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Abstract
Adherent cells seeded on substrates spread and evolve their morphology while simultaneously displaying motility. Phenomena 
such as contact guidance, viz. the alignment of cells on patterned substrates, are strongly linked to the coupling of morpho-
logical evolution with motility. Here, we employ a recently developed statistical thermodynamics framework for modelling 
the non-thermal fluctuating response of cells to probe this coupling. This thermodynamic framework is first extended via a 
Langevin style model to predict temporal responses of cells to unpatterned and patterned substrates. The Langevin model 
is then shown to not only predict the different experimentally observed temporal scales for morphological observables such 
as cell area and elongation but also the interplay of morphology with motility that ultimately leads to contact guidance.

Keywords Contact guidance · Homeostasis · Motility · Fluctuations

1 Introduction

Living systems are characterised by a wide variety of 
timescales governing key biological processes at different 
length scales. For example, on a macroscopic scale, it is well 
known that animal species have their own circadian rhythm 
(Aschoff 1979; Ohata et al. 1999) that governs their daily 
behaviours, such as feeding and resting. On a microscopic 
scale, cells follow a cell cycle, which is a sequence of cel-
lular phases such growth and division (Johnson and Walker 
1999; Kastan and Burtek 2004). These timescales are critical 
for cell development and are controlled by complex molecu-
lar pathways (Johnson and Walker 1999; Kastan and Burtek 
2004; Stanewsky et al. 1998; Kume et al. 1999). Another 
example pertains to the in vitro spreading of adherent single 
cells on substrates. Experiments have demonstrated that the 
spreading and elongation rates differ in time by an order of 
magnitude (Kesavan et al. 2014; Nisenholz et al. 2014). The 

rates of spreading and elongation were also observed to be 
non-constant, which suggested that distinct temporal phases 
may exist in a cell’s morphological evolution.

Another important timescale pertaining to in  vitro 
experiments of adherent cells is associated with cell motil-
ity. Motility occurs via large and co-ordinated morphologi-
cal changes in the cell, e.g. the treadmilling mechanism in 
adherent cells, whereby cells move by tugging on the sub-
strate by exploiting focal adhesions (Balaban et al. 2001; 
Bell et al. 1984). Therefore, the motility and morphologi-
cal change timescales are expected to be interlinked. It is 
well known that substrate properties such as stiffness (Had-
den et al. 2017; Ulrich et al. 2009), chemical composition 
(Engler et al. 2004; Carter 1965, 1967) and topology (Busk-
ermolen et al. 2020; Chang et al. 2013; Ray et al. 2017) 
strongly affect single-cell morphological and motile behav-
iour. Experiments have shown that changing the substrate 
stiffness alters both the spreading timescales of adherent 
cells and the speed at which they explore the environment 
(Asano et al. 2017; Ghibaudo et al. 2008; Pelham and Wang 
1997). Guidance provided by substrate anisotropy, i.e. con-
tact guidance (Guido and Tranquillo 1993; Dunn and Heath 
1976; Weiss 1945), also influences cell spreading and motile 
behaviour. In fact, cells elongate more and faster on adhe-
sive channels (Huang and Donald 2015) and this is also 
accompanied by an enhanced alignment of the biochemical 
force generating machinery within the cell, viz. stress-fibres 
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(Buskermolen et al. 2019). Measurements have also reported 
a faster directional exploration speed in confined settings 
(Pathak and Kumar 2012). However, physical insights into 
the interplay between morphological changes and motility 
for cells on anisotropic substrates are lacking despite their 
importance for understanding cell guidance.

The aim of this theoretical work is to understand the 
timescales governing phenomena, such as contact guid-
ance, that emerge due to the coupling of morphological 
evolution with cell motility. We propose a novel frame-
work that we call the Homeostatic Langevin Equation 
(HLE) that is an extension to the Homeostatic ensemble 
(Shishvan et al. 2018) developed to understand the long 
timescale or stationary responses of cells. The HLE rec-
ognises the non-thermal fluctuating response of the cells 

and is used to simulate the temporal evolution of isolated 
cells seeded on unpatterned and patterned substrates. A 
schematic of the simulation set-up for a cell seeded on a 
substrate with a fibronectin stripe of width W  is shown in 
Fig. 1a along with a representative prediction in Fig. 1b. 
The cell seeded from suspension is circular, and the HLE 
will predict its coupled morphological evolution along 
with its motility as shown in Fig. 1b. Key experimental 
observables such as cell area, cell shape, distribution of 
cytoskeletal proteins such as stress-fibre distributions, 
shape of nucleus and focal adhesion distributions are 
outcomes of the simulations. These predictions are used 
to extract the timescales of morphological evolution and 
cell motility and thereby develop an understanding of the 
mechanisms and processes that result in the guidance of 
cells on patterned substrates.

Fig. 1  Simulation set-up. a Single cell placed on a fibronectin stripe 
of fixed width W . The cell exchanges high-energy nutrients with the 
nutrient bath. The components of the cell modelled explicitly include 
an elastic nucleus and cytoplasm as well as the contractile stress-
fibres in their polymerised state in equilibrium with their unbound 
components within the cytoplasm. b Temporal evolution of an adher-
ent cell on a fibronectin stripe. In the simulation, cells are modelled 

as two-dimensional bodies in the  x1 − x2  plane lying on a substrate. 
All cells are seeded from their state in suspension and then spread 
and change shape while simultaneously exploring the substrate. The 
images in (b) are representative images from simulations with the 
scalebar of 2R0 the diameter of the circular cell in its elastic resting 
state
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2  Modelling formulation

The interaction of cells with environmental cues (e.g. 
mechanical, chemical) has a profound influence on 
cell response. For example, not only do morphological 
observables such as cell area and aspect ratio increase with 
increasing substrate stiffness (Kesavan et al. 2014; Nisen-
holz et al. 2014) but cell motility also exhibits a biphasic 
behaviour on stiffer substrates (Peyton and Putnam 2005; 
Pathak and Kumar 2011). While different modelling 
frameworks are used to understand the influence of envi-
ronmental cues on cell morphology (Vigliotti et al. 2015; 
Shenoy et al. 2016; Bengassser et al. 2013) and cell motil-
ity (Stokes et al. 1991; Klank et al. 2017), the interplay of 
the underlying mechanisms remains elusive. Our aim here 
is to develop a unified framework with the objective of 
better elucidating the underlying mechanisms. We do this 
by extending the recently developed homeostatic mechan-
ics framework (Shishvan et al. 2018), which predicts the 
distribution of morphological states that an adherent cell 
assumes during the interphase period of the cell cycle. 
The mentioned framework lacks temporal information, 
and here, we extend the formulation to enable predictions 
of the temporal evolution of morphological observables 
alongside cell motility as a function of environmental 
cues.

2.1  A brief overview of the homeostatic mechanics 
framework

The homeostatic mechanics framework recognises that 
a cell is an open system which exchanges nutrients with 
the surrounding nutrient bath (Fig.  1a); see Shishvan 
et al. (2018) for further details. These high-energy nutri-
ent exchanges fuel large fluctuations (much larger than 
thermal fluctuations) in the cell response associated with 
various intracellular biochemical processes. The cell uses 
these biochemical processes to maintain itself in the home-
ostatic state.

Specifically, homeostasis is the ability of a living cell to 
remain out of thermodynamic equilibrium by maintaining 
its various molecular species at a specific average number 
that is independent of the environment (Gordon 2013). 
This average number is sustained over all the non-thermal 
fluctuations of the cell (at-least over the interphase period 
of the cell cycle and in the absence of any imposed shock 
such as starving the cell of nutrients). The implication is 
that over the fluctuations of the cell from any reference 
state, ⟨ΔNi⟩ = 0 where ΔNi is the change in the number 
of molecules of species i from its reference value with 
⟨x⟩ denoting the average of x over the ensemble of states 

sampled over the non-thermal fluctuations. These fluctua-
tions alter the cell morphology, and each morphological 
microstate (cell shape, protein distribution etc.) has an 
equilibrium Gibbs free energy G =

∑
i�iNi , where �i is the 

chemical potential of species i . Using the Gibbs–Duhem 
relation, we then rewrite this in terms of the reference 
state as G = Gref +

∑
i�

0
i
ΔNi , where now �0

i
 is the chemi-

cal potential of species i in the reference state and Gref is 
the equilibrium Gibbs free energy of the cell in its ref-
erence state. Upon employing the homeostatic constraint 
that ⟨ΔNi⟩ = 0 , we have ⟨G⟩ = Gref , i.e. irrespective of the 
environment, the ensemble average Gibbs free energy is 
constant. This is a universal constraint that quantifies the 
fact that living cells maintain themselves out of thermody-
namic equilibrium but yet attain a stationary state which is 
the homeostatic state. While the above constraint specifies 
the average state of the cell, it remains to determine the 
distribution of states the cell assumes that satisfies this 
average. As mentioned, cells do not remain in a single 
microstate but fluctuate between different configurations 
after seeding. Cells explore these different morphological 
microstates thanks to several biochemical processes, such 
as actin polymerisation and treadmilling. The objective 
of the homeostatic mechanics framework is to capture the 
different configurations by adopting the ansatz that the 
observed distribution of cell shapes is the one with the 
overwhelming number of microstates, i.e. the distribution 
that maximises the morphological entropy subject to the 
homeostatic constraint, i.e. ⟨G⟩ = Gref = GS , with GS being 
the free energy of a cell in suspension, and to any other 
geometrical constraints, such as confinement, imposed by 
adhesive patterns on substrates. The distribution of states 
is denoted as an equilibrium distribution, where “equilib-
rium” means in a homeostatic state.

