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Abstract

Aim—To model acute rectal toxicity in Intensity Modulated Radiation Therapy (IMRT) for 

prostate cancer using dosimetry and patient specific characteristics.

Methods—A database of 79 prostate cancer patients treated with image guided IMRT was used 

to fit parameters of Lyman-Kutcher-Burman (LKB) and logistic regression Normal Tissue 

Complications Probability (NTCP) models to acute grade ≥ 2 rectal toxicities. We used a 

univariate regression model to find the dosimetric index which was most correlated with toxicity 

and a multivariate logistic regression model with machine learning algorithm to integrate 

dosimetry with patient specific characteristics. We used Receiver Operating Characteristics (ROC) 

analysis and the area under the ROC curve (AUC) to quantify the predictive power of models.

Results—Sixteen patients (20.3%) developed acute grade≥2 rectal toxicity. Our best estimate 

(95% confidence interval) of LKB model parameters for acute rectal toxicity are exponent n=0.13 
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(0.1–0.16), slope m=0.09 (0.08–0.11), and threshold dose TD50=56.8 (53.7–59.9) Gy. The best 

dosimetric indices in the univariate logistic regression NTCP model were D25% and V50Gy. The 

best AUC of dosimetry only modeling was 0.67 (0.54, 0.8). In the multivariate logistic regression 

two patient specific variables were particularly strongly correlated with acute rectal toxicity, the 

use of statin drugs and PSA level prior to IMRT, while two additional variables, age and diabetes 

were weakly correlated. The AUC of the logistic regression NTCP model improved to 0.88 (0.8, 

0.96) when patient specific characteristics were included. In a group of 79 patients, 40 took Statins 

and 39 did not. Among patients who took statins, (4/40)=10% developed acute grade ≥2 rectal 

toxicity, compared to (12/39)=30.8% who did not take statins (p=0.03). The average and standard 

deviation of PSA distribution for patients with acute rectal toxicity was PSAtox = 5.77 ± 2.27 and 

it was PSAnotox = 9.5 ± 7.8 for the remainder (p=0.01).

Conclusions—Patient specific characteristics strongly influence the likelihood of acute grade ≥ 

2 rectal toxicity in radiation therapy for prostate cancer.
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Core Tip

This is a retrospective study to evaluate methods of modeling of acute rectal toxicity in 

treatments of prostate cancer with intensity modulated radiation therapy, with particular 

emphasis on integrating dosimetry and patient specific characteristics. We found that two 

patient specific characteristics, use of statins and PSA levels, were dominant predictors of 

risk of acute rectal toxicity in this patient cohort. We found one prior report that statins had a 

protective effect against acute gastrointestinal toxicity in pelvic radiation therapy. We 

hypothesize that correlation with PSA was an effect of another medication which was not 

recorded in the study.

Introduction

Accurate modeling of the likelihood of complications in radiation therapy is increasingly 

important due to recent trends to dose escalate and hypofractionate. A quantitative 

assessment of potential benefits of new treatment techniques is increasingly complex.

Because of low incidence of late toxicity in IMRT treatments [1] it is reasonable to expect 

that avoidance of acute toxicity will become more important in future clinical practice. For 

the same reason it may also be more practical to use acute toxicity as one of the tools with 

which to compare the efficacy and the therapeutic ratio of emergent treatment modalities [2]. 

To date very little work has been done on the modeling of acute rectal toxicity and the work 

that was done used 3D conformal techniques (3DCRT) [3]. Compared to late rectal toxicity, 

higher incidence of acute rectal toxicity means that relatively small databases of IMRT 

treatments can be used to obtain toxicity models. Our institution accumulated a database of 

79 prostate patients who were treated exclusively with an IMRT technique and MRI directed 

boost dose to the region of the prostate with the greatest disease burden [4]. Each patient in 
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this study had fiducial markers implanted into the prostate to improve the consistency of 

their daily setup. We observed 16 (20%) acute grade ≥ 2 rectal toxicity events. This number 

of acute toxicity events is sufficient to permit fitting of Normal Tissue Complications 

Probability (NTCP) models.

