparisons of FBE vs. FBD, FA vs. FBE, and FA
vs. FBD. Similarly, transcription profiles revealed starch metabolism-related genes were upregulated
in flower induction under a shoot-bending treatment in M. domestica [69]. In Cucumis sativus,
the DEGs were mainly enriched in the pathway of starch and sucrose metabolism in the induction
of female flower [70]. Furthermore, proteomic analysis of fertile and sterile flower buds found that
the up- and downregulated proteins were mainly involved in starch and sucrose metabolism in
Brassica campestris [71]. In Hemerocallis hybrid, quantitative proteomic analysis showed DAPs were
mainly enriched in starch and sucrose metabolism during flower development [72]. These previous
transcriptome and proteomic analysis and our data indicate that starch and sucrose metabolism-related
genes play key roles during flower development.

4. Materials and Methods

4.1. Plant Materials

Flower buds of different development stages were collected from loquat (excellent triploid line
‘CB-1 Q11’) at the experimental farm of Southwest University (Chongqing, China). The loquat trees
were 15 years old and were considered to be in the adult phase. Morphological changes of floral bud
development were observed from the stages of vegetative meristem to petal fall. Floral buds at three
stages, i.e., flower bud differentiation (FBD), floral bud elongation (FBE), and floral anthesis (FA),
were collected. At each sampling point, the buds from about 20 panicles were collected and sampled.
The bud samples were frozen immediately in liquid nitrogen and stored at −80 ◦C.

4.2. RNA Extraction and Construction of cDNA Library

Total RNA was extracted individually from FBD, FBE, and FA using the EASYspin Plant
RNA Extraction kit (RN09, Aidlab, China), according to instructions from the manufacturer.
RNA concentration was detected using the NanoDrop 2000 (Thermo Scientific, Wilmington, DE,
USA). RNA integrity was detected using the Agilent Bioanalyzer 2100 System (Agilent Technologies,
Palo Alto, CA, USA). Then, residual genomic DNA of the RNA was digested using RNase-free DNase
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I (Takara, Tokyo, Japan) at 37 ◦C for 30 min. Three independent biological replicates were performed
for each developmental stage. The cDNA libraries were constructed using the TruSeqRNA Sample
Preparation kit (Illumina, San Diego, CA, USA). Then, the libraries were sequenced using an Illumina
HiSeq X-Ten platform (Shanghai Personal Biotechnology Co., Ltd., Shanghai, China).

4.3. Data Filtering, de novo Assembly, and Annotation

The sequenced raw reads were processed by removing adapter sequences; ‘N’ bases (unknown
bases) and low-quality reads were removed. Then, high-quality clean reads were assembled to contigs,
transcripts, and unigenes using the Trinity program [73]. The assembled unigenes were annotated
using BLAST with an E-value < 0.00001. These BLAST databases included the databases of Swiss-Prot
protein, non-redundant protein, Gene Ontology [74], Kyoto Encyclopedia of Genes and Genomes [75],
and non-supervised orthologous groups [76].

4.4. Identification of Differentially Expressed Genes (DEGs) and Transcription Factors (TFs)

Expression levels of unigenes from three flower developmental stages were compared using
the fragments per kilobase per million from the mapped reads (FPKM) by a method described
previously [77]. DESeq software was used, and the genes with a |log2 ratio| > 1 and a false discovery
rate (FDR) ≤ 0.05 were considered to be significant DEGs [78,79]. Then, DEGs were mapped to the
enrichment analysis of GO terms and KEGG pathways using the method described previously [63,64].
GO terms and KEGG pathways showing a corrected p-value ≤ 0.05 were considered to be significantly
enriched. Searches for TFs were identified using HMMER3.0 (http://hmmer.org/) against the Plant
Transcription Factor Database (PlantTFDB, http://planttfdb.cbi.pku.edu.cn/) [80].