In this study, cells are modelled as two-dimensional bod-
ies in the x1 − x2 plane lying on a substrate (Fig. 2). In this 
two-dimensional context, the cell morphology is defined by 
the positional vectors (q)ri (i = 1, 2) of the q = 1,… ,M con-
trol points used to specify the cell shape. Denoting the posi-
tions of the control points in morphological microstate (j) as 
r̃(j) =

{
(1)r

(j)

i
,… , (M)r

(j)

i

}
 , the Gibbs free energy of the cell 

in microstate (j) is G(j) ≡ G
(
r̃(j)

)
 . Shishvan et al. (2018) dem-

onstrated that the cell in homeostasis assumes a given mor-
phological microstate (j) with probability

where Z ≡ ∑
jexp(−�G

(j)) is the partition function of 
the morphological microstates, and the distribution 
parameter �  emerges from the homeostatic constraint 
⟨G(j)⟩ ≡ ∑

jP
(j)
eqG

(j)
= GS . Thus, 1/� in (1) is referred to as 

the homeostatic temperature, and it sets the equilibrium 

(1)P(j)
eq
≡ Peq

(̃
r(j)

)
=

1

Z
exp

(
−�G(j)

)
,
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distribution of morphological microstates of the cell (also 
referred to as the homeostatic ensemble) as an analogous 
quantity to the thermodynamic temperature of the canonical 
ensemble (Gibbs 1902).

The 2D cell in microstate (j) is described by the 
q = 1,… ,M positional vectors (q)ri (i = 1, 2) . Here, we 
describe the numerical scheme used to define these vec-
tors. In the 2D context of cells on substrates, describing a 
morphological microstate reduces to specifying the position 
of all material points where the cell is in contact with the 
substrate. Thus, given the location of material points Xi on 

the elastically undeformed configuration, we impose a dis-
placement field u(j)

i
(Xi) to obtain the displaced coordinates of 

these points x(j)
i
= Xi + u

(j)

i
 which defines the morphological 

microstate (j) . The definition of the morphological micro-
state is then completed in the 2D setting by assuming that 
these points on the cell are connected to material points on 
the substrate in the same location x(j)

i
.

The cell is modelled as a continuum, and thus, u(j)
i

 is a 
continuous field. We define u(j)

i
 via Non-Uniform Rational 

B-Splines (NURBS) such that the morphological microstate 
is defined by M control points of coordinates 

[
(q)r1,

(q)r2
]
 . In 

Fig. 2  Simplification of an in vitro cell to a 2-dimensional body lying on the x1 − x2 plane
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all the numerical results presented here, we employ M = 16 
with 4 × 4 control points (q)r1 and (q)r2 governing the dis-
placements in the x1 and x2 directions, respectively. We 
construct the NURBS by using third-degree polynomials in 
both the x1 and x2 directions and by choosing two knots both 
with multiplicity four located at the extrema of the interval. 
The choice of these parameters enforces restriction on the 
sampled morphological microstates, i.e. features with wave-
lengths below the characteristic wavelength of the NURBS 
are not captured and thus typically this wavelength is chosen 
to represent the minimum width of a filopodium expected 
for the selected cell type (Shishvan et al. 2018; Buskermolen 
et al. 2019). Given the displacement fieldu(j)

i
 , we evaluate the 

Gibbs free energy G(j) using model described below. The cell 
is discretised by constant strain triangles of sizee ≈ R0∕10 , 
where R0 is the radius of the cell in its elastic resting state.

The numerical methods used for sampling via Markov 
chain Monte Carlo (MCMC) the morphological microstates 
and to obtain 1/� are the same as Shishvan et al. (2018) and 
Buskermolen et al. (2019), and a brief description is pro-
vided in Appendix A.

2.2  Gibbs free energy of a morphological 
microstate

The implementation of the homeostatic mechanics approach 
described above requires a specific model for the Gibbs free 

energy of the cell-substrate system in a given morphological 
state. Modelling all the elements of the cell is unrealistic, 
given that many of their kinetics are still unknown, and often 
not required, as specific components are known to deter-
mine and control the cell response to different environmental 
cues. Here, we are interested in investigating the response of 
cells to adhesive patterning of the substrates. These cues are 
known to guide single-cell behaviour resulting in significant 
cell alignment bias as well as remodelling of the stress-fibre 
cytoskeleton. Thus, we use a model that includes stress-fibre 
cytoskeleton introduced by Vigliotti et al. (2016) and subse-
quently modified in Shishvan et al. (2018) as well as passive 
elasticity of the cytoplasm and nucleus.

The Gibbs free energy of a morphological microstate (j) 
of the system comprises contributions from the cell and the 
substrate and is written as

For the sake of brevity, we drop the superscript (j) 
throughout this section with the understanding that we are 
always discussing a given morphological microstate. The 
system (i.e. cell plus substrate) is within a nutrient bath and 

(2)G(j) = G
(j)

cell
+ G

(j)

sub
.

under atmospheric pressure as illustrated in Fig. 2. Then, 
taking atmospheric pressure as the reference zero state, G 
is given by

as Te
i
= 0 on the surface ST of the system exposed to the 

environment with Fcell and Fsub the corresponding Helmholtz 
free energies of the cell and substrate, respectively. For the 
linear substrate model, the substrate Helmholtz free energy 
Fsub = −Gsub . The free energy of the cell comprises four 
contributions such that

where fcyto, fec, fpassive are the cytoskeletal, energy carrier and 
passive Helmholtz free energies per unit volume in the cell, 
while fadh is the adhesive protein Helmholtz free energy per 
unit area over the interface SI between the cell and substrate. 
We define

and the corresponding Gibbs free energy of the active 
components is given by the Legendre transform as

where the active stress �A
ij
 is related to the strain �ij via 

�A
ij
≡ �(fcyto + fec)∕��ij , while the surface tractions Ti and 

stretch Δi of the adhesion proteins are related by 
Ti ≡ �fadh∕�Δi . The free energy associated with the energy 
carriers drives mechanical work and so we assume

and substituting (7) into (6) gives

The Gibbs free energy of the system is then as follows:

We assume that the collagen coating of both the unpat-
terned and patterned substrates is dense, and thus, there is 
not any impedance in the formation of focal adhesions; the 
term ∫

SI
gadhdS is assumed constant for ever configuration. 

(3)G = Fcell + Fsub − ∫ ST

Te
i
uidS = Fcell + Fsub,

(4)Fcell = ∫ Vcell

(
fcyto + fec + fpassive

)
dV + ∫ SI

fadhdS,

(5)Factive = ∫ Vcell

(
fcyto + fec

)
dV + ∫ SI

fadhdS,

(6)Gactive = ∫
Vcell

(
gcyto + gec

)
dV + ∫

SI

gadhdS = Factive − ∫
Vcell

�A
ij
�ijdV − ∫

SI

TiΔidS,

(7)∫ Vcell

gecdV = −∫ Vcell

�A
ij
�ijdV − ∫ SI

TiΔidS,

(8)Factive = ∫ Vcell

gcytodV + ∫ SI

gadhdS.

(9)

G = Fcell + Fsub = ∫ Vcell

(gcyto + fpassive)dV + ∫ SI

gadhdS + Fsub.
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Additionally, the underlying substrate is assumed to be rigid, 
i.e. Fsub = 0 . We proceed to discuss the formulation for gcyto 
and fpassive.

2.2.1  Calculation of cell free energy

Calculation of gcyto and fpassive involves modelling three ele-
ments within the cell: (i) a passive elastic contribution from 
elements such as the cell membrane, intermediate filaments, 
and microtubules in the cytoplasm, (ii) an active contribu-
tion from the contractile actomyosin stress-fibres that are 
modelled explicitly and (iii) the nucleus modelled as a pas-
sive elastic body. These are modelled using the framework 
of Vigliotti et al. (2016) and the subsequent modifications 
of Shishvan et al. (2018) and Buskermolen et al. (2019). We 
shall first describe the modelling of the active actomyosin 
stress-fibres in the cytoplasm and then discuss the elastic 
model of both the nucleus and the cytoplasm.

Consider an incompressible two-dimensional (2D) cell 
(both the cytoplasm and nucleus are assumed to be incom-
pressible) of thickness b0 , radius R0 and volume V0 in its 
elastic resting state comprising a nucleus of volume VN and 
cytoplasm of volume VC such that V0 = VN + VC (Fig. 1a). 
We assume a cylindrical representative element (RVE) of 
volume VR = �b0

(
nR�0∕2

)2 , where �0 is the length of a 
stress-fibre functional unit in its ground state and nR is the 
number of these ground-state functional units within the 
cytoplasm. The average number of functional units (poly-
merised and unbound) in the RVE is then N0 = NT

0
VR∕VC , 

where NT
0
 is the total number of functional units present in 

the cell. The state of the stress-fibres in the RVE located in 
xi is described by their angular concentration �

(
xi,�

)
 and 

the number of functional units n(xi,�) in series along the 
length of each stress-fibre. The angle � is measured in the 
undeformed configuration and measures the orientation of 
the stress-fibre bundle with respect to the x2− direction of 
the stripe (Fig. 1a). At steady state, Vigliotti et al. (2016) 
showed that the number nss of functional units within the 
stress-fibres is

where 
∼
�
ss

nom
 is the strain at steady state within a functional 

unit of the stress-fibres, and �(xi,�) is the cell stretch in 
direction � , i.e. component of the left stretch tensor in direc-
tion � . The chemical potential of the functional units within 
the stress-fibres is given in terms of the Boltzmann constant 
kB and of the normalised number N̂L of lattice sites available 
to unbound proteins by

(10)n̂ss ≡ nss

nR
=

�(xi,�)

1 +
∼
�
ss

nom

,

where N̂u ≡ Nu∕N0 is the normalised concentration of the 
unbound stress-fibre proteins in terms of the concentration 
Nu of the unbound, �̂ ≡ �nR∕N0 and �̂max is the maximum 
normalised value of �̂  corresponding to full occupancy of 
all available sites for stress-fibres (in a specific direction). 
Here, the enthalpy �b of nR bound functional units at steady 
state is given in terms of the isometric stress-fibre stress �max 
and the internal energy �b0 as

where Ω is the volume of nR functional units. By contrast, 
the chemical potential of the unbound proteins is independ-
ent of stress and given in terms of the internal energy �u of 
the unbound proteins as

For a fixed configuration of the 2D cell (i.e. a fixed stretch 
distribution �(xi,�) ), the contribution to the specific Gibbs 
free energy of the cell from the stress-fibres then follows as

where �0 ≡ N0∕VR is the number of protein packets per 
unit reference volume available to form functional units 
in the cell. However, we cannot yet evaluate gcyto as N̂u(xi) 
and �̂(xi,�) are unknown and their value will follow from 
the chemical equilibrium of the cell as we shall discuss 
subsequently.

