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Introduction
Head and neck cancers can be defined as cancers in the upper 
airway and/or digestive tract found in oral cavity and laryngeal, 
pharyngeal, oropharyngeal, and hypo-pharyngeal tissues. Such 
cancers make up 3% of cancers diagnosed each year.1 Head and 
neck cancer incidence has declined from 25 cases per 100 000 
in the 1990s to 15 cases per 100 000 in the present day.2 While 
the decrease in head and neck cancer incidence may be due to 
a drop in tobacco use,3,4 the mortality associated with head and 
neck cancers has not changed significantly in the last 20 years. 
Treatment of head and neck cancer has also been slow to 
change with epidermal growth factor receptor (EGFR) inhibi-
tors, PD1 inhibitors, and taxane-/plant-alkaloid-derived 
chemotherapies being the only therapies approved by the U.S. 
Food and Drug Administration (FDA) in the last 10 years for 
the treatment of head and neck cancers. Head and neck cancer 
is a relatively rare cancer compared to breast or lung cancers. 
However, it is possible that existing therapies for more com-
mon solid tumors could also prove effective in oral cancers. 
Many therapies have molecular targets that could be appropri-
ate in oral cancer as well as the cancer in which the drug gained 
initial FDA approval. Also, there may be targets in oral cancer 
for which existing FDA-approved drugs could be applied. This 
study describes informatics methods that use machine learning 
to identify influential gene targets in patients receiving plati-
num-based chemotherapy, non-platinum-based chemotherapy, 
and genes influential in both groups of patients.

Drugs approved by the FDA for oral cancer are methotrexate, 
cetuximab, pembrolizumab, nivolumab, and docetaxel. These 
therapies are combined to be used in conjunction with plati-
num-based chemotherapies such as cisplatin or carboplatin 
unless those therapies are contraindicated due to comorbidities 
such as renal disease. The small number of new oral cancer 
drugs could be attributed in part to the low overall burden of 
oral cancer in comparison with other cancers. The current 
timeline for FDA approval of a novel small molecule or bio-
logic is 10 years or more. Repurposing existing FDA-approved 
drugs is a popular method used to shorten this process to 3 to 
4 years. Cetuximab is an EGFR inhibitor that has been shown 
to decrease the rate of progression of oral cancer used in con-
junction with Cisplatin. Pembrolizumab and nivolumab are 
both PD1 inhibitors that used T-cells to attack cancer while it 
progresses. These therapies use the body’s immune system as 
another treatment modality to reduce the burden of oral cancer. 
Current literature provides support for the role of ligand channel 
gating, hedgehog signaling,5-7 NOTCH, B-WICH,8 inflam-
masome,9 WNT,10 and Calci neurin pathways in cancer.11-13 
The role of these pathways and targeting specific genes within 
them has been pursued in other cancers, but have with few 
exceptions, not yet been examined in oral cancer. Possible gains 
from targeting these pathways would be initiating immune 
response, targeting cancer metabolism, targeting signaling for 
metastasis, and targeting inflammation pathways that may 
drive progression. If there is a synergistic effect to attacking 
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multiple hallmarks of cancer simultaneously, then the net gain 
to the patient would be a net gain in overall post diagnosis 
survival time for the oral cancer patient.

Identifying a means by which drugs may be prioritized for 
further screening and validation for a specific cancer type 
would be desirable. Databases linking genes, the proteins they 
express, ligands corresponding to those proteins, and structural 
data that can be analyzed all exist in varying forms or com-
pleteness across different publicly available databases. This 
study describes how integration of analyses of these databases 
can be used to select gene targets in a specific cancer and how 
therapies can be prioritized for screening based on existing 
structural information for the ligands associated with genes 
and the proteins they express.

There are several hurdles to the analysis of high-dimen-
sional genomic data using traditional regression analyses. 
Random forest analysis is a machine learning approach that is 
less hindered by datasets with large predictor to observation 
ratios. In this study, we apply random forests analysis to gene 
expression data to identify those genes and pathways that are 
most predictive of post diagnosis survival across treatment 
strata. This is the first application of this approach to head 
and neck cancer patient data in The Cancer Genome Atlas 
(TCGA). National Comprehensive Cancer Network 
(NCCN)14 guidelines recommend that node-positive patients 
with tumors of clinical stage 3 and greater receive chemother-
apy. Platinum-based chemotherapy with radiation and surgery 
is the current standard of care recommended to these patients. 
Patients that do not receive chemotherapy recommendations 
by NCCN are node negative with clinical stage 2 and lower. 
Following standards set by NCCN guidance on treatment, this 
study chose to identify patients receiving and not receiving 
platinum-based chemotherapy as separate groups. Analysis of 
influential genes in each group will improve knowledge of pos-
sible mechanisms driving treatment response for early stage 
and more advanced tumors.

