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Abstract: Cardiac hypertrophy is an independent risk factor of many cardiovascular diseases. Several
cardiovascular protective properties of Cymbopogon proximus have been reported. However, no reports
investigating the direct effect of C. proximus essential oil on the heart are available. The goal of this
study was to explore the cardioprotective effect of C. proximus on cardiac hypertrophy and fibrosis.
Male albino rats were administered C. proximus essential oil in the presence or absence of hypertrophic
agonist isoproterenol. Cardiac hypertrophy and fibrosis were assessed using real-time polymerase
chain reaction (PCR) and histological examination. Pre- treatment of rats with C. proximus decreased
the ratio of heart weight to body weight and gene expression of hypertrophy markers atrial natriuretic
peptide (ANP), brain natriuretic peptide (BNP), and β-myosin heavy chain (β-MHC), which were
induced by isoproterenol. Moreover, C. proximus prevented the increase in gene expression of fibrosis
markers procollagen I and procollagen III and alleviated the collagen volume fraction caused by
isoproterenol. The pre- treatment with C. proximus essential oil conferred cardio-protection against
isoproterenol- induced cardiac hypertrophy and fibrosis.
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1. Introduction

Globally, cardiovascular diseases (CVDs) remain the leading cause of mortality and morbidity [1].
Although advances have been made in cardiovascular research, CVDs are still responsible for 31% of
all deaths worldwide [2]. In general, cardiac diseases are viewed as a chain of events known as the
CVD continuum, which if untreated, eventually leads to heart failure (HF) and sudden death [3,4].
Currently, more than 26 million patients have been diagnosed with HF [5]. The prognosis for patients
with HF remains poor with 50% of patients dying within five years of diagnosis [6]. Cardiac hypertrophy,
a thickening of the heart wall in response to increased cardiac stress, occurs early on in the CVD
continuum and is considered as a compensatory response that permits normal cardiovascular function
at rest [7,8]. However, prolonged hypertrophy is now recognized as a credible surrogate endpoint of
HF and a major risk factor for heart disease, including coronary artery disease (CAD), arrhythmia,
and hypertension [9]. Therefore, studying cardiac hypertrophy is important to identify new therapeutic
options that could prevent and/or treat CVDs in the early stages.

Cymbopogon, a genus of plants with many species known for their high essential oil
content, are widely distributed throughout the tropical and subtropical regions of Asia, Africa,
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and America [10]. The use of Cymbopogon species in traditional medicine is well documented.
Several illnesses, such as coughs, fever, infections, cancer, and digestive disorders, have reportedly
been treated using various species of Cymbopogon worldwide [10,11]. Moreover, in vivo and in vitro
studies have revealed beneficial pharmacological effects of Cymbopogon spp., including anticancer,
cardioprotective, anti-inflammatory, antioxidant, antidiabetic, anticholinesterase, antibacterial,
and antifungal properties [12–18].

One species of interest is C. proximus (common names: Halfabar or Maharaib), a strongly aromatic
common grass widely distributed in parts of Southern Egypt and Northern Sudan. C. proximus has
been used for several decades by the inhabitants of these regions as a diuretic and antispasmodic agent
due to its potent ability to induce smooth-muscle relaxation [19]. C. proximus reportedly possesses
many biological properties, including hypoglycemic, antipyretic, bronchodilation, antibacterial,
anticonvulsant, and antiemetic activities [15,20–23]. Interestingly, C. proximus has been shown to
exhibit a hypotensive effect in normotensive rats and protect against nitro-L-arginine methyl ester
(L-NAME)-induced hypertension [23,24]. At the cellular level, extracts of C. proximus have been
shown to have antioxidant, anti-inflammatory, and antiapoptotic properties [20,22]. These findings
indicate that C. proximus may be a potential protective agent against cardiac diseases. To the best of
our knowledge, no research has evaluated the effect of C. proximus against cardiac remodeling with a
focus on myocardial hypertrophy and fibrosis. We hypothesized that C. proximus essential oil would
confer cardioprotection against isoproterenol-induced cardiac hypertrophy and fibrosis. The findings
from this research may provide the first evidence for the potential use of C. proximus as a modulator
of cardiac remodeling. This is especially important with the current need to identify new alternative
medicines that are natural and safe.