The first objective of this study was to establish a framework for modeling of acute rectal 

toxicity in image guided treatments with conformal delivery techniques. This specific need 

arose at our institution due to the opening of a proton pencil beam scanning facility. Existing 

models of acute rectal toxicity are based on data obtained with 3DCRT techniques with 

limited image guidance. Compared to these techniques image guided pencil beam scanning 

will produce more conformal dose distributions in the target which will also change dose 

distributions in organs at risk [5,6]. While not perfect, a model based on image guided IMRT 

technique should be a better approximation of toxicity rates in image guided pencil beam 

scanning than older models based on 3DCRT.

The second objective of this study was to incorporate patient specific characteristics into 

toxicity models. Understanding of the relationship between patient specific characteristics 

and toxicity can help in clinical practice but is also needed if one compares two treatment 

modalities through studies that were not acquired contemporaneously. An example would be 

comparing the present study to a future study of prostate patients who will be treated with 

pencil beam scanning at our institution. If the toxicity is affected by patient specific 

characteristics that do not significantly change over time such as age, genetics or 

comorbidities, studies can be compared on the basis of dosimetry alone. However, if the 

toxicity is affected by characteristics that do significantly change over time, such as the 

prevalence of use of common medicines, comparing studies on the basis of dosimetry alone 

could lead to misleading conclusions.

The Lyman-Kutcher-Burman (LKB) model has been commonly used in the past to model 

rectal toxicity [5]. We include this model in our study because it provides the best 

comparison to previously published studies. The LKB model is difficult to combine with 

patient specific characteristics however, because the log-likelihood function in the model is 

non-concave and thus difficult to fit when the size of a study is small. NTCP models which 

are based on logistic regression have more favorable fitting characteristics and were used in 

the past to study correlations between patient specific variables and late rectal toxicity [7]. 

We use a multivariate logistic regression NTCP model in this study but enhance it with two 

novel elements:

Firstly, we introduce a procedure which finds the optimum dosimetric index that can be used 

as a dosimetry correlate in the multivariate regression. The procedure is based on the 

univariate logistic regression NTCP model with a single dosimetric index and it consists of 

building a family of models which span a range of indices. The predictive power of each 

model is examined with Receiver Operating Characteristics (ROC) technique and the model 

which has the largest area under the ROC curve (AUC) is chosen as the best dosimetry 

correlate. The univariate logistic regression NTCP model can also be used as a dosimetry 

only model which provides a more direct relationship between a common dosimetric index 

and expected rates of toxicity. Such a model may be clinically more useful than the LKB 
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model because a threshold on a dosimetric index is commonly used in treatment planning 

and in plan evaluation.

Secondly, we utilize a machine learning technique called the Least Absolute Shrinkage and 

Selection Operator (LASSO) [8] which automates the selection of correlated variables in 

multivariate logistic regression and is particularly effective when sample sizes are small.

Materials and Methods

Patients

This study included 79 patients who were treated for prostate cancer with Intensity-

Modulated Radiation Therapy (IMRT) at Mayo Clinic Arizona between 2009 and 2012. The 

study was approved by the Institutional Review Board (IRB) of Mayo Clinic Arizona and 

included written informed consent from all subjects.

Median patient age was 75.7 years with a range 59.9–89.4. Nine patients had diabetes. The 

Gleason score ranged from 6 to 9 (median: 7). The PSA level prior to treatment ranged from 

2.1 to 43 (median: 6.6). Sixteen (20.3%) of the 79 patients developed grade ≥ 2 acute rectal 

toxicity which were graded according to CTCAE v4 by a physician who retrospectively 

reviewed patient’s medical records. Three (3.8%) of the 79 patients developed grade ≥ 2 late 

rectal toxicity which were graded according to CTCAE v4 by a physician who 

retrospectively reviewed patient’s medical records. Statins were used by 40 of the 79 

patients (50.6%). Metformin was used by 5 of the 79 patients (6.3%), alpha-blockers were 

used by 44 of the 79 patients (56%). Thirty three patients (41.8%) received hormonal 

treatment. The median follow up period was 31.7 months with a minimum of 4 months and a 

maximum of 57.4 months.