Random forest is a machine learning approach to identify-
ing the most important predictors in high dimensional data-
sets.15,16 This approach is uniquely suited for classification of 
observations in datasets where P (predictors) are greater than N 
(number of observations). Random forest randomly selects 
predictors from a large group of predictors and then applies 
those predictors to a decision tree predicting overall survival. 
Random forest does not pay a statistical penalty when the 
number of observations is small. Instead the strength and limi-
tation of this method is its reliance on computational intensity. 
That is, as the number of decision trees in a random forest 
increase, so does classification accuracy. Accuracy is also 
dependent on the number of predictors tried at decision tree 
nodes. As node size and forest size increase, so does forest clas-
sification accuracy. However, there is a rate of diminishing 
returns in the accuracy gained from each tree added to a forest. 
Therefore, computational time and cost must be factored into 

all random forest analysis plans to measure project feasibility. 
Random forest has been successfully applied to predicting can-
cer diagnosis and treatment response for a variety of can-
cers.17-21 For this study, we have selected to apply random forest 
analysis to the gene expression values of oral cavity cancer 
patients to identify the upregulated pathways most predictive 
of improved treatment response across gender and environ-
mental exposure subgroups like alcohol and tobacco. RNAseq 
data are inherently high dimensional, applying typical regres-
sion models to such data can be costly as large sample sizes are 
required to identify even moderate effect. Identifying gene 
interactions can be even more costly in terms of the required 
statistical power. Stratified pathway analysis via random forest 
methods has been shown to be successful in identifying single 
influential genes (within the context of larger pathways) that 
are predictive of overall survival with limited sample size.22 
This approach has not yet been applied to identification of 
influential genes and gene interactions within oral cancer 
patients stratified specifically by treatment. In this way, the 
importance of pathways and genes of interest can be compared 
across strata to assess which subgroups may be most sensitized 
to changes in gene expression within a given pathway.

Methods
This study focuses on the identification of the role of gene 
expression in oral cavity cancer patients and applying machine 
learning approaches like random forest to determine genes that 
are important in influencing treatment response. Reference 
ligands known to bind to proteins expressed by genes deemed 
influential by random forest can be sent through a virtual 
screening pipeline to identify small molecules with greater 
likelihood of acting as protein agonists/antagonists. Ligands 
that have a strong shape similarity to known binding ligands 
have greater potential for success in high-throughput screening 
endeavors. As shape similarity alone is insufficient in identify-
ing new drug leads, all leads will be validated with existing lit-
erature, and those leads without previous biological validation 
will be presented as such.

By using a stratified random forest analysis, we will be able 
to rank genes within the strata of chemotherapy treatment sta-
tus. This approach will allow for the identification of those top 
ranked genes that are unique to each stratum. This will be done 
by identifying common and unique genes between sets of genes 
influencing the treatment response in patients receiving plati-
num-based chemotherapy and those that do not. The result 
will be the identification of oral cavity cancer pathways influ-
encing treatment response which will inform researchers on 
mechanisms driving treatment response in specific groups such 
as late-stage, node-positive patients who are more likely to 
receive chemotherapy treatment. This analysis will illustrate 
and support existing studies showing the strength of machine 
learning methods as an alternative method in identifying gene 
expression values influencing treatment response. This study is 
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focused not only on the predictive power of an aggregated 
panel of gene expression values, but rather to integrate random 
forest with chemical informatics and thus describe methods to 
shorten the pursuit of novel therapies treating cancers with 
relatively lower incidence.

Retrieval of Public Data
This study used clinical and genetic data obtained from TCGA. 
Genetic data included raw counts per million (CPM) of RNA 
sequence expression values for 523 patients posted to TCGA. 
Of these 523 patients, 313 were diagnosed with Oral Squamous 
Cell Carcinoma (OSCC). Oral squamous cell carcinoma 
patients included tongue, buccal mucosa, alveolar ridge, general 
oral cavity, and soft palate tissues. Of these 313 patients, 267 
were included based on complete survival time. Of these 267, 
109 received either Carboplatin, Oxaliplatin, or Cisplatin, 
while 158 patients received a treatment other than the plati-
num-based chemotherapy treatment regimen. All tissue sam-
ples were collected prior to start of treatment. Clinical data on 
tumor stage, necrosis, size, and nuclei were also retrieved from 
TCGA. We obtained demographic data on ethnicity, race, and 
gender from TCGA clinical files. In addition, this dataset had 
information on environmental exposures like tobacco history 
(ever/never smoke) and number of alcohol containing drinks in 
a day (greater than 2 drinks consumed per day, 2 drinks or less 
consumed per day). Overall survival time in months was 
extracted as a measure of treatment response.

Machine Learning Methods
Description of random forest approach

Stratified pathway analysis considers important covariates in data 
analysis. In this analysis of head and neck cancer gene expression 
data, this study used information regarding patient age, sex, alco-
hol, and smoking exposures. In the first round of analysis, the 
sample of 267 OSCC patients was organized into 109 and 158 
subsamples based on whether patients received platinum or non-
platinum-based chemotherapy, respectively. For each group, this 
study built a random forest15 to predict survival time based on the 
gene expression levels within each subgroup.

To better communicate the function of random forests, 
understanding of a decision tree construction is needed. A 
decision tree is constructed by the following steps:

Step A: A bootstrap sample was taken from the original 
sample.

Step B: A decision tree is grown for each bootstrap sample.

Step C: At each tree node, a predetermined number of pre-
dictors were applied randomly to create branches within 
the tree.

Step D: A branch is formed using the predictor from step C.

Step E: Steps C and D are repeated until the end of every 
tree branch contains samples above or below the same sur-
vival threshold or contain only one sample.