2. Results

2.1. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis

Analysis of the C. proximus essential oil by GC-MS identified forty different chemical constituents,
which represented 93.27% of the total oil extract. The main components included elemol (23.54%),
piperitone (19.86%), α-eudesmol (7.63%), and β-eudesmol (11.35%), which together comprised 62.38%
of the oil. A complete listing of the GC-MS results is shown in Table 1.

Table 1. Components of Cymbopogon proximus essential oil.

No. Component Name Yield % 1

1 Elemol 23.54
2 Piperitone 19.86
3 β-Eudesmol 11.35
4 α-Eudesmol 7.63
5 β-Elemene 4.61
6 τ-Cadinol 3.87
7 Terpinolene 3.48
8 β-Selinenol 2.55
9 3-Cyclohexen-1-one, 2-isopropyl-5-methyl 2.44

10 4-Carene 1.66
11 Shyobunol 1.46
12 α-Terpineol 1.21
13 Cadina-1(10),4-diene 1.13
14 (−)-Guaia-6,9-diene 0.75
15 Limonene 0.66
16 Terpinolene 0.56
17 β-Caryophyllane, 4,8-epoxy 0.52
18 cis-Calamenene 0.51
19 trans-Geranylgeraniol 0.49
20 Epi-Cubenol 0.49
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Table 1. Cont.

No. Component Name Yield % 1

21 Espatulenol 0.49
22 2-Carene 0.44
23 Cuparene 0.38
24 Thymol 0.30
25 (Z)-β-ocimene 0.29
26 Ermacrene B 0.26
27 α-Dihydroagarofuran 0.26
28 γ-Muurolene 0.26
29 Caryophyllene oxide 0.24
30 Shyobunol 0.23
31 α-Selinene 0.20
32 Espatulenol 0.19
33 p-Mentha-1,5-dien-8-ol 0.15
34 Anethole 0.14
35 Cadinene 0.13
36 Aromandendrene 0.12
37 δ-Elemene 0.12
38 Isocaryophyllene 0.12
39 Allo-Ocimene 0.11
40 α-Amorphene 0.11

Total 93.27
1 Percentages of yield were calculated based on concentrations obtained according to gas chromatography using an
HP-5MS capillary column. The quantitative estimation of each compound was determined based on computerized
peak area measurements.

2.2. Effect of C. Proximus Oil and/or Isoproterenol on Body and Heart Weights

Isoproterenol treatment caused a significant increase of 23% in the ratio of heart weight to body weight
(HW/BW) compared with that of the control group (p < 0.001). On the other hand, rats pretreated with
C. proximus oil displayed a 69% reduction in the isoproterenol-mediated increase of HW/BW compared
with that of the isoproterenol group (p = 0.017). Furthermore, no significant difference in HW/BW was
found between the control group and the group treated with C. proximus oil alone (Figure 1).
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Figure 1. Effect of Cymbopogon proximus essential oil (CPEO) on body weight (BW) and heart weight 
(HW) of rats. Male albino rats were injected intraperitoneally daily with vehicle (saline + olive oil) as 
the control, CPEO (800 µL/kg/d), isoproterenol (ISO; 5 mg/kg), or CPEO (800 µL/kg/d) plus 
isoproterenol (5 mg/kg). CPEO administration was started 4 d prior to isoproterenol administration 
and continued concurrently thereafter for an additional 3 d. The HW/BW ratio (mg/g) was determined 
for each animal after 7 d of treatment with vehicle, CPEO, ISO, or a combination of ISO+CPEO. The 
results are presented as the means of six independent experiments ± SEM. *p < 0.05 compared to 
control, #p < 0.05 compared to ISO-treated rats. 
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In addition to increased heart mass, pathological cardiac hypertrophy is characterized by the 
activation of the fetal gene program, thereby changing the expression of different genes including 
ANP, BNP, and β-MHC. Thus, the expression of these genes is one of the most consistent markers of 
pathological cardiac hypertrophy [25–27]. To investigate whether C. proximus oil and/or isoproterenol 
treatment altered the expression level of hypertrophy markers, we measured cardiac expression of 
ANP, BNP, and β-MHC. Isoproterenol alone caused significant induction of ANP, BNP and β-MHC 
expression with mRNA levels increasing 52-fold (p < 0.001), 12.5-fold (p < 0.001), and 0.7-fold (p = 
0.02), respectively (Figure 2). However, relative to those in isoproterenol-treated rats, pretreatment 
with C. proximus oil significantly decreased the isoproterenol-mediated induction of ANP, BNP and 
β-MHC by 73% (p = 0.004), 59% (p = 0.007), and 91% (p = 0.024), respectively (Figure 2). 
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hypertrophy markers. Male albino rats were injected intraperitoneally daily with vehicle (Control), 
PEO (800 µL/kg/d), ISO (5 mg/kg), or CPEO (800 µL/kg/d) plus ISO (5 mg/kg). Oil administration was 
started 4 d prior to ISO administration and continued concurrently thereafter for an additional 3 d. 
Expression of hypertrophic genes ANP (a), BNP (b), and β-MHC (c) in heart tissue based on mRNA 