The total stress Σij within the cell includes contribu-
tions from the passive elasticity provided mainly by the 
intermediate filaments of the cytoskeleton attached to the 
nuclear and plasma membranes and the microtubules, as 
well as the active contractile stresses of the stress-fibres. 
The total Cauchy stress is written by an additive decom-
position as

where �A
ij
 and �p

ij
 are the active and passive Cauchy stresses, 

respectively. In the 2D setting with the cell lying in the 
x1 − x2 plane, the active stress is given in terms of the vol-
ume fraction H0 of the stress-fibre proteins as

(11)�b =
�b

nR
+ kBTln

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

��̂n̂ss

N̂u

�
1 −

�̂

�̂max

�
⎞
⎟⎟⎟⎠

1

nss �
N̂u

�N̂L

�⎤
⎥⎥⎥⎥⎦
,

(12)�b = �b0 − �maxΩ
(
1 +

∼
�
ss

nom

)
,

(13)�u =
�u

nR
+ kBTln

(
N̂u

�N̂L

)
.

(14)gcyto = �0

(
N̂u�u + ∫

�∕2

−�∕2

�̂n̂ss�bd�

)
,

(15)Σij = �A
ij
+ �

p

ij
,
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where � is the angle of the stress-fibre measured with respect 
to x2 , in the current deformed configuration. The passive 
elasticity in the 2D setting is given by a 2D specialisation of 
the Ogden (1972) hyperelastic model as derived in (Shish-
van et al. 2018). The strain energy density function of this 
2D Ogden model is

for the cytoplasm and

for the nucleus where �I and �II are the principal 
stretches, �C ( �N ) and �C ( �N ) the shear modulus and in-
plane bulk modulus of cytoplasm (nucleus), respectively, 
while mC ( mN ) is a material constant governing the non-
linearity of the deviatoric elastic response of cytoplasm 
(nucleus). The term P is a penalty term introduced to 
include an elastic penalty that prevents significant com-
pression of the cytoplasm/nucleus in the x1 − x2 plane and 
given by P ≡ �H

(
Jc − �I�II

)(
�I�II − Jc

)2 , where H(∙) is 
the Heaviside step function, Jc a non-dimensional constant 
that sets when this term becomes nonzero and �  sets the 
magnitude of the penalty.

The cell is assumed to be incompressible, and thus 
throughout the cell, we set the principal stretch in the x3− 
direction�III = 1∕(�I�II) . The passive Cauchy stress then 
follows as �p

ij
p
(k)

j
= �

p

k
p
(k)

i
 in terms of the principal passive 

Cauchy stresses �p

k
 ( ≡ �k�ΨC∕��k for the cytoplasm and 

≡ �k�ΨN∕��k for the nucleus) and the unit vectors 
p
(k)

j
(k = I, II) denoting the principal directions . The pas-

sive Helmholtz free energy of the cell is then fpassive = ΨC 
in the cytoplasm and fpassive = ΨN in the nucleus.

The equilibrium of a morphological microstate reduces 
to two conditions (Shishvan et al 2018): (i) mechanical 
equilibrium with Σij,j = 0 throughout the system, and (ii) 
intracellular chemical equilibrium. This second condi-
tion implies that the chemical potentials of bound and 
unbound stress-fibre proteins are equal throughout the cell 
( �u

(
xi
)
= �b

(
xi,�

)
= constant ) which constrains �̂(xi,�) 

and N̂u , by combining (11) and (13), as

(16)

[
�A
11

�A
12

�A
12

�A
22

]
=

H0�max

2

�∕2

∫
−�∕2

�̂�(�)

[
2sin2� −sin2�

−sin2� 2cos2�

]
d�,

(17)

ΨC ≡ 2�C

m2
C

[(
�I
�II

) mC

2

+

(
�II
�I

) mC

2

− 2

]
+

�C
2

(
�I�II − 1

)2
+ P,

(18)

ΨN ≡ 2�N

m2
N

[(
�I
�II

) mN

2

+

(
�II
�I

) mN

2

− 2

]
+

�N
2

(
�I�II − 1

)2
+ P,

and N̂u follows from the conservation of stress-fibre 
proteins throughout the cytoplasm, viz.

Thus, knowing N̂u and �̂
(
xi,�

)
 , the stress Σij can now 

be evaluated and these stresses within the system (i.e. cell 
and substrate) need to satisfy mechanical equilibrium, i.e. 
Σij,j = 0 . In this 2D case, the mechanical equilibrium condi-
tion is readily satisfied as the stress field Σij within the cell 
is equilibrated by a traction field Ti exerted by the substrate 
on the cell such that bΣij,j = −Ti , where b(xi) is the thickness 
of the cell in the current configuration. Then, Fcell becomes

Here, �u is given by Eq. (13) with the equilibrium value 
of N̂u obtained from Eqs. (19–20).

2.3  Morphological and other observables

The cell is modelled as a two-dimensional body whose 
morphology and position evolves on the substrate (Fig. 2). 
Typical observables such as 2D projections of the cell mor-
phology and protein distributions can readily be extracted 
from the simulations.

2.3.1  Morphological observables

The morphological observables describe the cell shape and 
orientation in the unpatterned or patterned substrate. These 
are equivalent to analysing the 2D projection of a single 
adherent cell on the substrate. The observables of interest, 
as shown in Fig. 3, are: cell area A , cell aspect ratio AS , 
orientation � and cell form factor FF . Note that all these 
observables are measured as a function of time.

Cell spread area A is calculated as the enclosed area within 
the outer boundary of the cell. The cell aspect ratio AS and ori-
entation are defined from drawing the best fit ellipse of a given 
cell configuration. Note that cells take configurations that are 
not ellipses, but a best fit ellipse provides a metric to approxi-
mately define cell elongation and orientation and is extensively 
used in experiments (Buskermolen et al. 2019; Kesavan e al. 

(19)�̂
(
xi,�

)
=

N̂u�̂maxexp
[
n̂ss(�u−�b)

kBT

]

�n̂ss�̂max + N̂uexp
[
n̂ss(�u−�b)

kBT

] ,

(20)N̂u +
1

VC
∫ VC

�∕2

∫
−�∕2

�̂n̂ssd�dV = 1.

(21)Fcell ≡ �0VC�u + � VC

ΨCdV + � VN

ΨNdV .
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2014; Nisenholz et al. 2014; Ghibaudo et al. 2009). The best 
fit ellipse is calculated as an ellipse that best fits the outline of 
the current cell configuration. The cell aspect ratio is given by 
the ratio of the major to minor axis of the best-fit ellipse, and 
the cell orientation is the angle the major axis makes with the 
stripe direction. The cell form factor FF ≡ p2∕(4�A) , where 
p is the cell perimeter, is a metric typically used to describe 
the elongation and capability of the cell to form filopodia on a 
given substrate. FF depends on the area but gives completely 
different information: FF = 1 means that the cell is circular in 
shape while FF ≫ 1 for a starlike cell, forming many filopodia 
to sense and explore the environment. The perimeter p is cal-
culated as the perimeter of the polygonal shape drawn by the 
nodes on the periphery of the current cell configuration.

2.3.2  Visualisation of protein distributions 
and determining corresponding metrics

We show immunofluorescence-like images comprising of 
the nucleus, actin and vinculin stained in blue, green, and 
magenta, respectively (Fig. 3). This scheme is used for cell 
configurations shown throughout the paper as well as in the 
Supplementary Videos 1, 2 and 3. The nucleus is simply 
determined from colouring the mesh elements labelled as 
“nucleus” in blue. We proceed to discuss the protocol used 
to generate the protein staining for actin and vinculin.

Actin stainings are representations of the stress-fibre 
distributions explicitly modelled in the framework. These 
distributions are plotted to convey two crucial pieces of 

Fig. 3  Illustrations of the cell morphological observables and staining distributions from a given morphological microstate. Scalebar is 2R0
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information: (i) the concentration of bound stress-fibre units 
in each location within the cell configuration and (ii) the 
local orientation of the densest stress-fibre bundle. While 
the formulation is a continuum formulation this information 
about stress-fibres is extracted from internal state variables 
and presented as follows. The concentration of stress-fibres 
�̂ n̂ss at each location xi and at an angle � with respect to 
the x2− axis is known for any cell configuration. We then 
sketch an actin fibre in the direction �max of the maximum 
value of �̂ n̂ss at that location and at a spacing that scales 
inversely with

to convey that the actin network is more dense in that 
location. Focal adhesions are not explicitly modelled in 
the simulations. However, it is well known that mature and 
larger focal adhesions apply larger tractions on the substrate 
(Werner et al. 2017; Pelham et al. 1997; Frey et al. 2006). 
Thus, the magnitudes of the traction distribution T

(
xi
)
 are 

used as surrogates to visualise the localisation of the focal 
adhesions. Specifically, higher traction magnitudes are rep-
resented by a deeper magenta colour to visualise suggest 
adhesion protein density in the given location.