4.5. Protein Extraction and Digestion

Proteins were extracted from floral buds using the modified method described previously [81].
Flower buds (500 mg) were ground to a fine powder in liquid nitrogen. The powder was suspended in
five times volume of trichloroacetic acid/acetone (1:9) and mixed. Then, the mixture was placed at
−20 ◦C for 4 h and centrifuged at 4 ◦C at 6000× g for 40 min, and the supernatant was discarded. Then,
the precipitation was washed using pre-cooling acetone and was subsequently air dried. The ≈30 mg
powder was added to 30 times volume of SDT buffer (4% SDS, 100 mM Tris-HCl, 1 mM dithiothreitol
(DTT); pH 7.6), mixed, and boiled for 5 min. After centrifugation at 14,000× g for 40 min at 4 ◦C,
the supernatant was filtered with 0.22 µm filters. The protein content was quantified with the BCA
Protein Assay Kit (Bio-Rad, Irvine, CA, USA) and stored at −80 ◦C.

4.6. Protein Digestion and TMT Labeling

Protein samples containing 200 µg of proteins were incorporated into 30 µL SDT buffer.
The detergent, DTT, and other low molecular weight components were removed using UA buffer
(8 M urea, 150 mM Tris-HCl; pH 8.0) by repeated ultrafiltration (Microcon units, 10 kD). Then, 100 µL
iodoacetamide (IAA) (100 mM IAA in UA buffer) was added to block reduced cysteine residues and was
incubated for 30 min in darkness. The filters were washed with 100 µL UA buffer three times, and then
100 µL 100 mM triethylammonium bicarbonate (TEAB) buffer twice. Finally, the protein suspensions
were digested with 4 µg trypsin (Promega, Madison, WI) in 40 µL triethylammonium bicarbonate
(TEAB) buffer overnight at 37 ◦C, and the resulting peptides were collected as a filtrate. The peptide
content was determined by UV light spectral density at 280 nm using an extinction coefficient of 1.1 of
0.1% (g/L) solution on the basis of the frequency of tryptophan and tyrosine in proteins.

Proteins containing 100 µg peptide mixture of each sample was labeled using a tandem mass
tag (TMT) Isobaric Label Reagent Set (Thermo Fisher Scientific Inc., Waltham, MA, USA). There were
three biological replicates for each sample. A Pierce high pH reversed-phase fractionation kit (Thermo
Fisher Scientific Inc., Waltham, MA, USA) was used to fractionate TMT-labeled digest samples into
nine fractions by an increasing acetonitrile step-gradient elution.

http://hmmer.org/
http://planttfdb.cbi.pku.edu.cn/
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4.7. Low pH nano-LC–MS/MS Analysis

Each fraction was injected for nanoLC–MS/MS analysis. The peptide mixture was loaded onto a
reverse phase trap column (Thermo Scientific Acclaim PepMap100, 100 µm × 2 cm, nanoViper C18)
connected to the C18-reversed phase analytical column (Thermo Scientific Easy Column, 10 cm long,
75 µm inner diameter, 3 µm resin) in buffer A (0.1% formic acid) and was separated with a linear
gradient of buffer B (84% acetonitrile and 0.1% formic acid) at a flow rate of 300 nL/min controlled by
IntelliFlow technology.

4.8. LC–MS/MS Analysis

LC–MS/MS analysis was performed using a Q Exactive mass spectrometer (Thermo Scientific)
coupled to Easy-nLC (Thermo Fisher Scientific Inc.) for 60/90 min. The mass spectrometer was operated
in positive ion mode. MS data was acquired using a data-dependent top10 method that dynamically
chose the most abundant precursor ions from the survey scan (300–1800 m/z) for higher-energy collisional
dissociation (HCD) fragmentation. Automatic gain control target was set to 3e6, and maximum inject
time was set to 10 ms. Dynamic exclusion duration was 40.0 s. Survey scans were acquired at a
resolution of 70,000 at m/z 200, and resolution for HCD spectra was set to 17,500 at m/z 200, and isolation
width was 2 m/z. Normalized collision energy was 30 eV. The instrument was run with peptide
recognition mode enabled.

4.9. Bioinformatics Analysis of Proteomic Data

MS/MS spectra were searched using Mascot software version 2.2 (Matrix Science, London, United
Kingdom) embedded into Proteome Discoverer Version 1.4. Proteins were searched against loquat
proteome data from the translation of transcriptome data described above. A 1.2-fold cut-off was set to
differentially accumulated proteins (DAPs) with a p-value < 0.05. The protein sequences of DAPs were
blasted against the KEGG database (http://geneontology.org/) to retrieve their KEGG orthologys (KOs)
and were subsequently mapped to the pathways. GO enrichment and KEGG pathway enrichment
analyses were applied on the basis of Fisher’ exact test. Benjamini–Hochberg correction for multiple
testing was further applied to adjust the derived p-value. The functional categories and pathways with
p < 0.05 were considered significant.