Random forest result measurements

Random forests build many decision trees to comprise a forest. 
Each tree is put together by using a random bootstrap sample 
of the original data and applying a random number of predic-
tors at each node of a decision tree. The SRCRandomForest R 
package23 employed in this study sets aside half of the data to 
be used for validation purposes to measure the accuracy of the 
random forest model. The SRCRandomForest package was 
chosen for this study because it applies a multivariate Cox 
regression model to produce each decision tree within each 
Forest. In this way, censored and non-censored data can be 
considered when carrying out this analysis. In this way, the 
model can measure the degree of influence of each gene on 
patient survival. The P values yielded through this analysis are 
defined as the “proportion of cross-validation errors smaller 
than the cross-validation errors obtained from 500 iterations of 
random forest runs of randomly permuted labels of patients.” 
This list of genes can be used to identify pathways that are 
enriched with the influential genes identified through random 
forest at odds that would be greater than can be attributed to 
chance alone with a P value of .05. This analysis will present 
pathways common to, and unique to, each chemotherapy treat-
ment strata. Such analyses may identify plausible biological 
mechanisms that enhance understanding of observed differ-
ences in survival. To reiterate, the focus of this study is not to 
pursue a diagnostic tool but to identify those gene expression 
values exerting a strong influence on treatment response. This 
study adopted random forest as the machine learning method 
of choice due to its superior interpretability and scalability. 
Random forest and many applications incorporating random 
forest have been developed more than 30 years. Random forest 
was of interest to this study as an application developed specifi-
cally for the use of survival data had been developed as an 
open-source R package. Although random forest has been 
shown to be less efficient than extreme gradient boosting 
applications, the long history of this approach has allowed it to 
evolve to produce an application well suited toward achieving 
the analytic goals of this study.

Random forest tuning parameters

Our random forest model used 20 000 tree forests for a forest 
size, with 320 variables tried at each node in each decision 
tree; 20 000 trees were the point at which we could identify no 
significant increase in our ability to predict patient survival; 
320 tries at each node in each decision tree were double the 
recommended number of tries given by the author of our 
R software package RandomForestSRC. The author H. 
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Ishwaran et al23 refers to a generally accepted practice of using 
the “square root of the total number of predictors as a starting 
point for the number of variables tried at each node.” It was 
for this reason that we applied 20 000 trees and 320 variables 
tried at each node in each decision tree for every stratum in 
our analysis. This approach was applied to our entire final 
sample of 267 OSCC patients. We then divided this sample 
by whether a patient received platinum-based chemotherapy 
or not. All random forest analyses were carried out on 64 
computational nodes in the University of California High 
Performance Computational Cluster. Random forest analysis 
was made more efficient by running analysis in conjunction 
with the R package parallel. The output of each group’s analy-
sis produces a list ranking each gene. This analysis identified 
common and unique pathways between the entire dataset and 
each chemotherapy treatment group. We then identified the 
unique and common genes between chemotherapy groups. 
This analysis will allow us to observe the difference in gene 
importance and corresponding pathways in relation to overall 
survival.

Description of virtual screening approaches

Using chemical informatics techniques, ZINC drug data-
base24 of 1379 FDA-approved drugs (FDA) and ZINC 
Traditional Chinese Medicine (TCM) database of 39 894 
small molecules can be used to apply three-dimensional 
chemical informatics approaches to the identification of small 
molecules that are the best candidates for inhibition of pro-
teins expressed by those genes influencing treatment response. 
Reference ligands for each protein are obtained from the 
Royal Chemistry Society Protein Database25 and then virtu-
ally screened against FDA and TCM small molecule libraries. 
Molecular shape overlay is an approach for measurement of 
the similarity of one molecule in comparison with another. A 
Tanimoto coefficient is used to measure the degree of similar-
ity between 2 molecules.

The Tanimoto coefficient between 2 points, a and b, with k 
dimensions is calculated as follows
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The Tanimoto similarity only applies to binary variables, for 
binary variables the Tanimoto coefficient ranges from 0 to 1 
(where 1 is the highest possible similarity).26

A goal of this study is to perform searches of 2 small mole-
cule databases FDA and TCM using a maximum common 
substructure measurement of Tanimoto similarity from the R 
Rcpi package27 that has been shown to perform robustly across 
a variety of molecule types.

Pathway analysis

Table 1 provides information on those genes that are signifi-
cantly enriched within our gene set beyond what would be 
expected by chance alone. The significance of enrichment is cal-
culated as the odds of randomly selecting the number of genes in 
the submitted set of genes by randomly selecting from 20 530 
genes more than 100 times. The false discovery rate (FDR) 
reported by the Pathway Reactome application used for this 
study represents an adjustment for multiple comparisons across 
all pathways. Benjamini–Hochberg FDR is calculated as the P 
value ranking (smallest being 1 and all following having greater or 
equal rank dependent on size of P value) divided by the number 
of tests performed and multiplied by the significance criterion. 
In this study, .05 is the criterion used to measure significance. 
The FDR can be interpreted as the proportion of tests within a 
set of tests that falsely rejects the null hypothesis. If an FDR is .5, 
then 50% of those pathways identified will falsely reject the null 
hypothesis. It is important to note that the FDR calculation used 
by Pathway Reactome defaults to perform a large number of 
analyses/tests. In addition, there are many pathways examining 
similar genes and gene types. Unfortunately, this thorough 
examination strategy also inflates the number of analyses and 
causes the FDR to become overly conservative.