(22)N̂b

(
xi
)
=

�

2

∫
−

�

2

�̂ n̂ssd�,

2.4  Spreading of cells on substrates

It is instructive to briefly review the predictions of the 
homeostatic mechanics framework prior to extending the 
framework to predicting temporal evolutions. Recall that the 
homeostatic framework predicts the stationary distribution 
of microstates that the cell attains in a given environment. 
A cell in suspension needs to self-equilibrate and therefore 
assumes a unique configuration. For the 2D cell modelled 
here with the choice of parameters representing fibroblasts 
(Table 1), the cell in suspension is a circle of radius 0.92R0 
with the nucleus remaining undeformed with a radius RN . In 
this configuration, the elastic stresses generated by the com-
pression of the cytoplasm are balanced by the tensile stresses 
generated by a spatially uniform distribution of stress-fibres 
within the cytoplasm.

Now consider a cell seeded on a patterned substrate as 
shown in Fig. 1b. The substrate is micropatterned with 
fibronectin stripes of a given width W  , and adhesion of 
cell is prevented outside the stripes. This theoretical set-
up is equivalent to experimentally microprinting widely 
spaced adhesive stripes on the substrates such that the 
cell cannot span two adhesive stripes and is thus confined 
to a single stripe. The cell stresses no longer need to be 
self-equilibrated as intracellular stresses can be balanced 
via tractions between the cell and the substrate. The cell 
therefore no longer attains a unique configuration but 
rather can fluctuate between different morphological 

Table 1  Model parameters for myofibroblasts. In most cases, we have provided references from which these parameters were inferred. Readers 
are referred to Buskermolen et al. (2019) where further details are provided for all parameters

Parameter Value [units] Description

T 310 [K] Cell temperature (37 °C)
�b0 − �u kBT Difference between reference bound and unbound chemical potential Vigliotti et al. (2016)
�max 240 [ kPa] Maximum stress-fibre tension Lucas et al. (1987)
∼
�
ss

nom
0.354 Steady-state nominal strain of SF functional unit Vigliotti et al. (2016)

�max 0.75 Maximum allowed angular stress-fibre density Buskermolen et al. (2019)
�0 3 × 10

6[packets μm−3] Density of protein packets that comprise stress-fibres (Vigliotti et al. 2016)
�C 1.67 [ kPa] Cytoplasm shear modulus Ronan et al. ((2012), Dowling et al. (2012 and (2013)
mC 5 Cytoplasm shear exponent Ronan et al. ((2012), Dowling et al. (2012 and (2013)
�C 35 [ kPa] Cytoplasm bulk modulus Ronan et al. ((2012), Dowling et al. (2012 and (2013)
�N 3.3 [ kPa] Nucleus shear modulus Ronan et al. ((2012), Dowling et al. (2012 and (2013)
mN 20 Nucleus shear exponent Ronan et al. ((2012), Dowling et al. (2012 and (2013)
�N 35 [ kPa] Nucleus bulk modulus Ronan et al. ((2012), Dowling et al. (2012 and (2013)
b0∕R0 0.05 Ratio of the cell thickness b0 and cell radius R0 in the elastic resting state of the cell Busk-

ermolen et al. (2019)
R
N
∕R0 0.256 

√
� Ratio of the nucleus radius, RN and R0 in the elastic resting state Buskermolen et al. (2019)

H0 0.032 Volume fraction of stress-fibre proteins Vigliotti et al. (2016)
Ω 10

−7.1[μm−3] Volume of the reference number of functional stress-fibre units Vigliotti et al. (2016)
� 10

5[kPa] Numerical penalty modulus
Jc 0.6 Critical value at which the elastic penalty starts to operate Shishvan et al. (2018)
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microstates with (1) specifying the probability of a 
specific morphological microstate and the distribution 
parameter �  set by the requirement that homeostatic 
constraint is satisfied over the entire ensemble of states 
the cell can attain. Predictions, obtained via MCMC 
(Appendix A), of the probability distribution of the nor-
malised free energy Ĝ ≡ G∕|GS| of the cell are included 
in Fig. 4a along with the corresponding distributions of 
the cell area and aspect ratio in Fig. 4b and 4c, respec-
tively, for three choices of the normalised stripe width 
Ŵ ≡ W∕(2R0) . These metrics, typically used to charac-
terise cell morphology, are defined as the normalised 
cell area A∕AR where A and AR are the areas of the cell 
and the area of the cell in suspension ( AR = �

(
0.92R0

)2 ), 
respectively. Clearly, the cells are predicted to spread 
and elongate on the substrate with the driving force for 
these morphological changes arising from the fact that 
these spread and elongated states have low free energy: 
as discussed by Shishvan et al. (2018), spreading of the 
cell reduces its cytoskeletal free energy but results in an 
increase in the elastic energy and it is this competition 
that controls cell spreading. We observe that the con-
finement imposed by the adhesive stripes has a strong 
tendency to elongate the cells but has a minimal effect 
on the distribution of the cell free energy and cell area. It 
is important to recognise here that cells do not uniquely 
attain their lowest free-energy state but rather sample a 

wide distribution of morphological states as evidenced in 
Fig. 4b and 4c. This wide sampling is set by the distribu-
tion parameter �  as required to satisfy the homeostatic 
constraint. In fact, the model predicts that the normal-
ised homeostatic “temperature” 1∕�̂ = 1∕(GS�) increases 
with decreasing Ŵ  as seen in Fig. 4d. These results are 
consistent with the predictions in Buskermolen et  al. 
(2019) and serve as a useful reference as we proceed 
to understand the temporal evolution of cells seeded on 
substrates.

3  A Langevin style framework for cell 
dynamics

The homeostatic mechanics framework gives the stationary 
distribution (1) of morphological microstates that cells will 
attain in a given environment as seen above. This stationary 
state is typically attained within 24 to 36 h after seeding cells 
into that environment. The framework gives no temporal 
information about the evolution of cells as they attain this 
stationary state including whether all morphological observ-
ables reach their stationary distribution at the same rate or 
whether there are multiple operative timescales. Here, we 
propose the simplest possible extension of the homeostatic 
mechanics framework to a dynamical setting by invoking an 
analogy with the canonical ensemble.

Fig. 4  The long-term station-
ary response of a cell on a 
rigid substrate patterned with 
fibronectin stripes of different 
widths. a, b, c Predictions of the 
equilibrium probability distribu-
tions of normalised free energy 
Ĝ ; normalised a cell area A∕AR 
and aspect ratio AS for stripes 
of normalised widths Ŵ = ∞ , 
i.e. fully adhesive substrate 
and Ŵ = 2 and 1. d Normal-
ised homeostatic temperature 
1∕�̂ = 1∕(GS�) as a function 
of Ŵ
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Within the context of the homeostatic ensemble, the 
Gibbs free energy G(j) of a cell fluctuates while the cell 
is in its stationary state (also referred to as homeostatic 
equilibrium), but the corresponding homeostatic potential 
M ≡ G − (1∕� )SΓ (Shishvan et al. 2018) remains constant, 
where G ≡ ⟨G(j)⟩ and SΓ the morphological entropy of the 
cell. Thus, a direct analogy can be made between the homeo-
static ensemble and the well-established canonical ensemble 
where the Helmholtz free energy F ≡ U − TS is a constant 
in a bath with a thermodynamic temperature T  . In this bath, 
the system fluctuates over its microstates (j) such that it has a 
fluctuating internal energy U(j) which at equilibrium achieves 
average value U ≡ ⟨U(j)⟩ and entropy S . Thus, we see that 
the internal energy U(j) and temperature T  in the canoni-
cal ensemble are analogous to G(j) and 1∕� , respectively, in 
the homeostatic ensemble. The temporal evolution of the 
microstates of an isothermal system whose equilibrium 
is given by the canonical ensemble is often described by 
Langevin dynamics. The low speeds at which cells move 
(Purcell 1977) imply that it suffices to ignore inertia and 
overdamped Langevin dynamics for the homeostatic ensem-
ble, which we call Homeostatic Langevin Equation (HLE), 
can be developed as follows. We specify that the temporal 
evolution of the co-ordinates r̃ that describe the cell mor-
phology is given by

where t  is time and � is a damping coefficient, sometimes 
referred to as the mobility, that relates the velocity of the 
microvariable (q)ri to a determinstic force

and fi(t) a contribution from a random force. Thus, while 
the first term on the right-hand-side of (23) represents a deter-
ministic force contribution, the second term is the random con-
tribution associated with large non-thermal fluctuations due to 
high-energy nutrient exchanges between the cell and the nutri-
ent bath in which it resides. In principle, fi(t) are correlated in 
time since the molecular processes from which they originate 
have a finite correlation times (Roberts et al. 2014). However, 
observations (Stokes et al 1991; Roberts et al. 2014) suggest dif-
fusive type behaviour of cells over timescales of a few minutes 
and thus we assume that there exists some correlation timescale 
tc over which ⟨fi(t)fj

�
t�
�⟩ = gij

�
t − t�

�
 decays rapidly. Then, 

on timescales ≫ tc (which in the case of fibroblasts is on the 
order of a few minutes), fi(t) can be taken to be a delta cor-
related stationary Gaussian process satisfying ⟨fi(t)⟩ = 0 and 
⟨fi(t)fj

�
t�
�⟩ = ��ij�

�
t − t�

�
 where �ij and �(∙ ) are Kronecker and 

Dirac deltas, respectively, and ξ the standard deviation of the 
random and decorrelated fi(t). Under these assumptions, (23) 

(23)
𝜕(q)ri

𝜕t
=

1

𝛾
(q)Fi(r̃, t) + fi(t),

(24)(q)Fi(r̃, t) ≡ −
𝜕G(r̃)

𝜕(q)ri

reduces to the Langevin equation. Thus, the HLE is valid for 
observation times scales ≫ tc (i.e. a vanishing Deborah num-
ber) and only captures the diffusive nature of cell motility but 
not the ballistic response of cells which occurs on the scale of 
a few minutes.