Figure 1. Effect of Cymbopogon proximus essential oil (CPEO) on body weight (BW) and heart weight
(HW) of rats. Male albino rats were injected intraperitoneally daily with vehicle (saline + olive oil) as the
control, CPEO (800 µL/kg/d), isoproterenol (ISO; 5 mg/kg), or CPEO (800 µL/kg/d) plus isoproterenol
(5 mg/kg). CPEO administration was started 4 d prior to isoproterenol administration and continued
concurrently thereafter for an additional 3 d. The HW/BW ratio (mg/g) was determined for each
animal after 7 d of treatment with vehicle, CPEO, ISO, or a combination of ISO+CPEO. The results
are presented as the means of six independent experiments ± SEM. * p < 0.05 compared to control,
# p < 0.05 compared to ISO-treated rats.
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2.3. Effect of C. Proximus Oil and/or Isoproterenol on Hypertrophy Markers

In addition to increased heart mass, pathological cardiac hypertrophy is characterized by the
activation of the fetal gene program, thereby changing the expression of different genes including
ANP, BNP, and β-MHC. Thus, the expression of these genes is one of the most consistent markers of
pathological cardiac hypertrophy [25–27]. To investigate whether C. proximus oil and/or isoproterenol
treatment altered the expression level of hypertrophy markers, we measured cardiac expression of
ANP, BNP, and β-MHC. Isoproterenol alone caused significant induction of ANP, BNP and β-MHC
expression with mRNA levels increasing 52-fold (p < 0.001), 12.5-fold (p < 0.001), and 0.7-fold (p = 0.02),
respectively (Figure 2). However, relative to those in isoproterenol-treated rats, pretreatment with C.
proximus oil significantly decreased the isoproterenol-mediated induction of ANP, BNP and β-MHC by
73% (p = 0.004), 59% (p = 0.007), and 91% (p = 0.024), respectively (Figure 2).
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Figure 2. Effect of Cymbopogon proximus essential oil (CPEO) and/or isoproterenol (ISO) on hypertrophy
markers. Male albino rats were injected intraperitoneally daily with vehicle (Control), PEO (800
µL/kg/d), ISO (5 mg/kg), or CPEO (800 µL/kg/d) plus ISO (5 mg/kg). Oil administration was started 4 d
prior to ISO administration and continued concurrently thereafter for an additional 3 d. Expression of
hypertrophic genes ANP (a), BNP (b), and β-MHC (c) in heart tissue based on mRNA levels measured
using quantitative real-time polymerase chain reaction. The results are presented as the means of six
independent experiments ± SEM. * p < 0.05 compared to control, # p < 0.05 compared to ISO-treated rats.

2.4. Effect of C. Proximus Oil and/or Isoproterenol on Myocardial Architecture

Histopathological examination of cardiac tissue sections from the control group revealed typical
cell distribution and normal myocardium architecture, demonstrating variable fiber diameters and
central positions of the nuclei. However, examination of cardiac tissue sections from isoproterenol-
treated rats revealed moderate cardiomyocyte degeneration, necrosis, pyknosis, and a 71% increase
in cross-sectional area of cardiac myocytes cells compared to that of the control group (p <

0.001). Pretreatment with C. proximus oil resulted in a less severe necrosis and a 33% decrease
in cross-sectional area of cardiac myocytes compared to that of the isoproterenol group (p = 0.005;
Figure 3). However, the pretreatment with C. proximus oil did not restore this response to the control
levels (p < 0.001).
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2.5. Effect of C. Proximus Oil and/or Isoproterenol on Myocardial Fibrosis 

To assess the degree of myocardial fibrosis in response to C. proximus oil and/or isoproterenol, 
heart sections were stained with Masson’s trichrome and the percentages of fibrotic tissue in the 
images were determined using ImageJ software. Collagen volume fraction (CVF) values in the 
isoproterenol-treated group increased 242% compared with that in the control group (p < 0.001). 