To identify those genes that are most likely to be connected 
to influential pathways, 2 filters were applied to gene selection. 
First, the gene had to be in the top 5% of influential genes 
identified via random forest. Second, if the gene was not within 
the top 5% of genes, it could still be included within the analy-
sis if it was within the top 40% of genes and was known to be 
connected via past experimental studies supporting gene net-
work connections found in the Cytoscape/Pathway Reactome 
plugin database. Gene topology can be accessed by uploading 
topology from a given gene in Cytoscape and merging it with 
that gene’s corresponding random forest importance values. 
Gene topology refers to the connectedness of a gene (sup-
ported by experimental results referenced in cytoscape) to other 
genes within a Cytoscape network. Thus, the selection of genes 
included those ranked as the most important by random forest 
(top 5%) or of moderate importance and high topology (shown 
through past experiment or literature search to be connected to 
50 genes or more). For each set of analyses, 1000 influential 
genes were selected and 100 high topology genes were selected. 
In this way, integration of Cytoscape network analysis with 
random forest results allowed for identification of pathways 
significantly enriched with the genes identified by the random 
forest model. For a complete overview of the analyses in this 
study please reference the online Supplemental Materials.

Results
Top pathways

This section will describe pathways uniquely influential in patient 
response to platinum-based chemotherapy and influential in 
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response to non-platinum-based therapy. Influential pathways 
shared by both platinum-based chemotherapy users and non-
users will also be presented. An influential pathway will be defined 
as a pathway that is significantly enriched with genes that were in 
the list of top 1000 (5%) of most influential genes yielded by ran-
dom forest analysis for platinum-based chemotherapy users, non-
platinum-based chemotherapy users, and for those pathways 
enriched with genes shared in common in lists of top 1000 genes 
for platinum-based chemotherapy users and non-users. The top 
5% of genes were conservatively selected to produce greater cer-
tainty of the link between highly ranked genes, the pathways in 
which they were enriched, and the link between treatment 
response and significant pathways identified through gene 
enrichment analysis. Top pathways could also be enriched with 
those genes in the top 40% of important genes identified by ran-
dom forest if they also had a high amount of connectedness (a 
gene was connected to 25 gene nodes in a gene network) reported 
by the Cytoscape/Reactome application.

Pathways significantly enriched with genes identified as the 
most influential (top 5%) in predicting treatment response for 
platinum-based chemotherapy users were those related to cal-
cium channel gating, hedgehog signaling, histone acetylation, 
elastic fiber production, tRNA acetylation, hexokinase defi-
ciency, inhibition of adenylate cyclase, and CLEC7A inflamma-
some pathway. It has been reported that calcium channel gating 
has been associated with multiple cancers.28-30 There have also 
been recent studies evaluating the benefit of targeting histone 
deacetylation pathways in oral cancer.31-33 The hedgehog signal-
ing pathway has also been shown to signal progression in other 
cancers “Hh signaling has been shown to regulate the self-
renewal of CSCs in breast, glioma and multiple myeloma, and 
more convincingly in the maintenance of chronic myelogenous 

leukemia (CML) stem cells.”34-39 All significant pathways for 
platinum-based chemotherapy users are in Table 1.

Significant pathways for patients not using platinum-based 
chemotherapy were those related to B-WICH complex, TP53 
pathway, fibroblast growth factor receptor (FGFR) pathway, 
potassium channel gating, and RNA polymerase chain elonga-
tion pathways and their epigenetic regulation. TP53 and FGFR 
pathways represent the expression of canonical oncogenes 
which have been shown to be cancer drivers and associated with 
the production of all cancers.40-43 The B-WICH complex has 
been found to be linked to maturation of invadopodium in 
breast cancer and has been suggested as both a biomarker and 
target for cancer invasiveness.8,44 Potassium channel gating has 
also shown to be a potential target for head and neck cancers 
due to this pathways association with immune response and 
treatment response.45-49 RNA polymerase chain elongation and 
its role in transcription is a logical contributor to cancer pro-
gression and differentiation; however, the lack of specificity 
makes this a difficult pathway to target specifically in cancer 
cells. All significant pathways for non-platinum-based chemo-
therapy users are in Table 2.

For those pathways enriched with genes shared by users and 
non-users of platinum-based chemotherapy, it was found that 
pathways related to g-protein beta folding, nuclear factor of 
activated T-cells (NFAT) activation, and repression of Wnt 
pathway genes were enriched with genes influential in treat-
ment response in both groups of patients. Repression of Wnt 
pathway genes may be done through targeting the sonic hedge-
hog pathway as previously outlined or through more direct 
means which have been researched in multiple other can-
cers.50-52 Nuclear factor of activated T-cells proteins have been 
found to be associated with cancer progression in blood and 

Table 1. Top pathways enriched with genes influencing platinum-based chemotherapy treatment response in oral cancer.