IMRT treatment planning and delivery

A static field IMRT technique with 7 coplanar 6MV fields was employed. The whole 

prostate was designated as a clinical tumor volume (CTV), and two planning tumor volumes 

(PTV) were created using uniform 3mm and 6mm expansions. A dose of 77.4 Gy in 43 

fractions (1.8Gy/fraction) was prescribed to the 3mm expansion, and a dose of 70Gy to the 

6mm expansion. Seminal Vesicles with uniform 7mm expansion were prescribed 54Gy. A 

simultaneous integrated boost (SIB) was given to areas suspicious for cancer as 

demonstrated in a planning multi-parametric magnetic resonance scan which was a 

combination of T2-weighted imaging, Diffusion Weighted Imaging and Dynamic Contrast-

Enhanced imaging [4]. The SIB volume was identified by a diagnostic radiologist 

specializing in genitourinary imaging, was not expanded, and was prescribed 81–83Gy. The 

rectum was drawn as a whole organ bounded by ischial tuberosity inferiorly and sigmoid 

flexure superiorly. All patients were planned using the Eclipse Treatment Planning System 

(TPS) produced by Varian, Inc. The dose was calculated on a 0.25cm × 0.25cm × 0.25cm 

rectangular grid using analytic anisotropic algorithm (AAA) in the Eclipse TPS. The 

maximum dose to the rectum was Dmax = 81.3 ± 1.2 Gy, the mean dose was Dmean = 33.1 

± 5.7 Gy, the minimum dose to 10% of rectal volume was D10% = 65.0 ± 5.9Gy and the 

minimum dose to 40% was D40% = 34.6 ± 7.6Gy. Patients in the study had fiducial markers 
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implanted into their prostates which were used for daily localization. Imaging for daily 

localization was done with MV techniques for early patients, transitioning to KV imaging 

techniques as these were introduced.

Dosimetry data extraction

Dose Volume Histograms for all patients were extracted using automated scripts which were 

written within the Applications Programmer Interface (API) of Eclipse TPS. Dose volume 

information was written to disk and a custom software program using freely available “R” 

package [9] was used for the statistical analysis.

Outline of data analysis

The analysis was divided into three distinct components: dosimetry only modeling, 

multivariate modeling with dosimetry and patient specific characteristics, and cross 

validation tests.

The dosimetry only modeling used data for all patients in the database and modeled 

correlations between treatment planning dosimetry and acute rectal toxicity without regard 

for patient specific characteristics. This modeling step had two purposes. Firstly, we used 

dosimetry only models to find the best representation of correlations with dosimetry that can 

be used in multivariate modeling with patient specific characteristics. Secondly, a 

comparison of dosimetry only modeling to the literature gave us confidence in toxicity 

assignments in our database. Toxicity assignments can be subjective, particularly in a 

retrospective study. Observing clear correlations between planning dosimetry and toxicities 

validated both toxicity assignments and the quality of clinical delivery of radiation 

treatments.

The multivariate modeling combines dosimetry with patient specific characteristics. We used 

multivariate logistic regression model to combine patient specific variables with dosimetric 

correlates which were identified in the dosimetry only modeling. In this step we used 

machine learning technique called Least Absolute Shrinkage and Selection Operator 

(LASSO) to automate the selection of most significant patient specific correlates.

Cross validation tests were used as additional tests of the validity of multivariate modeling. 

We modified the commonly used LKB and logistic regression models using one patient 

specific characteristic at a time to verify that results obtained through machine learning 

techniques could be reproduced by other methods. Our purpose was not only to validate this 

work, but also to build confidence that machine learning techniques are indeed applicable to 

the statistical analysis of clinical outcomes in radiation therapy.

Normal Tissue Complication Probability (NTCP) modeling with dosimetry only

The Lyman-Kutcher-Burman (LKB) model—The LKB model [10,11] has been 

extensively used to model rectal toxicity in the past [5]. We used standard formulation of the 

model:
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where TD50,m,n were adjustable parameters of the model. We used a Maximum Likelihood 

Estimation (MLE) technique and specifically the Nelder-Mead method [12] that has been 

implemented in the statistical software, “R” [13]. The asymptotic theorem of MLE [14] was 

used to compute error intervals.