It now remains to set the standard deviation ξ . In order to 
set ξ , we turn to the Fokker–Planck equation corresponding 
to the HLE. In the HLE, we expressed the uncertainty in 
the morphology of the cell in terms of Gaussian correlation 
functions. Shifting perspective, we can ask: what probabil-
ity distribution P

(
r̃, t, r̃0

)
 , where r̃0 is r̃ at time t = 0 , would 

give the same correlation functions? It is important here to 
stress that we do not care about that path r̃(t) the cell took 
but rather ask the simpler question of the probability that 
the cell attains a morphological microstate r̃(t) at time t  , 
regardless of how it got there. This is equivalent to saying 
that if we run a large number of independent but nominally 
identical experiments then what is the probability distribu-
tion of morphological microstates observed at time t . This is 
a well-established problem and following Ichimaru (2018), 
the required probability distribution can be shown to satisfy 
the Fokker–Planck equation

The steady-state solution to (25) corresponding to 
𝜕P(r̃, t)∕𝜕t = 0 is the equilibrium probability distribution 
and given by:

where

Therefore, the Fokker–Planck Eq. (25) converges to the 
homoeostatic ensemble (1) by setting:

We shall thus use this choice of ξ to resolve the tem-
poral response of a single cell in a given environment. 
Recalling that fi(t) in (23) is random and decorrelated with 
a standard deviation ξ we can rewrite (23) in normalised 
form as:

(25)

𝜕P(r̃, t)

𝜕t
=

1

𝛾

2∑
i=1

M∑
q=1

𝜕

𝜕(q)ri

(
P(r̃, t)

𝜕G(r̃)

𝜕ri

)
+

ξ2

2

2∑
i=1

M∑
q=1

𝜕2P(r̃, t)

𝜕(q)r2
i

.

(26a)Peq(r̃) =
1

Z
exp

[
−

2

𝛾ξ2
G(r̃)

]
,

(26b)Z ≡ � exp

[
−

2

𝛾ξ2
G(r̃)

]
dr̃.

(27)ξ =

√
2

��
.

(28)
𝜕(q)r̂i

𝜕t̂
= −

𝜕Ĝ

𝜕(q)r̂i
+

√
2

𝜁Δt̂
N(0, 1),
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where  (q)r̂i ≡ (q)ri∕R0  ,  Ĝ ≡ G∕||GS
|| ,  𝜁 ≡ 𝜁 ||GS

|| and 
t̂ ≡ t||GS

||∕
(
𝛾R2

0

)
 while N(0, 1) is a Gaussian distribution of 

zero mean and unit variance. In writing (28), we have used 
(27) and the fact that the stochastic differential Eq. (28) is 
solved with a finite time step Δt withΔ̂t ≡ Δt|GS|∕(�R2

0
) . It is 

now apparent that while � sets the fluctuation magnitude, the 
mobility � sets the evolution timescale. We emphasise that 
this single timescale for the evolution of the morphological 
microstate does not imply that all observables evolve at the 
same rate as we shall proceed to show. All results are pre-
sented for model parameters representative of myofibroblasts 
as calibrated in Buskermolen et al. (2019), but we emphasise 
that the model holds more generally for any adherent single 
cell type.

3.1  Temporal integration of the HLE

The stationary distributions for the observables as well as the 
homeostatic temperature used in the dimensionless form of the 
HLE (28) were provided by MCMC calculations; see Appen-
dix A. Stochastic differential equations are typically integrated 
using a Euler forward integration algorithm (Milstein 1994) 
which here was employed as follows:

 (i) The cell is placed from suspension on the origin of 
the substrate at time t̂ = 0 . On the adhesive stripes 
the origin coincides with the axis of the stripe.

 (ii) For the microstate at time t̂  described by the vec-
tors (q)r̂i (̂t) , we evaluate the gradient �Ĝ∕�(q)r̂i using 
the function “Derivest” (D’Errico 2007). Derivest is 
a complex numerical differentiation algorithm that 
requires 46 separate evaluations of �G(r̃) ; readers are 
referred to D’Errico (2007) for details of the algo-
rithm.

 (iii) For all the degrees of freedom we then randomly 
select the value of the noise from the normal Gauss-
ian distribution, N(0, 1) and insert it into (28) to 
obtain the value of �(q)r̂i∕�̂t .

 (iv) We then update the current configuration by via the 
forward Euler scheme.

 (v) All the observables associated to the new cell con-
figuration (q)r̂i

(̂
t + Δ̂t

)
 are then stored.

 (vi) Set t̂ = t̂ + Δ̂t  , and repeat from step (ii) until 
t̂ = T̂Sim , where T̂Sim is the maximum simulated time 
of the experiment.

Time evolutions in both the unpatterned and patterned 
substrates were computed by selecting Δ̂t = 0.001 . Numeri-
cal convergence checks confirmed that reducing the time step 

(29)(q)r̂i
(
t̂ + Δt̂

)
= (q)r̂i

(
t̂
)
+

𝜕(q)r̂i

𝜕t̂
Δt̂.

further did not result in any changes to the predictions. Moreo-
ver, at steady state all observables predicted by the HLE using 
this value of the time-step coincided with the MCMC calcula-
tions. All algorithms, except for Derivest, were developed in-
house in Matlab and the typical computational duration for a 
single HLE trajectory of duration T̂Sim = 4000 using 8 parallel 
CPUs is around 20 days.

4  Cell area and elongation evolve 
at different rates on unpatterned 
substrates

We shall discuss two cases: (i) cells on unpatterned substrates 
where there is effectively no confining effect imposed by the 
substrate within the x1 − x2 plane and then proceed to contrast 
with the case of (ii) contact guidance on substrates patterned 
with adhesive stripes of width W (Fig. 1b).

We conceive of a typical experiment where a cell in sus-
pension is seeded on a rigid substrate coated uniformly with 
an adhesive protein such as fibronectin. The evolution of the 
cell morphology is then observed as a function of time t , with 
t = 0 corresponding to the instant of seeding. Of course, motil-
ity of the cell and the evolution of its morphology are cou-
pled, but first we focus on cell morphology. Representative 
images of computed cell morphologies and the corresponding 
actin, nucleus and focal adhesion organisations are included in 
Fig. 5a at three normalised times t̂ = 1, 100, 3000 in addition 
to the state at t̂ = 0 . Recall that the Langevin style dynami-
cal Eq. (28) is a stochastic differential equation so that a dif-
ferent solution is generated for every realisation of the noise 
process, i.e. much like in experiments a different trajectory of 
morphological evolution is obtained for every solution of (28) 
with the same initial state at t = 0 . Hence, in Fig. 5a we show 
solutions at three times from three such trajectories. While 
the three morphologies computed using different trajectories 
of (28) are different, they show many similar features. These 
include the observations that with increasing time: (i) the cells 
spread and increase their area as well as their ellipticity or 
aspect ratio and (ii) the level of actin polymerisation and focal 
adhesions also increase.

It is instructive to make quantitative predictions of some 
morphological observables to enable more direct comparison 
with measurements. The complete morphology of the cell in 
the model is described by r̃(j) , but as in observations (Busker-
molen et al. 2019) we focus on three coarse-grained metrics 
of the morphology, viz. (i) cell area A , (ii) cell aspect ratio AS 
and (iii) the form factor FF . Each solution of the HLE (28) 
produces a different trajectory, and much like in experiments, 
trends are most clearly seen by examining the ensemble aver-
age over a number of trajectories. We performed n = 100 
independent simulations and defined the ensemble average as 
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follows. At time t , the ensemble average area is defined as 
A(t) = (1∕n)

∑n

i=1
A(i)(t) , where A(i)(t) is the area of the cell in 

the ith trajectory at time t . The ensemble average aspect ratio 
AS(t) and FF(t) are defined in an analogous manner. While AS 
and FF are non-dimensional, it is instructive to define a non-
dimensional area as

where A∞ ≡ A(t → ∞) so that Â assumes values of 0 when 
the cell is seeded and fluctuates around 1 at convergence. 
Predictions of the temporal evolution with normalised time ̂ t  

(30)Â(t) ≡ A(t) − AR

A∞ − AR

are included in Fig. 5b and are consistent with the qualitative 
features seen in images of the cell morphologies (Fig. 5a). 
However, an intriguing feature emerges: while the HLE has 
only a single timescale, the normalised cell area Â evolves 
and reaches its steady state much faster compared to the 
cell aspect ratio and form factor, i.e. different timescales for 
the evolution of area and shape emerge from the HLE. See 
Supplementary Video 1 for the simulated evolution of the 
cell over a single trajectory shown alongside the plots of the 
evolution of the ensembled averaged observables.