Figure 3. Effect of Cymbopogon proximus essential oil (CPEO) and/or isoproterenol (ISO) on myocardial
architecture. Male albino rats were injected intraperitoneally daily with vehicle (Control), CPEO
(800 µL/kg/d), ISO (5 mg/kg), or CPEO (800 µL/kg/d) plus ISO (5 mg/kg). Oil administration was started
4 d prior to ISO administration and continued concurrently thereafter for an additional 3 d. Histological
examination and pathological changes in heart tissue. (a) Representative images of hematoxylin and
eosin (H&E)-stained fields are shown for the left ventricles of rats of the control group and rats treated
with ISO+CPEO or ISO alone (magnification, × 200), (necrosis (N); degeneration (D); pyknotic changes
in the nuclei (arrows)) (b) Mean cross-sectional areas of cardiomyocytes from left ventricles of rats from
the indicated experimental groups were calculated and are shown. The results are presented as the
means of four independent experiments ± SEM. * p < 0.05 compared to control, # p < 0.05 compared to
ISO-treated rats.

2.5. Effect of C. Proximus Oil and/or Isoproterenol on Myocardial Fibrosis

To assess the degree of myocardial fibrosis in response to C. proximus oil and/or isoproterenol, heart
sections were stained with Masson’s trichrome and the percentages of fibrotic tissue in the images were
determined using ImageJ software. Collagen volume fraction (CVF) values in the isoproterenol-treated
group increased 242% compared with that in the control group (p < 0.001). However, the pretreatment
with C. proximus oil significantly reduced the elevated CVF levels induced by isoproterenol by 66%
(p = 0.006) (Figure 4).
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Figure 4. Effect of Cymbopogon proximus essential oil (CPEO) and/or isoproterenol (ISO) on myocardial
fibrosis. Male albino rats were injected intraperitoneally daily with vehicle, CPEO (800 µL/kg/d), ISO (5
mg/kg), or CPEO (800 µL/kg/d) plus ISO (5 mg/kg). Oil administration was started 4 d prior to ISO
administration and continued concurrently thereafter for an additional 3 d. Histological analysis and
pathological changes in cardiac tissue. (a) Representative Masson’s trichrome staining of left ventricles
of control group rats and rats treated with ISO+CPEO or ISO alone. (b) Quantitative analysis of
myocardial collagen volume fraction (CVF) in the left ventricles of rats of the experimental and control
groups. The results are presented as the means of four independent experiments ± SEM. * p < 0.05
compared to control, # p < 0.05 compared to ISO-treated rats.

2.6. Effect of C. Proximus Oil and/or Isoproterenol on the Level of Fibrosis Markers

To further assess the extent of changes in myocardial fibrosis mediated by C. proximus oil and/or
isoproterenol, we measured mRNA levels of fibrotic markers Pro I and Pro III. Isoproterenol treatment
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resulted in significant induction of Pro I and Pro III expression with 17.8-fold (p < 0.001) and 17.9-fold
increases (p = 0.004), respectively. However, these increases of Pro I and Pro III mRNA levels were
significantly reduced by 80% (p < 0.001) and 77% (p = 0.004), respectively, when the rats were pretreated
with C. proximus oil (Figure 5).
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Figure 5. Effect of Cymbopogon proximus essential oil (CPEO) and/or isoproterenol (ISO) on levels of
fibrosis markers. Male albino rats were injected intraperitoneally daily with vehicle, CPEO (800µL/kg/d),
ISO (5 mg/kg), or CPEO (800 µL/kg/d) plus ISO (5 mg/kg). Oil administration was started four days prior
to ISO administration and continued concurrently thereafter for an additional 3 d. Gene expression
levels of fibrosis markers Pro I (a) and Pro III (b) were determined in the heart using quantitative
real-time polymerase chain reaction. The results are presented as the means of six independent
experiments ± SEM. * p < 0.05 compared to control, # p < 0.05 compared to ISO-treated rats.