PATHwAy nAmE P vAlUE FDR InFlUEnTIAl gEnES EnRICHED In PATHwAy

Signaling by Hedgehog 6.25E-05 0.002 ARRB1, ARRB2, KIF7, ADCY6, PSMA7, ADCY5, PSMB6, 
TUBB6, PSMC6, PSME4, PSME1, PSME2, CDON

molecules associated with elastic 
fibers

3.43E-04 0.006 ELN, FN1, FBLN1, LTBP3, BMP7

ClEC7A/inflammasome pathway 9.93E-04 0.01 IL1B, UBE2D4, ITPR2, ITPR3, PSMA7, PSMB6, PSMC6, IL1B, 
PSME4, PSME1, PSME2, TAB2, IKBKG, CALM1, CARD11

Phase 0—rapid depolarization .001 0.01 CAMK2B, CAMK2D, CACNB3, CAMK2A, CACNA2D2, CALM1

Adrenaline, noradrenaline inhibits 
insulin secretion

.001 0.01 CACNB3, GNG2, CACNA2D2, ADCY6, ADCY5

Signaling by nOTCH1 in cancer .006 0.03 HDAC5, HDAC1, EP300, CCNC, TBL1X

lgI-ADAm interactions .0 0.08 LGI2, ADAM11

Semet incorporation into proteins .05 0.10 QARS

Presynaptic depolarization and 
calcium channel opening

.05 0.10 CACNB3, CACNA2D2

Abbreviations: FDR, false discovery rate.
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solid tumors; however, the literature is mixed as to whether 
NFAT pathways are viable targets for treatment.53-55 These 
pathways influencing treatment response in both users and 
non-users of platinum-based chemotherapy can be seen in 
Table 3.

Important genes and biological implications

A visualization of pathways overlapping between users and 
non-users of platinum-based chemotherapy highlights the 
importance of several genes in a way that random forest analysis 
alone could not. By visualizing the 4 common pathways, it 
becomes possible to identify not only highly influential genes 
but also those genes that have the highest degree of connectivity 
to influential genes. Using annotation built into Cytoscape,56,57 
we can also identify existing small molecules used in cancer 
therapy that are not yet commonly used in oral cancer, and we 
can also observe those genes previously found to be associated 
with oral cancer. Genes found to be influential in oral cancer for 
patients receiving platinum-based chemotherapy with existing 
literature supporting the targeting of these genes in cancer were 
INSR, BRAF, and PSMB7 which are targeted by Ceritinib 
(regorafenib and dabrafenib) and bortezomib, respectively. 

These drugs are not currently FDA approved for treatment in 
oral cancer. Genes found to be influential in oral cancer for 
patients not receiving platinum-based chemotherapy with 
existing FDA-approved chemotherapy drugs targeting the 
products of said genes are FGFR3, EGFR, PRKAA2, CSNK2A1, 
INSR, MET, CAMK2A, PSMB5, and PSMB1. There are multi-
ple chemotherapy drugs targeting these pathways with 14 dif-
ferent drugs targeting EGFR alone. It should be noted that 
EGFR is a gene pathway being targeted in current oral cancer 
treatment. Sarafenib Tosylate, Pazopanib Hydrochloride, and 
Vadetanib all target the FGFR pathway specifically. Sunitinib 
Malate is unique in that it has been found to act on 4 different 
genes that were found by random forest to be influential in 
treatment response: FGFR3, CDNK2A1, PRKAA2, and 
CAMK2A. Again, we see that Certinib acts on a gene that is 
influential in both patient treatment groups, and that gene is 
INSR. Bortezomib, Carfilzobib, and Ixazomib all act on PSMB5, 
which is an influential gene in both Platinum and non-plati-
num-based therapy. PSMB5 and PSMB1 are both found to be 
within the top 5% of influential genes in random forest analysis 
and are genes that are significantly enriched within the sonic 
hedgehog pathway. Chemotherapy drugs and their relationship 
to genes in common influential pathways between users and 

Table 2. Top pathways enriched with genes influencing treatment response in oral cancer patients not receiving platinum-based chemotherapy.

PATHwAy 
IDEnTIFIER

PATHwAy nAmE P vAlUE FDR InFlUEnTIAl gEnES EnRICHED In 
PATHwAy

R-HSA-5250924 B-wICH complex positively regulates 
rRnA expression

3.21E−12 1.70E−10 HIST1H2BM; H2AFJ; H2AFZ; HIST1H2AJ; 
HIST1H2BK; H3F3A; POLR1C; H2AFV; 
HIST2H3C; HIST2H2BE

R-HSA-5250913 Positive epigenetic regulation of rRnA 
expression

8.82E−11 3.00E−09 HIST1H2BM; H2AFJ; H2AFZ; HIST1H2AJ; 
HIST1H2BK; H3F3A; POLR1C; H2AFV; 
HIST2H3C; HIST2H2BE

R-HSA-1296065 Inwardly rectifying K+ channels 2.40E−03 9.61E−03 GNG2; KCNJ14; GNB3