Univariate Logistic Regression with dosimetry only—Univariate logistic regression 

was used to find the dosimetric index D which was most predictive for correlations between 

toxicity and dosimetry. We built a family of univariate models which span a range of indices 

and examined the predictive power of each model using the ROC analysis. An index which 

generates the highest AUC was used in multivariate analysis with patient specific 

characteristics. The univariate model is formulated as follows:

where D is a standard dosimetric variable such as V%D, which is a volume fraction that 

receives a dose D or greater, or DX% which is the lowest dose received by the volume 

fraction X% and parameters ∝0 and γ are parameters which are estimated by MLE.

Normal Tissue Complication Probability (NTCP) modeling with dosimetry and patient 
specific characteristics

Multivariate logistic regression NTCP model—An NTCP model based on logistic 

regression [7] was used in a relatively recent works by Cella et al. [15] and by Lee et al. 

[16]. The advantage of such a model is that its log-likelihood function is concave which 

facilitates multivariate fitting, even with limited statistics. The model is formulated as 

follows:

x1,…,xp are patient characteristic variables and D is a standard dosimetric variable such as V
%D, which is a volume fraction that receives a dose D or greater, or DX% which is the lowest 

dose received by the volume fraction X%. Parameters α0, α1,…αp, γ are estimated by MLE. 

Patient characteristic variables can be categorical or continuous. Categorical variables 

assume a value of 0 or 1. For example, the use of statins is assigned a value of 1 if a patient 

is a statin user, and a value of 0 if a patient is not. Continuous variables, like age or PSA 

level, assume the value which is reported for a particular patient.
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We employed the Least Absolute Shrinkage and Selection Operator (LASSO) [8] to 

automate the selection of patient specific variables included in the final logistic regression 

fit. LASSO is a well-established machine learning method that selects a small subset of 

significant predictors from all the predictors included in the model. It is especially useful 

when one wants to produce a robust model with a small sample size. The LASSO operator is 

described in greater details in the Appendix (VI.2).

Patient specific characteristics—We examined the following variables: age, diabetes, 

hormonal treatment (stratified as neoadjuvant/ concurrent/adjuvant), use of statins, use of 

metformin, use of alpha-blockers, whole prostate volume, MRI boost volume, rectal volume, 

PSA prior to IMRT, and Gleason Score.

Two of the variables, age and diabetes have been reported to be associated with late rectal 

toxicity [17–20]. Volume contouring could have been associated with systematic biases in 

the dosimetry. Statin use was previously reported as protective against acute gastrointestinal 

toxicity [21]. Remaining variables were not previously reported as risk factors. Since this 

was a retrospective study, we were not able to examine all variables that were previously 

reported as correlated with late rectal toxicity, most notably cardiovascular disease and prior 

abdominal surgery.

Sample Size—We used standard sample size tables for logistic regression [22] to verify 

that our sample size is large enough for the study. Assuming α error of 0.05 and the effect 

size (odds ratio) of 2.5, with the prevalence of acute rectal toxicity being 20%, the sample 

size should be larger than 73 in order to achieve a >70% power of differentiating patients 

with and without toxicity. Parameters chosen for this estimation are often used in medical 

studies hence the sample size of 79 patients meets the criteria which are typically set for 

medical studies.

Cross validation tests

Because of relatively low statistics in this data sample we performed a number of cross 

validation tests to confirm the validity of our results. These tests fall into two broad 

categories: standard statistical tests and modified or partial models. Partial models refer to 

LKB and logistic regression models in which we used the dosimetric predictor and one 

patient specific variable at a time. Using one patient specific variable at a time is necessary 

in the LKB model because of adverse numerical characteristics of the model which preclude 

its extension to a larger number of patient specific variables on a small data sample. Using 

partial models provides a cross check on the performance of the LASSO operator and also 

provides clinically useful estimates of acute rectal toxicity rates in situations when all of the 

variables which were used in this work are not available. Details of cross validation tests are 

provided in the Appendix VI.3.

Dose conversion

In accordance with QUANTEC report  [5] physical doses were converted to a 2Gy dose 

equivalent using β ratio of 3Gy. We used a voxel-by-voxel correction which corrects each 

voxel that belongs to a structure to a 2Gy equivalent dose. The dose in each voxel is 
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computed by trilinear interpolation from the dose matrix. This method of correction is 

similar but more precise than the bin-by-bin correction of the DVH which is typically 

recommended in the literature [23]. Final, corrected DVH is built on the basis of corrected 

doses in voxels. Voxel size corresponds to the resolution of the CT image which was 

typically 0.1cm × 0.1cm × 0.25cm.