3. Discussion

The results of the present study provide the first evidence that C. proximus may confer
cardioprotection against cardiac remodeling. Despite advances made in cardiovascular research
over the last decades, therapeutic options available for the treatment for HF are limited to agents that
either delay disease progression such as β-blockers or only control symptoms such as diuretics [28].
Hence, there is an urgent need to identify new therapeutic agents that either prevent the initiation of
HF in high risk patients or regress cardiac hypertrophy during its progression [29]. Over the years,
plants have been highly valued around the world as a rich source of therapeutic agents for the treatment
and prevention of numerous diseases and illnesses. It is estimated that 80% of cardiovascular drugs
are derived from plant origins [30,31]. However, to the best of our knowledge, there has been no
research conducted to investigate the cardioprotective effect of C. proximus against cardiac remodeling.
Therefore, the current study was performed to examine the capacity of C. proximus to protect rats from
isoproterenol-induced cardiac hypertrophy and fibrosis.

Our study revealed cardioprotective effects of C. proximus against isoproterenol-induced cardiac
hypertrophy and fibrosis. These findings are evidenced by the prevention of increased HW/BW ratios
caused by the administration of isoproterenol to rats pretreated with C. proximus oil, which maintained
ratios close to those of the control group. In addition, C. proximus precluded elevated levels of
hypertrophy markers caused by isoproterenol treatment as demonstrated through significant reduction
in mRNA levels of ANP, BNP, and β-MHC. Moreover, isoproterenol treatment caused deterioration in
cardiomyocyte architecture and increased cell surface area. However, C. proximus attenuated these
observed effects when administrated prior to the administration of isoproterenol. Histological analysis
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revealed that isoproterenol treatment induced fibrosis by increasing collagen deposition in the heart.
The induction of CVF by isoproterenol was significantly prevented in the group of animals pretreated
with C. proximus oil, which indicated C. proximus had the ability to protect the heart from myocardial
fibrosis, a hallmark of cardiac remodeling. Furthermore, isoproterenol-induced elevated mRNA levels of
fibrosis markers, including Pro I and Pro III, were significantly reversed by pretreatment with C. proximus
oil. The dose of C. proximus used in our study was chosen based on the study of El Tahir et al. [24].
In their study, C. proximus oil causes significant changes in the heart rate only after the administration of
the oil at a higher dose (1600 µL/kg). However, 800 µL/kg did not cause significant changes in the heart
rate [24]. Therefore, it is unlikely that the effects observed in our study are due to heart rate changes.
In addition, C. proximus has been shown to exhibit a hypotensive effect in normotensive rats and protect
against (L-NAME)-induced hypertension [23,24]. However, it is evident that repeated administration
of small doses of isoproterenol to animals causes cardiac hypertrophy and fibrosis without changing
the blood pressure [32–34]. Thus, it is highly unlikely that C. proximus acted as an antihypertensive
agent in the absence of hypertensive stimuli in our study. Interestingly, several species of Cymbopogon
are reported to possess cardiovascular benefiting properties. For instance, extracts of C. citratus have
been shown to protect against isoproterenol-induced cardiotoxicity [35]. Moreover, extracts from
C. citratus and C. winterianus are shown to reduce blood pressure by modulating the calcium pathway
and decreasing heart rate by activating cardiac muscarinic receptors [36,37]. Also, C. citratus and C.
jwarancusa extracts are reported to possess antioxidant, antidiabetic, and hypolipidemic properties
and protect against endothelial dysfunction [10–12,17,18,21]. Of specific interest, C. proximus extracts
are reported to possess profound antioxidant effects and are able to decrease blood pressure in
both normotensive and hypertensive rats [21,23,24]. Although the chemical compositions of these
Cymbopogon species vary, they share some components. For instance, the essential oils of C. proximus
and C. jwarancusa contain a considerable amount of piperitone, carene, β-caryophyllane, and elemol.
Cymbopogon citratus and C. winterianus contain high amounts of geraniol, geranial, and cadinol isomers.
Considerable amounts of elemol and limonene have also been reported in both C. proximus and
C. winterianus [11,38–40]. Our present findings, along with the results of previous studies, highlight
the potential protective effects of Cymbopogon species against CVDs.