R-HSA-1839130 Signaling by activated point mutants of 
FgFR3

2.78E−03 1.07E−02 FGFR3

R-HSA-5655332 Signaling by FgFR3 in disease 3.91E−03 1.17E−02 KRAS; FGFR3

R-HSA-8853338 Signaling by FgFR3 point mutants in 
cancer

3.91E−03 1.17E−02 KRAS; FGFR3

R-HSA-2033514 FgFR3 mutant receptor activation 8.05E−03 2.42E−02 FGFR3

R-HSA-5654227 Phospholipase C-mediated cascade; 
FgFR3

3.48E−02 6.96E−02 FGFR3

R-HSA-6803211 TP53 Regulates Transcription of Death 
Receptors and ligands

3.48E−02 6.96E−02 TNFRSF10D

R-HSA-2033515 t(4; 14) translocations of FgFR3 4.73E−02 9.46E-02 FGFR3

R-HSA-5619109 Defective SlC6A2 causes orthostatic 
intolerance (OI)

4.73E−02 9.46E−02 SLC6A5

R-HSA-432030 Transport of glycerol from adipocytes 
to the liver by Aquaporins

4.73E−02 9.46E−02 AQP7

R-HSA-1226099 Signaling by FgFR in disease 5.37E−02 9.73E−02 KRAS; FGFR3

Abbreviations: FDR, false discovery rate.
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non-users of platinum-based chemotherapy are visualized in 
Figure 1 for platinum-based chemotherapy users and Figure 2 
for non-platinum-based chemotherapy users.

In addition to analysis of the intersection of existing cancer 
drugs and genes deemed influential by random forest, this study 
also looked at the intersection between gene topology within a 

pathway and random forest influence. This analysis identified 
CTNNB1, PLCG2, SHC1, UBA52, UBB, UBC, and HDAC3 as 
genes that meet filters of belonging to one of the 4 common 
enriched pathways, being a gene that is one of the top 5% of 
influential genes listed by random forest analysis and being con-
nected to more than 100 genes within the 4 interconnected 

Table 3. Top common pathways enriched with genes influencing platinum-based chemotherapy treatment response in all oral cancer patients.

PATHwAy nAmE P vAlUE FDR InFlUEnTIAl gEnES EnRICHED In PATHwAy

Signaling by wnT 6.66E−15 5.21E−12 HIST1H2BM; HIST1H2BK; CAMK2A; ITPR2; LRP6; PPP3CA; 
PPP3CB; GNG2; PSMB3; PPP2R1A; PSMD2; PSMB1; PSMD1; 
SOST; SOX6; BCL9L; SKP1; CSNK2A1; HIST1H2AJ; WNT5A; 
H2AFV; PPP2R5D; WNT16; RNF146; PSMC3; PSME4

ClEC7A (Dectin-1) signaling 8.51E−08 7.32E−06 PPP3CA; PPP3CB; PSMC3; PSMB3; PSMD2; PSMB1; PSME4; 
ITPR2; PSMD1; BCL10; MALT1; SKP1

Cooperation of PDCl (PhlP1) and 
TRiC/CCT in g-protein beta folding

3.31E−05 4.77E−04 GNG2; CSNK2A1; CCT8; RGS6; CCT6B; CCT4

Calcineurin activates nFAT .014851 0.032508 PPP3CA; PPP3CB

Abbreviations: FDR, false discovery rate.

Figure 1. network visualization of pathways enriched with genes influencing platinum-based treatment response in oral cancer.
Hexagon shapes are genes. Dark red genes are of greater influence based on random forest analysis results (within top 5% of influential genes), white genes do not fall 
within the criteria of being in the top 5% of influential genes. All 4 common pathways enriched in patients receiving platinum and non-platinum therapy (described in 
Table 3) were merged into one pathway using Cytoscape. genes were clustered according to the Reactome Pathway Plugin available via Cytoscape.
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pathways (Figures 1 and 2). CTNNB1 mutations have been 
found to be predictive of lung and other thoracic cancers,58-62 
and PLCG2 and calmodulin knockdown have been shown to 
induce paclitaxel sensitivity in cervical cancer tumors. This may 
prove of use to oral cancer patients, which may be assigned to 
paclitaxel or other taxol regimen.63,64 SHC1 has been shown to 
be a regulator of EGFR function and thus a potential target for 
multiple cancer types where EGFR is a key driver.65-67 Ubiquitin 
genes UBA52, UBB, and UBC have been shown to be associ-
ated with several cancers and research is currently being pursued 
in targeting ubiquitin ligases to improve treatment response.68-72 
Histone-deacetylase genes specifically HDAC3 is shown to be 
a hub to several genes that are influential in platinum-based 
chemotherapy response genes that have also been associated 
with metastatic invasion in breast and pancreatic cancer (Figure 
1). Inhibition of HDAC3 was shown to impact signaling to 
cancer stem cells. This gene has been shown to be a regulator of 
apoptosis control exerted by TP53.73-76 These genes were not 
shown to currently have any antibody or small molecule thera-
pies targeting their action. High-level topology (more than 100 

connected genes) and high random forest importance ranking 
should provide impetus for further research into the targeting of 
gene action in oral cancer.