Results

Dosimetry only modeling

Sixteen (20.3%) patients developed grade ≥ 2 acute rectal toxicity.

LKB model—The estimated LKB parameters are summarized in Table 1, top row. The 

parameters ‘m’ and ‘n’ of the fit are similar to the LKB formula published by the 

QUANTEC group which modeled late rectal toxicity [5]. To quantify this apparent similarity 

we performed the ROC analysis of QUANTEC late rectal toxicity formula using acute rectal 

toxicity data which yielded an AUC=0.67, comparable to the AUC of our own fit (Table 1, 

bottom row). The incidence of toxicity predicted by the QUANTEC formula (3.5%) is much 

lower than the observed acute rectal toxicity (20%), but the QUANTEC model remains 

predictive for relative risk within our patient cohort.

Univariate logistic regression—Univariate logistic regression was performed using two 

DVH indices. DX% is the dose such that X% of rectal volume receives this dose level or 

higher, V%D is the percentage of rectal volume which receives dose D or greater. Multiple 

univariate logistic regressions were performed within a range of values of X%=(10%–95%) 

and a dose D=10Gy–70Gy, with results summarized in Figure 1 (blue bars). Indices which 

maximize the AUC of the model are D25% and V%50 and the maximum AUC for a 

dosimetry only fit is equal to 0.66.

Acute toxicity with dosimetry and patient specific variables

Multivariate Logistic Regression—Multivariate logistic regression included one 

dosimetric index (D25% or D25%) and all available patient specific variables. The LASSO 

operator was used to automatically select patient specific variables that were predictive for 

acute rectal toxicity. Following four variables were selected by the LASSO operator as 

significant: age, diabetes, PSA prior to IMRT, and use of statins. Fit parameters obtained in 

regression runs using D25% and V%50Gy as dosimetric correlates are shown in Table 2 and in 

Table 3. Results of three independent fits are shown: a fit which includes all four variables 

selected by LASSO, a fit which includes only the two most strongly correlated variables 

PSA and statins, and a univariate fit using the dosimetric index alone. One notes that 

diabetes and age are not statistically significant in the full fit in spite of being selected by the 

LASSO operator, which could occur if these two variables are correlated. In Figure 1 (red 

bars) we show AUC of a family of multivariate logistic regression models, each using a 

different dosimetric index.

Data underlying most significant correlations—Unprocessed data underlying the 

two strongest correlation results can be summarized as follows:
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In a group of 79 patients, 40 took Statins and 39 did not. Among patients who took statins, 

(4/40)=10% developed acute grade ≥ 2 rectal toxicity, compared to (12/39)=30.7% who did 

not take statins. Use of statins is a statistically significant independent predictor of acute 

rectal toxicity (Appendix VI.3.3).

The average and standard deviation of PSA distribution for patients with acute rectal toxicity 

is PSAtox = 5.77 ± 2.27 and it is PSAnotox = 9.5 ± 7.8 for the remainder. The difference is 

statistically significant (Appendix VI.3.3).

By combining the use of statins and the PSA level one obtains a statistically significant 

predictor of acute rectal toxicity in multivariate logistic regression model with or without 

dosimetry. This is shown in Figure 1 which presents AUC of a multivariate logistic 

regression model as a function of a dosimetric index used in the fit. The AUC of the 

multivariate model is never lower than 0.8 (red bars) even when the dosimetric index is not 

predictive in univariate analysis (blue bars).

Discussion

NTCP models based on dosimetry alone

The fit of the LKB model yielded AUC=0.67 which falls within the range of values that are 

typically found in the literature for dosimetry only models of late rectal toxicity [5,7,23,24]. 

A comparison of our LKB fit to the QUANTEC model of late rectal toxicity strongly 

suggests that risks of acute and of late rectal toxicity depend on similar dose-volume 

variables, and that the main difference between these two types of toxicity is the threshold 

dose. To confirm this similarity we applied the QUANTEC model to acute rectal toxicity 

data and performed ROC analysis which yielded AUC=0.67, the same as our own fit. The 

QUANTEC model predicts absolute incidence of toxicity (3.5%) which is much lower than 

the observed incidence of acute toxicity (20%), but it predicts relative risk of acute toxicity 

in our patient cohort as well as our own fit. These observations are further supported by the 

results of univariate logistic regression analysis (Figure 1, blue bars), showing that the best 

predictors for acute toxicity are medium to high doses applied to small volumes, which is 

equivalent to parameter ‘n’ in the LKB fit being less than one.