Several molecular responses and molecules are well documented to play pivotal roles in
the development of cardiac dysfunction and hypertrophy. These include, but are not limited to,
inflammatory cytokines, matrix metalloproteinase, oxidative stress, and apoptosis [41,42]. Based on
results obtained from GC-MS analysis, the crude C. proximus essential oil was comprised of various
components that ranged in volume from 0.105% to 23.54%. These findings are consistent with an
analysis previously reported [24]. Interestingly, some of the components identified are reported to
exhibit various effects on the aforementioned signaling molecules of cardiac hypertrophy. For instance,
thymol is reported to protect the heart against isoproterenol-induced myocardial infarction and cardiac
hypertrophy via anti-apoptotic effect [43]. In addition, elemol,β-elemene, terpinolene,β- caryophyllene,
and thymol, which represented more than 33% of the total essential oil, are known to suppress several
pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6 [44–48]. In addition, production of
pro-inflammatory cytokines IL-4, IL-8, and IL-12 was inhibited by elemol, thymol, and β-elemene,
respectively [49–51]. Moreover, β-caryophyllene decreased the production of matrix metalloproteinases
MMP-3 and MMP-9 and the pro-apoptotic markers Bax, p53, and active caspase-3 [45,52,53]. In addition,
the major C. proximus essential oil extract constituents α-eudesmol and β-eudesmol protect cells from
apoptosis by increasing levels of antioxidant enzymes. These pathways counteract the effects of
free radicals by decreasing NADPH oxidase and the production of superoxide [54,55]. Modulations
of these pathways using genetic approaches and/or pharmacological interventions are shown to be
protective against cardiac dysfunction [41,42]. These findings suggest a possible mechanism by which
C. proximus and its constituents may have produced the protective effects reported in our current
study. Identifying the major active constituents of C. proximus essential oil, along with the potential
mechanisms responsible for the protective effect, requires additional investigation.
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4. Materials and Methods

4.1. Chemicals and Reagents

Isoproterenol was obtained from Sigma-Aldrich (St. Louis, MO, USA) and TRIzol reagent
was purchased from Invitrogen Co. (Grand Island, NY, USA). The High-Capacity cDNA Reverse
Transcription Kit (Catalog# 4368814) and SYBR® Green PCR Master Mix (Catalog# 4309155) were
purchased from Applied Biosystems (Foster City, CA, USA). Hematoxylin and eosin (H&E) and
Masson’s trichrome staining kits were purchased from Nanjing SenBeiJia Biological Technology Co.,
Ltd. (Nanjing, China). Real-time polymerase chain reaction (PCR) primers were designed by members
of our laboratory and synthesized by Integrated DNA Technologies Incorporation (San Diego, CA,
USA). The primer sequences are shown in Table 2.

Table 2. Sequences of primers used for real-time polymerase chain reaction.

Gene Forward Primer (5′–3′) Reverse Primer (5′–3′)

ANP a GCTTCGGGGGTAGGATTGACA GGCAATGCGACCAAGCTGT
BNP b TTTCCTTAATCTGTCGCCGCT CTAAAACAACCTCAGCCCGTCA

β-MHC c GCCGAGTCCCAGGTCAACAA GTAATTCGAGGGCAGGAACCC
Pro I d CGGCTCCTGCTCCTCTTAGG CACTCGCCCTCCCGTTTTTG

Pro III e TGGGATGCAACTACCTTGGT AGGTGTAGAAGGCTGTGGAC
GAPDH f CAGTGCCAGCCTCGTCTCAT CAAGAGAAGGCAGCCCTGGT

a atrial natriuretic peptide; b brain natriuretic peptide; c β-myosin heavy chain; d procollagen I; e procollagen III; f

glyceraldehyde 3-phosphate dehydrogenase.

4.2. Plant Material

C. Proximus (Hochst. ex A. Rich.) Stapf, family Poaceae was purchased from a local market in
Alexandria, Egypt. The identity of the plant material was confirmed by Prof Saniya Kamal at the
Department of Botany, College of Science, Alexandria University, Alexandria, Egypt.