Chemical informatics analysis of drug targets and 
leads

For those genes meeting topology and random forest filters, 
the known ligands of proteins expressed by each gene were 
identified though the RCSB protein data bank. Structural files 
of ligands were downloaded as .sdf files and uploaded into the 
chemical informatics R package Rcpi. Once loaded, each ligand 
had to undergo virtual screening against all FDA-approved 
drugs to identify existing FDA-approved drugs that may prove 
efficacious as therapeutic agents. Only those molecules with a 
Tanimoto similarity score >50% were included in results. A 
TCM small molecule database was also used as biologic-
derived small molecules are known to provide better shape 
overlay when screened against other biologic small molecules. 
In addition, the molecules in the TCM database have been 

Figure 2. network visualization of pathways enriched with genes influencing non-platinum-based treatment response in oral cancer.
Hexagon shapes are genes. Dark red genes are of greater influence based on random forest analysis results (within top 5% of influential genes), white genes do not fall within 
the criteria of being in the top 5% of influential genes. All 4 common pathways enriched in patients receiving platinum and non-platinum therapy (described in Table 3) were 
merged into one pathway using Cytoscape. genes were clustered according to the Reactome Pathway Plugin available via Cytoscape. loss of ring structure is indicative of 
differences in influence of genes between patients receiving platinum and non-platinum therapies.
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shown to be generally safe in people by merit of its long his-
torical use in human populations. For CTNNB1, several 
ligands were identified via RCSB PDB (2s)-3-{[{[(2s)-2,3-di-
hydroxypropyl]aoxy}(hydroxy)phosphoryl]oxy}-2-[(6e)-hexa-
dec-6-enoyloxy]propyl (8e)-octadec-8-enoate was the single 
ligand associated with CTNNB1 that was used for virtual 
screening against the FDA and TCM libraries. Unfortunately, 
neither library yielded a small molecule candidate with greater 
than a 50% Tanimoto score.

The ligand of PLCG2 did yield several interesting drug 
leads in both the FDA-approved library and the TCM library. 
Fludarabine has been tested in oral cancer cell lines and found 
to be effective in inducing cell apoptosis.77 Ganciclovir an HIV 
drug has also been tested in oral cancer and found to have a 
clinical effect on cell differentiation.78 Entecovir and didano-
sine are drugs used in the treatment of HepB infection and 
HIV and have not yet been tested on oral cancer. Small mole-
cules in the TCM database meeting shape overlay filters were 
[4-[2,6-dimethylmorpholin-4-yl)sulfonylphenyl]-[4-(2-phe-
noxyethyl)piperazin-1-yl]-methanone which has not yet been 
used on oral cancer cell lines. There was overlap between drug 
leads for ligands of UBB and PLCG2. This is due to the struc-
tural similarity between cytosine and guanine ligands used as 
reference molecules for similarity matching. Drug leads for 
UBB included Cytarabine (Cancer), Fludarabine (Cancer), 
Azacitidine (myelodysplastic syndrome), Gemcitabine (Cancer), 
and Lamivudine (HIV). Gemcitabine is unique in that it is the 
only drug of those listed, which has been approved by the FDA 
for use in oral cancer patients. For HDAC3, there were no 
matches exceeding a Tanimoto score threshold of 50% of the 
reference molecule when using a library of FDA-approved 
drugs. The TCM database did yield a match with an extract 
from Mallotus philippensis, a member of the Euphorbiacae plant 

family. An extract of this plant known as Rottlerin has been 
found to inhibit growth of colon cancer and breast cancer 
cells.79,80

Quercetin and Diosmetin were other phenols found in cit-
rus that were also identified as matches meeting Tanimoto 
thresholds. There are no reports of the effect of quercetin or 
diosmetin in oral cancer. It should be noted that Quercetin and 
Rottlerin have been noted in literature as promiscuous ligands 
that are often found in natural product in silico screenings.81 A 
recent study reported quercetin as the number one natural 
product in terms of number of occurrences within the data-
base.82 The aforementioned studies do show that Rottlerin is 
related to the metastatic potential and viability of colorectal 
cancer cells.79 Caution and validation of results with existing 
literature or carefully designed follow-up experiments should 
always be pursued to justify the results of promising in silico 
analyses. These analyses enhance knowledge of genes influenc-
ing treatment response in oral cancer. This study describes how 
pathway, network, and chemical informatics analysis can be 
paired with literature review to identify drug leads for oral can-
cer treatment. Reference ligands associated with influential 
genes in the Royal Chemistry Society Protein Database are 
listed along with drug leads and their corresponding Tanimoto 
similarity scores in Table 4.

Discussion
A machine learning approach known as random forest was 
used to identify genes influencing oral cancer treatment 
response specific to the platinum-based chemotherapy treat-
ment type and the non-platinum-based chemotherapy treat-
ment type. This article emphasizes the benefits of integrating 
the results of this line of analyses with pathway, network, and 
chemical informatics analysis to identify promising gene 

Table 4. Drug leads identified in FDA-approved and Traditional Chinese medicine database.