Results of our study disagree with prior modeling of acute rectal toxicity using 3DCRT data 

[3] which concluded that mean rectal dose was the best predictor of acute rectal toxicity. The 

disagreement between this study and prior findings could be caused by differences in dose 

distributions but it could also be caused by a better correlation between planned and 

delivered doses when patients are treated with daily image guidance based on marker seeds 

implanted into the prostate. One notes that the incidence of acute rectal toxicity in our study 

was similar to the incidence of late rectal toxicity in earlier studies which were based on 

3DCRT [5], while the incidence of late toxicity in our study was approximately five times 

lower. It is plausible that one needs to achieve good correlation between planned and 

clinically delivered dosimetry to observe true dependence of acute rectal toxicity on rectal 

dosimetry.
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The univariate logistic regression model with a single dosimetric index achieves maximum 

AUC which is essentially the same as the AUC of the LKB model. This means that a single 

dosimetric index can be used as a dosimetry correlate in the multivariate logistic regression 

model without a loss of generality. One should stress that our result does not prove that a 

univariate model performs as well as the LKB model when extrapolated to significantly 

different rectal dosimetry that could be obtained with different delivery modalities. It does 

show however that a single dosimetric index is as good a predictor of the relative risk of 

acute rectal toxicity as the LKB model, when applied to a cohort of patients who were 

treated with the same IMRT technique and a daily image guidance.

The univariate logistic regression model can be used in clinical practice more directly than 

the LKB model. This is illustrated in Figure 2 where a dashed black curve represents a 

relationship between likelihood of toxicity and a value of the dosimetric index. A clinician 

can use Figure 2 to set a threshold on the dosimetric index which corresponds to the 

maximum acceptable incidence of toxicity, or read off the expected likelihood of toxicity for 

a given value of the dosimetric index in a treatment plan. Since standard dosimetric indices 

are computed by all treatment planning systems, Figure 2 could be used as a nomogram 

without a need for additional software implementation.

Including patient specific characteristics in the NTCP model

Observed correlations—We found four patient specific characteristics (variables) which 

appear correlated with acute rectal toxicity: age, diabetes, statin use, and PSA prior to 

treatment. Two of the correlations (Statins and PSA) were strong enough to be classified as 

independent predictors of toxicity competing in correlation strength with dosimetry, within 

the range of dosimetric variability in this study. A relatively weak correlation between age 

[19], diabetes [17,18,20] and late rectal toxicity has been previously reported. The same 

correlation in the present study of acute rectal toxicity is also relatively weak.

The use of statins appeared protective against acute gastrointestinal toxicity, and the impact 

on NTCP was very significant. A patient who used statins was approximately three times 

less likely to develop acute rectal toxicity than a patient who did not. The magnitude of the 

effect is illustrated in Figure 2a where we plot predictions of the model stratified by statin 

use. A search of the PubMed database revealed one recent study [21] which reported that use 

of statins was protective against acute gastrointestinal toxicity during pelvic radiation 

therapy. The endpoint of the study was a bowel disease questionnaire and the data were not 

stratified by the disease site. We nonetheless consider both findings to be mutually 

corroborating. Results of recently concluded Phase II clinical trial suggest that statins may 

also have a protective effect against late rectal toxicity [24–26] and possible biological 

mechanisms have been investigated [27]. Our result can thus be seen as adding to the 

growing body of evidence that the use of statins may have a protective effect against rectal 

toxicity in radiation therapy and that the protective effect may be quite pronounced, at least 

in some cases. We did not have more specific data on exact statin and dosages used to 

further investigate this correlation. One should be cautious extrapolating this study to 

different patient populations and treat our finding as provocative rather than definitive.
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Patients who developed acute rectal toxicity had, on average, a lower PSA prior to treatment 

than those who did not. Model predicts that a change in PSA by 1 ng/mL changes NTCP by 

a factor of approximately 1.5. The magnitude of the effect is shown in Figure 2b where 

predicted NTCP is stratified by the PSA level. A search of the Pubmed database did not find 

any prior studies reporting a similar effect. However, the same search revealed recent studies 