4.3. Preparation of C. Proximus Oil

Essential oil was prepared from dry powdered C. proximus plant material (250 gm) using a
hydrodistillation method for a period of 5 h [56]. The essential oil was separated and dried over
anhydrous sodium sulphate, which yielded a 5.4% w/w final product.

4.4. GC/MS Analysis

GC/MS analysis was carried out using an Agilent 7890 Gas Chromatograph (Agilent, Santa Clara,
CA, USA) with an MSD System equipped with a HP-5MS capillary column (30 m× 0.25 mm i.d., 0.25µm
coating). Aliquots (1 mL) of C. Proximus oil diluted to a concentration of 5 parts per million (ppm)
were then injected into the GC/MS autosampler using the split-less mode. The column temperature
was maintained at 70 ◦C for 5 min and programmed to then increase at a rate of 5 ◦C/min to 290 ◦C,
which was isothermally held for 5 min. The detector and injector temperatures were 290 ◦C and 280 ◦C,
respectively. The carrier gas was helium (99.999% purity) at a flow rate of 1.0 mL/min. The significant
quadrupole mass analyzer (QMS) operating parameters included electrospray ionization at 70 eV with
a scan mass range of 30 to 600 m/z. The C. proximus oil components were identified by comparing
their mass spectra with the National Institute of Standards and Technology (NIST 2017) database. The
analysis and processing of the results were controlled using MassHunter software (Agilent Technologies
Inc., Santa Clara, CA, USA). The identity of peaks was verified by comparing their mass spectra
against commercially available libraries (Wiley GC/MS Library, MassFinder 3 Library) as previously
described [57,58].
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4.5. Gas Chromatography (GC) Analysis

GC spectra obtained under the conditions described above were used to identify each peak by
comparing their respective relative retention index (RRI) to a series of n-alkanes. The quantity of each
compound was estimated based on computerized peak area measurements.

4.6. Animals

The study complied with the Law of Ethics of Research on Living Creatures published by the
National Committee of BioEthics (NCBE), Saudi Arabia and the National Institutes of Health Guide for
the Care and Use of Laboratory Animals (NIH Publications No. 8023, revised 1978). All experimental
procedures involving animals were approved by the Bioethics Committee, Prince Sattam Bin Abdulaziz
University (No. 201902003). Male albino rats weighing 200–250 g were obtained from the Lab Animal
Care Unit, Pharmacy College, Prince Sattam Bin Abdulaziz University (Al-Kharj, KSA). All animals
were housed on a 12-h light/dark cycle with food and water available ad libitum.

4.7. Experimental Design and Treatment Protocol

Male albino rats were randomly divided into four groups (6 rats/group). The first group received
a daily intraperitoneal (IP) injection of vehicle (saline + olive oil). The second group received a daily IP
injection of C. proximus oil (800 µL/kg/d) with the dose being based on a previous report [24]. The third
group received a daily IP injection of isoproterenol (5 mg/kg/d). The fourth group received a daily IP
injection of both isoproterenol (5 mg/kg/d) and C. proximus oil (800 µL/kg/d). The administration of oil
was started four days prior to the isoproterenol administration and continued concurrently thereafter
for an additional 3 d. The dose and period of isoproterenol administration were selected based on
our previous study [8]. All animal groups were euthanized 24 h after the last dose of treatment.
Hearts were quickly excised, washed with saline, blotted with filter paper, and measured, followed by
immediately being frozen in liquid nitrogen. The hearts were stored at −80◦C until further analysis.

4.8. Histological Examination

For histological examinations, heart cross-sections were immediately collected after sacrificing the
animals and fixed in 4% formalin at room temperature. The tissues were embedded with paraffin and
cut into 3-µm thick sections. The tissue sections were then deparaffinized with xylene and rehydrated
with graded ethanol prior to histological staining. For structural analysis, hear tissue sections were
stained with H&E using a standard protocol. Images were obtained using a Leica SCN400 Slide Scanner
(Leica Biosystems, Wetzlar, Germany) at 200 ×magnification. The images were then analyzed using
Leica SCN400 Image Viewer software. Random microscopic fields of sections from each animal were
selected for analysis. Cell surface area (CSA) of randomly selected cardiomyocytes (10–15 per section)
was measured using ImageJ software (National Institute of Health, Bethesda, MD, USA). To visualize
and measure collagen deposits, heart tissue sections were stained with Masson’s trichrome according
to standard methods. Fibrous tissue stained blue, cytoplasm red, and the cell nuclei black. Cardiac
fibrosis was visualized at 200 ×magnification using the Leica SCN400 Slide Scanner and the images
analyzed using the Leica SCN400 Image Viewer software. CVF was quantified by calculating the area
percentage of collagen staining using ImageJ software.