REFEREnCE lIgAnD RCSB-lInKED 
PROTEIn/
gEnE

DRUg CAnDIDATES FDA 
(DISEASE TREATED)

TCm CAnDIDATES TAnImOTO 
SCORE (FDA), 
(TCm)

(2S)-3-{[{[(2S)-2,3-DIHyDROXyPROPyl]
OXy}(HyDROXy)PHOSPHORyl]
OXy}-2-[(6E)-HEXADEC-6-EnOylOXy]
PROPyl (8E)-OCTADEC-8-EnOATE

CTnnB1 no candidates found no candidates found <50%

5′-gUAnOSInE-DIPHOSPHATE-
mOnOTHIOPHOSPHATE

PlCg2 Fludarabine (lung cancer), 
inosine (multiple sclerosis), 
ganciclovir (HIv), 
didanosine (HIv), entecovir 
(HepB, HIv)

[4-(2,6-dimethylmorpholin-
4-yl)sulfonylphenyl]-[4-(2-
phenoxyethyl)piperazin-1-
yl]-methanone

(60%, 59%, 
56%, 53%, 
51%), (55%)

CyTOSInE ARABInOSE-5′-
PHOSPHATE

UBB Cytarabine (cancer), 
fludarabine (cancer), 
azacitidine(myelodysplastic 
syndrome), gemcitabine 
(cancer), lamivudine (HIv)

no candidates found (80%, 73%, 
72%, 69%, 63%)

d-myO-InOSITOl-1,4,5,6-
TETRAKISPHOSPHATE

HDAC3 no candidates mallotophillipen-D, 
quercetin, diosmetin

(nA), (77%, 
77%, 77%)

Abbreviations: TCm, Traditional Chinese medicine.
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targets and drug leads. Biological plausibility of these findings 
was highlighted with a review of existing literature supporting 
the findings for pathways, genes, and small molecules that our 
reported approach identified as influential in oral cancer. The 
results of this work identify pathways influencing treatment 
response in platinum-based chemotherapy users, non-users, 
and those common to both users and non-users. Network anal-
ysis via Cytoscape allowed for the identification of those influ-
ential genes within each treatment modality group within the 
context of interconnected gene networks. The utility of ran-
dom forest was underscored in that in addition to pathways it 
also provides a rank to each gene in its influence on treatment 
response. This approach is a low-cost method of prioritizing 
gene targets and drug leads. These methods are validated in 
that the genes identified have been shown to be associated with 
cancer progression in oral cancers and other cancers. Several 
drug leads identified were also shown to be effective in inhibit-
ing oral cancer cells and were reported to be in different phases 
of the drug approval pipeline.

A possible criticism of the method outlined in this study is 
that there is uncertainty in the degree of trust that should be 
extended to random forest measures of gene influence and the 
inference of importance to the pathways in which “influential” 
genes reside. To further such criticisms, a point could be made 
that the Tanimoto threshold of >50% similarity could be per-
ceived as low and the 50% difference in the molecules com-
pared may prevent activity and may also be shown to have 
toxicity for a given disease state. Given such uncertainties, it 
may seem that the evidence supporting these methods is tenu-
ous. This study recognizes these criticisms; however, the coun-
terpoints must be made that gene influence is not observed in 
a single sample of the data, but rather in more than 20 000 
permuted samples of the data in which the top-ranked genes 
were found to be more influential than thousands of other 
genes. The computational intensity provided in this study 
(20 000 trees and 320 tries at each node of each decision tree) 
provides justification of the trust provided for each gene influ-
ence value. In respect to the results yielded by chemical infor-
matics analysis, it is important to note that the outlined 
chemical informatics method was able to identify gemcitabine 
as a drug that has been approved for use in oral cancer by the 
FDA. This method also identified Fludarabine and Ganciclovir 
which have both been reported as providing significant reduc-
tion in oral cancer cell line progression and viability.

Drug leads were identified in both FDA and TCM libraries, 
and the benefit in expanding the number of libraries is that it 
increases the probability of finding a match meeting the 
Tanimoto threshold of >50%. The negative aspect of adding 
libraries is that if computational resources are not planned for 
accordingly, then the amount of time required to screen against 
each reference molecule will scale upward with library size. The 
tools used in this study were all open source and freely availa-
ble, and a limitation to the adoption of this pipeline is that 

tools and their dependencies are distributed across different R 
repositories that may or may not be kept up to date. Combining 
these tools into a single package that allows for the identifica-
tion of both gene targets and drug leads may enhance the pace 
of drug discovery pipelines. We have shown in this study that 
random forest is well suited to datasets with small observations 
and high number of features. Gene targets that have been 
shown (through literature review) to be associated with treat-
ment response and cancer progression were identified through 
this study’s use of random forest analysis. Stratifying this anal-
ysis by the type of chemotherapy received allows for interpreta-
tion of influential genes and pathways within the context of 
treatment. Indeed, the lack of overlap in the importance of 
genes from one treatment modality to another highlights the 
idea that the gene expression patterns influencing platinum-
based treatment response differ from those gene expression 
patterns influencing non-platinum treatment response.

It is likely that there is bias inherent to the stratification of 
patients by chemotherapy treatment type. Chemotherapy treat-
ment is associated with clinical variables like clinical stage, tumor 
size, and tumor grade, as well as gender and socioeconomic quin-
tile.83-85 This study attempted to address these confounders by 
including them within the bag of randomly selected features 
available for construction of the random forest model. By inte-
grating chemical informatics analyses, random forest results 
can be translated into lists of drug leads for each target gene. 
This method identified drug leads that have already entered or 
passed phase 3 trials. Our review of identified drug leads and 
comparison with existing annotations show that the chemical 
informatics methods described can identify small molecules with 
therapeutic potential. This study provides the impetus for fur-
ther exploration of the role of the identified small molecules in 
oral cancer treatment response and the targeting of those genes 
identified as most influential by our series of analyses. This study 
also serves as a model for researchers identifying gene targets in 
rare cancers where the number of cases is limited.
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