[28–31] which reported that men who used many commonly prescribed medicines had 

significantly reduced PSA levels. Examples of medicines which were associated with lower 

PSA level are: aspirin (−4%,−45%), statins (−4.6%,−13%), metformin (−14%), insulin 

(−16%), NSAIDs (−6%), and thiazide diuretics (−26%). One of the studies [29] reported 

evidence of a compounding effect when statins and thiazide diuretics were used together 

(−36%). These observations led us to a hypothesis that the correlation between reduced PSA 

level and acute rectal toxicity may be an indication that some patients in our study used 

medicines which, alone or in combination, caused two simultaneous side effects of reducing 

their PSA level and of increasing their susceptibility to radiation injury. As a further support 

for this hypothesis one notes that adding PSA level to the model increases the slope of 

response and decreases the threshold dose when compared to a univariate analysis (Figure 

2b). This behavior is consistent with an interpretation that a hidden factor, an unrecorded use 

of a medicine, increased the susceptibility of some patients to radiation injury.

We considered other explanations for the observed correlation between PSA level and acute 

rectal toxicity, but could not find a convincing alternative. High PSA could be associated 

with a more aggressive treatment which could in turn increase the risk of toxicity, but the 

opposite is being observed. PSA levels could be correlated with the size of the prostate, but 

the size of the prostate does not correlate with toxicity. Hormonal treatment could affect 

PSA level, but hormonal treatment is not correlated with toxicity. Finally, there is no 

convincing biological explanation why higher PSA would, by itself, be protective against 

acute rectal toxicity.

Use of common medicines should be included in the analysis of acute rectal 
toxicity data—In this study we observed strong correlations between acute rectal toxicity 

and two patient specific characteristics, use of statins and PSA level prior to treatment. 

Incorporating both into an NTCP model raises the AUC of the model to a high value of 0.86. 

Both of these correlations suggest, directly and by inference, that the likelihood of acute 

rectal toxicity in an individual patient can be strongly affected by commonly used 

medicines. These effects may be strong enough to affect our ability to compare the efficacy 

of evolving treatment techniques. As an example, our study suggests that patients who took 

statins experienced a threefold reduction in the risk of acute rectal toxicity. During the 

decade of 2000–2010, which coincided with the broad introduction of IMRT into clinical 

practice, the prevalence of the use of statins in older men increased from 20% to 50% [32]. 

If all other factors were kept constant, one would expect that the incidence of acute rectal 

toxicity in radiation therapy for prostate cancer would have declined during this decade by 

23% (factor of 0.77) solely because of changes in the prevalence of use of statins. Statins 

represent only one of many medicines that are used by older patients today. Data on use of 

prescription medicines in the US [33] shows that in years 2008–2009 64% of those older 

than sixty years of age used three or more medicines, while 37% used five or more. One 
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therefore needs to consider not only the effects of individual medicines but also of their 

interactions. One should finally note that the impacts of common medicines on toxicity of 

radiation therapy are unintended side effects which may not persist in new generations of 

medicines. This raises a possibility that the incidence of toxicities could unexpectedly 

increase in future treatments in spite of improvements in treatment delivery techniques 

[34,35].

In summary, our study suggests that future studies of toxicities in radiation therapy need to 

collect data on the use of medicines by study patients and to include this information in the 

statistical analysis of treatment outcomes. Retrospective studies of toxicities which include 

data collected over long periods of time should consider patterns of use of common 

medicines as a potential confounding factor.

Conclusion

We developed a framework for modeling of acute rectal toxicity in prostate treatments which 

integrates dosimetry with patient specific characteristics. We applied the approach to a 

database of 79 prostate patients treated with image guided IMRT technique. Results show 

that the likelihood of grade >= 2 acute rectal toxicity depends on intermediate to high doses 

delivered to small volumes which is qualitatively similar to late rectal toxicity. Observed 

correlations with patient specific characteristics suggest both directly and by inference that 

commonly used medicines can significantly influence the incidence of acute rectal toxicity 

in radiation therapy for prostate cancer. We suggest that future studies of toxicity would 

benefit from collecting data on patient’s use of common medicines.