4.10. Validation Analysis of Transcriptome Data by qRT-PCR

Total RNA was extracted from the flower buds independently at the FBD, FBE, and FA stages.
Then, 2 µg of total RNA was used to synthesize the first-strand cDNA using the Primescript RT reagent
kit with genomic DNA (gDNA) Eraser (Takara, Japan). The qRT-PCR primers of these selected genes
were designed using Oligo 7.0 software and are shown in Table S14. These primers were synthesized
by Sangon Biotech Co., Ltd. (Shanghai, China). qRT-PCR was performed using CFX96 Touch Real
Time PCR Detection System (Bio-Rad Laboratories, Hercules, CA, USA) and SYBR Green-based PCR
assay. Reaction mixture was cycled as follows: 94 ◦C for 5 min, followed by 40 cycles of 94 ◦C for 20 s,
55 ◦C for 20 s, and 72 ◦C for 20 s. Three biological replicates were conducted for each sample. The actin
gene of loquat was used as a normalization control [82]. The relative quantification of the tested genes
was determined by the comparative Ct values and calculated by 2−∆∆Ct values [83].

4.11. Determination of GA3, ZT, and ABA Concentrations

The GA3, ZT, and ABA concentrations from FBD, FBE, and FA were determined through using the
method described by [53,63,84]. Then, 0.3 g of each sample was extracted. Standard preparations were
obtained from gibberellic acid, zeatin, and abscisic acid (Sigma Chemical Co., St. Louis, MO, USA).
Then, the concentrations of GA3, ZT, and ABA were detected using an Agilent 1260 HPLC device
(Agilent Technologies, Santa Clara, CA, USA) equipped with a G1314B UV detector. Three biological
replicates were performed. All data were analyzed using analysis of variance (ANOVA), and the

http://geneontology.org/
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differences were compared using PASW Statistics v18.0 software (SPSS Inc., Chicago, IL, USA) and
Duncan’s multiple range test.

5. Conclusions

Different from previous transcriptome analysis of loquat fruit development [23,24], our results
provide key DEGs that were found to be mainly involved in flowering-related genes and the pathways
of plant hormone signal transduction and starch and sucrose metabolism during flower development in
loquat. Among them, key floral integrator genes and floral meristem identity genes were significantly
upregulated at the FBD stage, and floral organ identity genes were significantly upregulated at the
stages of FBE and FA. The DEGs were significantly enriched in the signaling pathways of auxin, GA,
cytokinin, ethylene, ABA, JA, and SA. Consistent with these results, comparative proteomic analysis of
differentially accumulated proteins (DAPs) and combined enrichment of DEGs and DAPs showed
that starch and sucrose metabolism were also significantly enriched. Concentrations of GA3 and ZT
were high before the FA stage, but ABA concentration remained high at the FA stage. Future work
should be performed to investigate the possible roles of key DEGs and metabolic pathways in flower
development in loquat. Taken together, these identified key genes, hormone signal transduction,
and starch and sucrose metabolism pathways increase our understanding of the complex regulatory
networks underlying flower development in loquat and other Rosaceae species.
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DEGs Differentially expressed genes
GAs Gibberellins
ABA Abscisic acid
FBD Flower bud differentiation
FBE Floral bud elongation
FA Floral anthesis
FT FLOWERING LOCUS T
SOC1 SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1
SPL SQUAMOSA PROMOTER BINDING LIKE
LFY LEAFY
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AP1 APETALA1
TFs Transcription factors
Nr database Non-redundant database
GO Gene Ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
JA Jasmonic acid
SA Salicylic acid
VRN1 VERNALIZATION 1
VIN2 VERNALIZATION-INDEPENDENT INSENSITIVE 2
EMF2 EMBRYONIC FLOWER 2
DCL DICER-LIKE
LHY LATE ELONGATED HYPOCOTYL
PHYB PHYTOCHROME B
WOX WUSCHEL-related homeobox
PI PISTILLATA
AGL AGAMOUS-Like
SEP SEPALLATA
TFs Transcription factors
DAPs Differentially accumulated proteins
FPKM Fragments per kilobase per million
ZT Zeatin
FDR False discovery rate
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