The different timescales for the evolution of cell area 
and aspect ratio have also been observed in experiments. 
In Fig.  6a and 6b, we reproduce measurements from 

Fig. 5  Temporal evolution of cells on unpatterned substrates. a Three 
representative images of cells at three normalised times t̂  for cells 
seeded at time t̂ = 0 . An example of a best fit ellipse is drawn on one 
of the selected temporal evolution. The scalebar is 2R0 . b Temporal 

evolution of morphological observables, viz. normalised cell area Â , 
aspect ratio AS and form factor FF . The results are shown as averages 
over n = 100 Langevin trajectories
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Nisenholz et al. (2014) and Kesavan et al. (2014) of the 
temporal evolution of normalised area and aspect ratio, 
respectively, for the spreading of fibroblasts on stiff sub-
strates with t = 0 corresponding to the instant of seeding 
the cell from suspension. The experimental data for area 
were normalised following (30) while the aspect ratio was 
inferred from the circularity data reported by Kesavan 
et al. (2014). In Fig. 6a, the average cell area over about 
50 measurements is plotted with the error bars correspond-
ing to the standard deviation, while in Fig. 6b the average 
aspect ratio is plotted over 10 measurements (two meas-
ured trajectories are also included to give an indication 
of the large variability in this metric over different trajec-
tories). The striking difference between Fig. 6a and 6b is 
that while the steady-state cell area is achieved in about 
150 min the cell aspect ratio evolves significantly more 
slowly such that is unclear whether a steady-state aspect 
ratio is achieved 20 h after seeding. We superimpose on 
Fig. 6 our corresponding predictions (averaged over 100 
different trajectories) with the timescale of in the simula-
tions chosen to be (�R2

0
)∕|GS| = 10min so as to match the 

simulated and measured timescales of the temporal evolu-
tion of cell area. With this choice of the timescale we see 
that the simulations capture the observation that the cell 
aspect ratio evolves significantly more slowly. Moreover, 
the simulations not only capture the average temporal evo-
lution response but also agree with measurements of the 
standard deviation of cell area. In addition, two selected 
simulated aspect ratio trajectories are included in Fig. 6b 
and illustrate that, in line with measurements, the simula-
tions also display a very large variability of this metric 
over different trajectories.

The success of the simulations in capturing the fact that 
the two morphological observables evolve at different rates 

suggests that a single rate constant (�R2
0
)∕|GS| suffices to 

set the evolution of these observables. We therefore use the 
model to interrogate the source of the two timescales that 
set the evolution of cell area and aspect ratio. For this, we 
consider a significantly simplified model where the cell is 
restricted to remain a spatially uniform ellipse with a fixed 
orientation (Fig. 7a). In this case, the stretches �1 and �2 of 
the principal axes of the ellipse completely define the cell 
morphology rather than the M positional vectors (q)r̂i . The 
deterministic evolution of the cell morphology in this sim-
plified model is then given by an equation analogous to (28) 
with the noise term neglected, viz.

where i = 1, 2 . Predictions of the temporal evolution of Â 
and AS (where cell area A = �1�2�R

2
0
 and AS = �1∕�2 with 

�1 ≥ �2 ) are included in Fig. 7b for a cell seeded from sus-
pension at t̂ = 0 . Intriguingly, the qualitative feature that 
the cell area attains its steady state significantly faster than 
aspect ratio is retained in this very simplistic setting.

We observe three temporal regimes: (i) an initial regime I 
of rapid cell spreading where the cell remains circular with 
AS = 1 ; (ii) a subsequent regime II of cell elongation where 
cell area is constant but the aspect ratio increases and (iii) a 
final regime III where both cell area and aspect ratio increase 
although the changes in this regime are relatively minor. 
Regimes I and II set the two observed timescales for the 
evolution of cell area and aspect ratio, respectively. In this 
deterministic and simplistic setting where the cell morphol-
ogy is only a function of (�1, �2) , we can understand this by 
examining the energy landscape Ĝ

(
�1, �2

)
 shown in Fig. 7c. 

We include in Fig. 7c the trajectory the cell takes in (�1, �2) 

(31)
��i

�̂t
= −

�Ĝ

��i
,

Fig. 6  Timescales for the evolution of cell morphology. a Compari-
son between measurements (Nisenholz et al. 2014) and predictions of 
the temporal evolution of normalised cell area Â . Solid lines and error 
bars indicate the average and standard deviation, respectively, over 
n = 50 experimental measurements and n = 100 Langevin trajectories 
of the simulations. b Corresponding comparisons between measure-
ments (Kesavan et  al. 2014) and simulations of the cell aspect ratio 
AS . The solid lines are the average over n = 10 experimental measure-

ments and n = 100 Langevin trajectories of the simulations, while the 
dotted lines show selected trajectories in the measurements and simu-
lations to indicate the wide variability in both the measurements and 
simulations. The simulations use a timescale (�R2

0
)∕|GS| = 10min . 

This single timescale is shown to capture the observation that the 
cell area evolves in minutes, while the cell aspect ratio evolves over a 
timescale of many hours
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space starting from its state in suspension along with isolines 
of A∕AR = �1�2∕(0.92)

2 and AS = �1∕�2 . The trajectory set 
by Eq. (31) has two distinct branches: (i) an initial branch 
corresponding to regime I where the cell traverses a path of 
AS = 1 while A increases and then (ii) turns and traverses a 
path of constant A but with increasing AS . This trajectory is 
purely set by the topology of the Ĝ(�1, �2) landspace and the 
fact that (31) requires the cell morphology to evolve along 
a path with the steepest gradient in Ĝ(�1, �2) space. Thus, 
we argue that the two different timescales for the evolution 
of cell area and aspect ratio are purely a result of the free-
energy landscape of the cell. This landscape is set by the 

interplay between the elastic energy and cytoskeletal energy 
of the cell.

4.1  Diffusive motility of cells on unpatterned 
substrates

When cells are seeded on substrates coated with an adhe-
sive protein, not only does their morphology evolve but 
this morphological evolution is coupled to their motility. 
The HLE (28) enables predictions of this coupled motil-
ity and morphological evolution of the cell. Predictions of 

Fig. 7  A reduced model of a cell as a spatially uniform ellipse to 
illustrate morphological evolution. a Sketch of the cell including its 
nucleus as a spatially uniform ellipse. Here, �1 and �2 are the stretches 
of the axes of the ellipse. b Predictions of the temporal evolution of 
the normalised ellipse area and aspect ratio AS ≡ �1∕�2 ( �1 ≥ �2 ) 
for a cell seeded on an unpatterned substrate from suspension at time 
t̂ = 0 . The predictions are for a deterministic response with effects 

of biological noise excluded. c Free-energy landscape of the reduced 
cell model. Contours of the normalised free energy Ĝ are included 
on map with axes �1 and �2 along with contours of A∕AR and AS . On 
the map, we show the deterministic trajectory of the cell in the free-
energy landscape for a cell starting from its state in suspension until it 
attains its minimum free-energy state on the substrate



1058 A. Ippolito et al.

1 3

the coupled evolution of the cell morphology and its motil-
ity are shown in Fig. 8 for 4 selected trajectories of (28) 
with the cell seeded from suspension at same location at 
time t̂ = 0 in each case. Stochastic motility (i.e. cells take 
a random path over the substrate surface) is predicted over 
the timescales in Fig. 8a in line with numerous observa-
tions (Stokes et al. 1991; Plou et al. 2018; Dunn and Brown 
1987; Schienbein and Gruler 1993; Krummel et al. 2016). 
The stochastic motility can be characterised in terms of the 
squared displacement

of the centroid of cell (k) from its seeding location (taken 
to be the origin of the Cartesian co-ordinate system with 
x(k)(t) and y(k)(t) the Cartersian co-ordinates of the cell cen-
troid at time t  , where x ≡ x1 and y ≡ x2 ). Predictions of 
R̂

2

(k)
≡ R

2

(k)
(̂t)∕R2

0
 are included in Fig. 8b for 5 trajectories: 

we predict large variations in R̂
2

(k)
 over different trajectories 

consistent with observations (Stokes et al. 1991). (The time-
lapse of the motility of a single trajectory of a cell along with 
the corresponding R̂(̂t) is included in Supplementary Video 
2.) Given this stochastic nature of the motility, it is more 
instructive to consider the mean squared displacement 

(32)R2
(k)
(t) = x2

(k)
(t) + y2

(k)
(t),

M̂SD ≡ (1∕n)
∑n

k=1
R̂

2

(k)
 over n independent trajectories. The 

predictions of M̂SD ( n = 100 ) are included in Fig. 8b and 
illustrate the diffusive nature of the predicted motility as 
M̂SD scales linearly with normalised time t̂  . If the cell is 
assumed to be a single particle whose position is given by 
the cell centroid, the HLE (28) would predict a diffusion 
coefficient D = 1∕(�� ) such that the slope of the M̂SD curve 
in Fig. 8b is given by the normalised diffusion coefficient 
D̂ ≡ D�∕|GS| = 1∕(� |GS|) . (The HLE in this context 
describes the Brownian motion of the cell with the homeo-
static temperature setting the magnitude of the fluctuations.) 
The M̂SD slope in Fig. 8b ≈ 0.06 , while for the cell param-
eters used here D̂ ≈ 0.23 , i.e. the actual motility of the cell 
as predicted by (28) is significantly more sluggish compared 
to modelling the cell as a Brownian particle with a diffusion 
coefficient D̂ . The slower motion is related to the morpho-
logical evolution of the cell that is coupled to its motility. If 
the cell were modelled as a single Brownian particle, all 
fluctuations would result in motion of the particle. On the 
other hand, in (28), the fluctuations affect the positional vec-
tors (q)ri (i = 1, 2) of the q = 1,… ,M that describe the cell 
morphology and a displacement of the cell centroid requires 
the co-ordinated motion of these vectors. Such co-ordinated 
motion via stochastic fluctuations occurs with a low 

Fig. 8  Coupled motility and morphological evolution of the cell 
seeded on an unpatterned substrate. a Four Langevin trajectories for 
a cell seeded at time t̂ = 0 from suspension on an unpatterned sub-
strate. The scalebar 2R0 is the diameter of the circular cell in its elas-
tic rest state. b Predictions of the corresponding temporal evolution 

of the normalised mean square displacement M̂SD over n = 100 Lan-
gevin trajectories. Four indivual trajectories parameterised by their 
normalised squared displacement R̂

2

(k)
 are also included to illustrate 

the variability in the trajectories as seen in (a)
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probability resulting in the effective diffusion coefficient of 
the cell centroid being significantly smaller than D̂.