Limitations of This Study

This is a retrospective study with limited statistics. Some commonly studied patient specific 

variables could not be included in the study as they were not available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Summary of AUC values obtained for univariate logistic regression fits using a range of 

dosimetric indices, and multivariate logistic regression fits using the corresponding 

dosimetric index and patient specific variables. Right panel shows results using DX % index 

(X% of the volume receives dose D or greater), and the left panel shows V%D index (volume 

fraction which receives dose equal or greater than D). Both panels show that best predictors 

of rectal toxicities are moderate to high doses applied to small volumes. The AUC of the 

model is significantly increased by adding patient specific variables. It can also be seen that 

a model which includes patient specific variables remains predictive even if the dosimetric 

index is not predictive at all.
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Figure 2. 
NTCP predictions of logistic regression models shown in in Table 4 which use a single 

dosimetric variable D25% and a single patient specific variable. The upper panel (2a) shows 

the effect of Statin use while the lower panel (2b) shows the effect of the PSA level. 

Predictions of the univariate logistic regression fit with D25% are shown in both panels by a 

black dashed curve.
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Table 1

Parameters and 95% confidence intervals of the LKB model using dosimetry only and describing grade ≥2 

acute rectal toxicity. QUANTEC late rectal toxicity model is shown for comparison.

TD50 m n AUC

Acute Toxicity 56.8 [53.7, 59.9] 0.093 [0.077, 0.108] 0.131 [0.099, 0.163] 0.67 [0.54, 0.80]

QUANTEC 76.9 [73.7, 80.1] 0.13 [0.10, 0.17] 0.09 [0.04, 0.14] 0.67 [0.54, 0.81]
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Table 2

Parameters of logistic regression fits to grade ≥ 2 acute rectal toxicity using dosimetric index D25%. Error 

ranges are at 95% confidence level intervals.

3
, age, 

diabetes, PSA, statins Multivariate
, PSA, 

statins Multivariate  Univariate

α0
−9.1 [−20.50, 0.16]

P=0.08
−4.5 [−10.3, 0.41]

P=0.1
−5.23 [−9.93, −1.40]

P=0.015

D25%
0.19 [0.04, 0.39]

P=0.03
0.19 [0.048, 0.364]

P=0.02
0.098 [0.002, 0.212]

P=0.064

PSA −0.53 [−0.99, −0.20]
P=0.008

−0.53 [−0.99, −0.20]
P=0.009 Not Applicable

Statins −2.03 [−3.79, −0.57]
P=0.01

−1.83 [−3.40, −0.49]
P=0.01 Not Applicable

Age 0.056 [−0.051, 0.176]
P=0.32 Not Applicable Not Applicable

Diabetes 1.73 [−0.52, 4.13]
P=0.13 Not Applicable Not Applicable

AUC 0.88 [0.80, 0.96] 0.86 [0.78, 0.95] 0.66 [0.49, 0.76]
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Table 3

Parameters of logistic regression fits to grade ≥ 2 acute rectal toxicity using a dosimetric index V%50Gy. Error 

ranges are at 95% confidence level intervals.

, age, 
diabetes, PSA, statins Multivariate

, 
age, PSA, statins Multivariate  Univariate

α0
−5.80 [−15.62, 2.55]

P=0.20
−1.30 [−4.53, 1.69]

P=0.4
−3.76 [−6.60, −1.35]

P=0.004

V%50Gy
23.42 [3.98, 46.80]

P=0.03
24.39 [6.19, 46.21]

P=0.01
14.72 [0.31, 30.86]

P=0.05

PSA −0.48 [−0.91, −0.18]
P=0.008

−0.49 [−0.91, −0.20]
P=0.007 Not Applicable

Statins −1.87 [−3.61, −0.43]
P=0.01

−1.70 [−3.24, −0.37]
P=0.018 Not Applicable

Age 0.06 [−0.05, 0.18]
P=0.30 Not Applicable Not Applicable

Diabetes 1.46 [−0.86, 3.87]
P=0.21 Not Applicable Not Applicable

AUC 0.87 [0.78, 0.96] 0.86 [0.77, 0.95] 0.67 [0.53, 0.80]
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