4.9. RNA Extraction and Complementary DNA (cDNA) Synthesis

Total RNA was isolated from the frozen tissues using TRIzol reagent according to the
manufacturer’s instructions and quantified by measuring absorbance at 260 nm using a Genova Nano
micro-volume spectrophotometer (Jenway®, Staffordshire, UK). Purity of the RNA was determined
according to 260/280 absorbance ratios (>1.8). First strand cDNA was synthesized using a High-
Capacity cDNA Reverse Transcription Kit, according to the manufacturer provided instructions.
Briefly, 1.5 µg of total RNA from each sample was added to a mixture of 2.0 µL 10× reverse transcriptase
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buffer, 0.8 µL 25× dNTP mix (100 mM each), 2.0 µL 10× reverse transcriptase random primers, 1.0 µL
MultiScribe reverse transcriptase, and 4.2 µL nuclease-free water. The final reaction mixture was
maintained at 25 ◦C for 10 min, heated to 37 ◦C for 120 min, heated to 85 ◦C for 5 min, and finally
cooled to 4 ◦C.

4.10. Quantification of mRNA Expression by Quantitative Real-Time PCR

Quantitative analysis of specific mRNA expression was performed using real time-PCR. Briefly,
1.5 µg cDNA was subjected to PCR amplification using 96-well optical reaction plates in an ABI
Prism 7500 System (Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s
protocol. The 25-µL PCR reaction mixture contained 0.25 µL 10-µM forward primer and 0.25 µL 10-µM
reverse primer (100 nM final concentration of each primer), 12.5 µL SYBR Green Universal Master Mix,
10.6 µL nuclease-free water, and 1.4 µL cDNA as template. Rat primer sequences for atrial natriuretic
peptide (ANP), brain natriuretic peptide (BNP), β-myosin heavy chain (β-MHC), procollagen I (Pro I),
procollagen III (Pro III), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) are listed in
Table 2. The real- time PCR data was analyzed as relative gene expression using the 2–∆∆Ct method as
previously described [59]. Briefly, the fold change in levels of target genes between the treated and
untreated groups were normalized to the level of GAPDH and compared according to the following
equation: fold change = 2−∆ (∆Ct), where ∆Ct = Ct(target) − Ct(GAPDH) and ∆ (∆Ct) = ∆Ct(treated)
− ∆Ct(untreated).

4.11. Statistical Analysis

Statistical analysis of the results from the different experimental groups was performed using
SigmaPlot® for Windows (Systat Software, Inc, CA, USA). All data are expressed as means ± SEM.
One- way analysis of variance (ANOVA) followed by the Tukey–Kramer multiple comparison test
was conducted to assess significant differences between treatment groups. Duplicate reactions
were performed for each experiment and the results are presented as the means of six independent
experiments ± S.E.M. The differences were considered statistically significant when p < 0.05.

5. Conclusions

Our study revealed the cardioprotective effects of C. proximus essential oil against isoproterenol-
induced cardiac hypertrophy and fibrosis. These findings were evidenced by first, significant decreases
in HW/BW ratios; second, significant decreases of hypertrophy markers ANP, BNP, and β-MHC mRNA
levels; third, significant decreases of fibrosis markers Pro I and Pro III mRNA levels; and fourth,
significant decreases in CVF and the inhibition of cardiomyocyte architecture deterioration caused by
isoproterenol. Together, these findings pinpoint the importance of C. proximus as a potential treatment
for cardiac diseases. While the cardioprotective effects of C. proximus essential oil were clear, the current
findings lack details regarding the correlation between pure components of the essential oil extract and
the observed effects. This limitation may be addressed in a future study.
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