Finally, we emphasise that our model captures the cou-
pled evolution of cell morphology and motility over time-
scales ≫ tc , i.e. we only capture the diffusive motion of the 
cell and not its ballistic motion (Dunn and Brown 1987) due 
to persistence in the direction of cell motion over timescales 

≪ tc . A consequence of the model only capturing the dif-
fusive part of the motion is that it does not provide insights 
into the physical processes, such as actin treadmilling, that 
give rise to ballistic motion (Roberts et al. 2014; Lee et al. 
2021; Recho et al. 2013; Cardamone et al. 2011).

Fig. 9  Coupled motility and morphological evolution of the cell 
seeded on a substrate with adhesive stripes. a Two Langevin trajec-
tories for a cell seeded at time t̂ = 0 from suspension on a a substrate 
with adhesive stripes of normalised width Ŵ ≡ W∕(2R0) . One tra-
jectory shows the evolution up to time t̂ = 250 while the second to 
t̂ = 1500 . Results are shown for three stripe widths Ŵ = ∞, 4 and 1. 
The scalebar 2R0 is the diameter of the circular cell in its elastic rest 

state b, c. The corresponding temporal evolution of (b) the normal-
ised cell area Â and aspect ratio AS averaged over n ≥ 50 Langevin 
trajectories. d Dependence of the timescales of the evolution of the 
area and aspect ratio on Ŵ . Cells no longer remain attached to the 
stripes for �W < 0.85 (Buskermolen et  al. 2019), and this region is 
shown shaded
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5  Contact guidance on substrates 
with adhesive stripes

In vivo, adherent cells interact with the surrounding extra-
cellular matrix (ECM) that is not only responsible for the 
structural integrity of tissues but also establishes and main-
tains the cellular microenvironment by providing cells with 
mechanical, biochemical and physical cues. It is now well 
established that cellular microenvironments induce cells to 
align and migrate along the direction of the anisotropy—a 
phenomenon called contact guidance (Chang et al. 2013). 
Various in vitro chemical micropatterning approaches using 
two-dimensional (2D) substrates have been developed to 
study cellular contact guidance, as model systems to simplify 
the highly complex three-dimensional (3D) environments 
in vivo (Buskermolen et al. 2019). A common micropattern 
is fibronectin stripes of a given width W  with adhesion of 
cell prevented outside the stripes (Buskermolen et al. 2019; 
Buskermolen et al. 2020). We now proceed to investigate via 
the HLE the effect of the confinement provided by the stripes 
on the evolution of cell morphology and the accompanying 
motility which finally leads to contact guidance.

Given a cell seeded in the middle of the stripes at time 
t̂ = 0 from suspension, Fig. 9a shows snapshots of the cell 
morphology and position from a single trajectory on stripes 
of normalised width Ŵ ≡ W∕(2R0) = 4 and 1 as well as the 
unpatterned substrate with Ŵ = ∞ . The snapshots are shown 
for two selected times along with best fit ellipses and the 
corresponding orientations � of the cell with respect to the 
stripe. From the n ≥ 50 trajectories computed here we have 
selected in Fig. 9a trajectories where the cell motion backed 
onto itself between times t̂ = 250 and 1500 so that the cell 
positions are well separated, and we can easily illustrate the 
cell morphologies. While clear visual differences between 
the cell morphologies are observed for the cell on the dif-
ferent stripes, the most striking differences are in the cell 

trajectories where we clearly see that the cell is “guided” 
on the Ŵ = 1 stripe with the trajectory being nearly one-
dimensional (also see Supplementary Video 3).

A key outcome of the discussion in Sect. 4 is that on 
unpatterned substrates the area of the cell evolves much 
faster than its aspect ratio. Is this feature carried forward to 
when cells are constrained to within a single adhesive stripe? 
To investigate this, we observe from Fig. 9b and 9c that the 
key morphological variables of interest, viz. the area and 
aspect ratio, evolve in approximately an exponential manner. 
Thus, we fit a curve of the form

to their temporal evolution averaged over n trajectories. 
Here, x denotes the value of the observable of interest (i.e. 
either normalised area Â or aspect ratio AS ) with x∞ denot-
ing the value at normalised time t̂ → ∞ while xR is the value 
of the observable for the cell in suspension at t̂ = 0. While 
x∞ and xR are directly available from trajectories as shown 
in Fig. 9b and 9c, the time constant �x is obtained via a 
best fit of (33) to the Langevin predictions. The inferred 
time constants 𝜏Â and �AS

 for the evolution of the area and 
aspect ratio, respectively, are included in Fig. 9d as a func-
tion of the stripe width Ŵ  . (Cells no longer remain attached 
to the stripes for �W < 0.85 (Buskermolen et al. 2019), and 
this region is shown shaded.) With decreasing Ŵ  the aspect 
ratio evolves faster while the time for the area to attain its 
steady-state value increases. Consequently, 𝜏Â and �AS

 con-
verge towards each other at small Ŵ  eliminating the differ-
ence in the timescales for the area and aspect ratio evolu-
tion seen for the unpatterned substrates. For cells seeded 
on stripes, even constraining ourselves to spatially uniform 
elliptical cells results in a complex energy landscape as not 
all values of the (�1, �2) are permissible for all cell orienta-
tions � . Thus, a simple picture like that presented in Fig. 7 

(33)x
(̂
t
)
= x∞ −

(
x∞ − xR

)
exp

(
−

t̂

�x

)
,

Fig. 10  a Evolution of the order parameter Θ for different stripe 
widths. b, c Motility of cells on substrates with adhesive stripes. Pre-
dictions of the temporal evolution of (b) normalised mean square dis-

placement M̂SD and c dimensionality Λ̂ of the motility on stripes of 
normalised width Ŵ ≡ W∕(2R0) . The cell is seeded from suspension 
at time t̂ = 0 on the stripes
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cannot be presented here to explain the convergence of the 
timescales for the evolution of area and aspect ratio with 
decreasing Ŵ  . However, the only physics in the model that 
sets the timescales is the topology of the energy landscape. 
Hence, we conclude that the changes in the free-energy land-
scape due to the confining effect of the narrow stripes guide 
the area and aspect ratio of the cell to evolve hand-in-hand.

5.1  Timescale for the development of guidance 
and non‑diffusive motility of cells on substrates 
with adhesive stripes

From the evolution of the morphological observables, we 
have discussed the dynamic effect of guidance, but we have 
yet to characterise its properties. This guidance can be 
characterised in two ways: (i) via the cell orientation that 
is related to cell morphology and (ii) via the direction of 
motion. Here, we first focus on cell orientation and in the 
following section on guidance which is more directly a con-
sequence of motility.

To characterise the cell orientation related to changes in 
cell morphology with stripe width, we plot in Fig. 10a the 
order parameter Θ defined as

where �(i) is the orientation of the cell in the ith trajectory 
at time t̂  (see Fig. 9a for the definition of �(i) as the inclina-
tion of the major axis of the best fit ellipse to the stripe direc-
tion). The order parameter Θ is defined such that Θ = 0 if �(i) 
is uniformly distributed over all n trajectories, while Θ = 1 
if �(i) takes a unique value. Cell alignment as parameterised 
through Θ also increases with decreasing Ŵ  although the 
large increases in Θ occur at around Ŵ ≈ 1 when the aspect 
ratio increases. The increase in cell alignment at steady 
state with decreasing Ŵ  has been reported in (Buskermolen 
et al. 2019). In that study, the authors argue that alignment 
results from the fact that cells near the edge of the stripes 
are necessarily aligned with the stripes: this boundary effect 
is of course more prominent for narrower stripes and also 
with cell elongation. Consequently, cells are more aligned 
for smaller Ŵ  in line with the HLE predictions. Since align-
ment is a result of cells sensing the stripe edges, it follows 
that alignment is a consequence of cells wandering over the 
stripes including towards the edge of the stripes and hence 
an outcome of cell motility. Thus, not only does Θ increase 
with decreasing Ŵ  but also the time required for the steady-
state value of Θ to be attained decreases with decreasing Ŵ  . 
This timescale for the evolution of Θ is of course set by the 
motility timescales of cells on the stripes.

To quantify the motility of cell on stripes, we include 
predictions of the variation of M̂SD ( n ≥ 50) with t̂  on 

(34)

Θ(̂t) ≡
√(

1

n

∑n

i=1
cos2�(i)(̂t)

)2

+
(
1

n

∑n

i=1
sin2�(i)(̂t)

)2

,

stripes of different widths in Fig. 10b. Unlike the case of the 
unpatterned substrate ( ̂W = ∞ ), the M̂SD on stripes of width 
similar to cell size (i.e. the Ŵ = 0.85 and 4 cases shown in 
Fig. 10b) does not seem to vary linearly with t̂  . To under-
stand the effect of the constraint of the stripes on motility, 
we introduce a measure of the mean square displacement in 
the direction of the stripes, viz.

where the seeding location at time t = 0 is assumed to be 
the origin of the co-ordinate system ( y ≡ x2− aligned with 
the stripe direction as shown in Fig. 9a). To parameterise 
the influence of the constraint of the stripes, we then define

This parameter that characterises the dimensionality of 
the motility is defined such that Λ̂ = 1 on an unpatterned 
substrate as M̂SD = 2M̂SDy , since movements in the x ≡ x1 
and y− directions are free and non-distinguishable, while 
Λ̂ → 0 for �W ≪ 1 when the motion of the cell is completely 
constrained to be only in the y− direction (i.e. is one-dimen-
sional) so that M̂SD = M̂SDy . Predictions of the temporal 
variation of Λ̂ are included in Fig. 10c for selected stripe 
widths Ŵ  . In all cases, Λ̂ ≈ 1 at early stages of the cell 
motion, but, except for the unpatterned substrate ( ̂W = ∞) , 
Λ̂ subsequently reduces to 0. However, the time at which 
this transition from 2 to 1D motility occurs increases with 
increasing Ŵ . This can be understood by recognising that the 
x− displacement of the cell is constrained by the stripe width 
while the y− direction displacement is unconstrained and 
thus with increasing time M̂SD is dominated by the y− direc-
tion displacement and M̂SD → M̂SDy . The transition from 
a two-dimensional (2D) motion of the cell during the early 
stages of cell motion to 1D motility in the later stages (with 
the transition time being Ŵ  dependent) induces the loss of 
the linear dependence of M̂SD with time seen in Fig. 10b for 
the finite stripe widths. Moreover, we would also anticipate 
that the attainment of the steady state of the order param-
eter Θ is governed by the time of transition from 2D to 1D 
motility. A comparison of Fig. 10a with 10c confirms that 
indeed Θ attains it steady-state value at approximately the 
time that Λ̂ → 0 and thus the time to achieve steady-state 
alignment decreases with decreasing Ŵ  . Finally, we note 
that the transition of Λ̂ from 1 to 0 denotes the guidance of 
the cells by the stripes with the time taken for Λ̂ to transition 
from 1 to 0 the time for contact guidance to be achieved on 
the patterned substrate.

(35)M̂SDy =
1

nR2
0

∑n

i=1
y2
(i)
(t),

(36)Λ̂ ≡ 2
M̂SD − M̂SDy

M̂SD
.
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5.2  The dynamics of biochemical alignment are 
strongly dependent on the morphological 
evolution

So far we have discussed the effect of confinement on cell 
motility and evolution of morphological observables. The 
model also explicitly includes the stress-fibre polymerisation 
that are strongly linked to cell morphology and here present 
predictions of the HLE for the evolution of the cytoskeletal 
stress-fibre arrangements in terms of a cytoskeletal order 
parameter that we now proceed to define.

Given the spatial distribution of the direction �max of the 
dominant stress-fibre bundle (set by the maximum value of 
�̂n̂ss) at any location xi , we then define a rotationally invari-
ant spatial distribution of stress-fibre orientations as

Predictions of the spatial distribution of �̂(xi) for cells 
seeded on stripes of different widths and at selected times 
t̂  in a given HLE trajectory are shown in Fig. 11a (also see 
Supplementary Video 4). Homogeneity of colour in Fig. 11a 
is an indication of stress-fibre alignment and while the results 
in Fig. 11a suggest that stress-fibre alignment increases with 
time, the more dominant effect is seen with decreasing stripe 
width. To quantify this, we define a stress-fibre order param-
eter Θcyto analogously to (34) with � replaced by �̂  . The 
temporal evolution of Θcyto for Ŵ = ∞, 4, 1 (averaged over 
n ≥ 50 HLE trajectories) is shown in Fig. 11b. While the 
predictions for Ŵ = ∞ and 4 are nearly identical, a rather 
interesting feature is observed for the Ŵ = 1 case with Θcyto 
increasing rapidly and then decaying to a steady-state value 

(37)�̂ ≡ �max −
1

VC
� VC

�maxdV .

Fig. 11  a Snapshots of the distribution of stress-fibre orientation 
�̂  for cells seeded on stripes of different normalised widths Ŵ at 
selected times t̂  . b Evolution of the cytoskeletal order Θcyto as a func-

tion of t̂  with a zoom-in showing the early time evolution. c Evolu-
tion of the aspect A

S
 in the early stages corresponding to the zoom-in 

in (b). The cell is seeded from suspension at time t̂ = 0 on the stripes
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that is higher than that for Ŵ = ∞. To better understand this 
rapid increase in Θcyto , we show in Fig. 11b a zoom-in for 
t̂ ≤ 100 where we observe that the maximum value of Θcyto 
is attained at t̂ ≈ 50 . To examine the relevance of this time, 
we include in Fig. 11c the corresponding temporal evolution 
of the aspect ratio where we observe a biphasic evolution: a 
rapid increase for t̂ ≤ 50 followed by a slower increase. We 
hypothesise that the rapid increase in aspect ratio is accom-
panied by or even requires high stress-fibre alignment and 
subsequently the alignment relaxes to increase the entropy 
of the stress-fibres and decrease cell free energy. These com-
plex couplings are natural outcomes of the HLE.

6  Concluding discussion

The temporal response of isolated cells on unpatterned and 
patterned substrates has been investigated via a novel frame-
work, labelled the homeostatic Langevin equation (HLE), 
that recognises the non-thermal fluctuations of cells. The 
morphological evolution is driven by gradients of the cell 
free energy, and we show that the HLE correctly predicts 
that the cell area or spreading evolves at a rate an order of 
magnitude faster than cell aspect ratio or elongation. These 
two very different timescales emerge as a consequence of 
the interplay between the stress-fibre polymerisation and cell 
passive elasticity. The framework enables the prediction of 
the coupled evolution of cell morphology along with cell 
motility. Over the timescales when the HLE is applicable, 
the simulated cell motility on an unpatterned substrate is 
Brownian, in line with numerous observations (Stokes et al. 
1991; Plou et al. 2018; Dunn and Brown 1987), and emerges 
from coordinated morphological fluctuations.

On substrates patterned with adhesive stripes cells again 
spread and elongate much like on unpatterned substrates. 
However, key differences now emerge related to the fact that 
the Brownian motion of the cells is now restricted outside 
of the parallel direction to the stripes. For example, for cells 
seeded on stripes the timescales for the evolution of area 
and aspect ratio evolution converge with decreasing width 
of the stripes. Furthermore, for narrow stripes, the evolu-
tion of the stress-fibre cytoskeletal arrangement shows a 
biphasic behaviour with an initial rapid rise associated with 
a rapid increase in the cell aspect ratio and then a decay to 
its steady-state value. The differences in the dynamics of 
the morphological observables carry to cell motility too. 
The HLE predicts that if sufficient time is given for the cells 
to explore the stripe widths, their 2D Brownian motion 
reduces to one-dimensional (1D) motion along the length of 
the stripes. This results in an apparent non-Brownian effect 
with the mean-square-displacement of the cell centroid no 
longer scaling linearly with time over the entire duration. A 

more important consequence of this switch to 1D motility 
is contact guidance or rather 1D motion of the cell along the 
stripes which manifests itself also in terms of the alignment 
of the cell orientation with the stripe direction. Thus, a key 
conclusion of the HLE framework is that the non-thermal 
cell fluctuations give the cell its ability to explore the stripe 
width and in turn, rather counterintuitively, result in its guid-
ance and alignment with the anisotropy of its environment.

Appendix A

Sampling of the homeostatic ensemble

The probability distribution (1) is sampled by constructing 
a Markov chain that serves as a sample of the homeostatic 
ensemble for cells on substrates. The algorithm closely 
follows the approach developed by Shishvan et al. (2018) 
and Buskermolen et al. (2019) and uses the Metropolis 
(1953) algorithm in an iterative manner using the proce-
dure explained in detail in (Shishvan et al. 2018). From 
the algorithm, the normalised homeostatic temperature 
is defined as 1∕�̂  ≡ 1∕� |GS| , where � is the homeostatic 
temperature and GS, the Gibbs free energy of the cell in 
suspended state, is obtained. An outline of the Markov 
chain Monte Carlo scheme using Metropolis sampling 
(Metropolis 1953) is as follows:

 (i) Assume a value of � and perturb the undeformed 
cell configuration to obtain an initial random con-
figuration labelled as the morphological microstate 
at j = 0 and calculate the Gibbs free energy G(j=0) of 
that state.

 (ii) Randomly pick a control point 
[
(q)r1,

(q)r2
]
 and perturb 

both degrees of freedom by random values picked 
from a uniform distribution over the interval [−Δ,Δ].

 (iii) Compute the new free energy G(j) of this perturbed 
state and the change in free energy ΔG = G(j) − G(j−1)

.
 (iv) Use the Metropolis criterion to accept the perturbed 

state or not, i.e.

(a) ΔG ≤ 0 , accept the perturbed state.
(b) for ΔG > 0 , compute Pacc = exp(−�ΔG) and 

accept the perturbed state if Pacc > P , where P 
is a random number sampled from the uniform 
distribution [01].

 (v) If the perturbed state is accepted, add it to the list 
of samples as a new morphological microstate 
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else repeat the configuration (j − 1) in the sample 
list. Return to step (ii).

 (vi) Keep repeating this procedure until a converged dis-
tribution is obtained. Typical Markov Chains consist 
of N = 1 million samples.

 (vii) After running k different Markov Chains (to 
ensure that the correct sampling of the phase 
space), calculate the ensemble Gibbs free energy 
⟨G(j)⟩ = 1

N

∑N

j=1
G(j) , where N = kN  is the total 

number of sampled configurations over the k Markov 
Chains. If ⟨G(j)⟩ is within ±2% of GS , then this dis-
tribution is accepted, else the value of � is modified 
and the process is repeated from (i).

A “burn-in” number of initial microstates from each 
Markov chain are discarded in the chain to eliminate the 
dependency of the sampled configurations from the initial 
random guess. The value of burn-in we used is 50, 000 . As is 
typical in such Markov chain Monte Carlo (MCMC) calcula-
tions, we attempted to achieve an acceptance rate of about 
35% in the Metropolis criterion and adjusted Δ to ensure 
that we stayed within ±5% of this target acceptance rate. All 
algorithms, including the free energy evaluations, were run 
using in-house developed Matlab codes, and the duration to 
compute a typical Markov chain is between 1 and 2 h.
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