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Taming numerical errors 
in simulations of continuous 
variable non‑Gaussian state 
preparation
Jan Provazník*, Radim Filip & Petr Marek

Numerical simulation of continuous variable quantum state preparation is a necessary tool for 
optimization of existing quantum information processing protocols. A powerful instrument for such 
simulation is the numerical computation in the Fock state representation. It unavoidably uses an 
approximation of the infinite‑dimensional Fock space by finite complex vector spaces implementable 
with classical digital computers. In this approximation we analyze the accuracy of several currently 
available methods for computation of the truncated coherent displacement operator. To overcome 
their limitations we propose an alternative with improved accuracy based on the standard matrix 
exponential. We then employ the method in analysis of non‑Gaussian state preparation scheme 
based on coherent displacement of a two mode squeezed vacuum with subsequent photon counting 
measurement. We compare different detection mechanisms, including avalanche photodiodes, their 
cascades, and photon number resolving detectors in the context of engineering non‑linearly squeezed 
cubic states and construction of qubit‑like superpositions between vacuum and single photon states.

Quantum information theory exploits fundamental features of quantum physics to design protocols and algo-
rithms that offer significant improvements over their classical  counterparts1–4. There are several candidate 
physical systems suitable for these applications, each with distinct advantages. Continuous variable quantum 
information processing with light offers feasible and fast generation and manipulation of entangled Gaussian 
quantum states that are at the core of the information  protocols5–12. However, truly universal quantum informa-
tion processing also requires elements of quantum non-Gaussianity13–17. Protocols based on Gaussian states and 
Gaussian operations are not  universal13 and can be efficiently simulated on a classical  device18.

For continuous variables of light, the non-Gaussianity is commonly introduced by photon number counting 
detectors, either the most basic on-off detectors capable of discerning presence of  light19, or the more advanced 
detectors truly distinguishing the photon  numbers20–29. Such detectors can be employed for direct conditional 
implementation of non-Gaussian  operations30–37, or for conditional preparation of non-Gaussian quantum 
 states38–50. The latter can be then used as a resource in deterministic implementation of non-Gaussian  gates14,37,51. 
One thing these approaches have in common is the inherent probabilistic nature of measurement that results 
in several trade-offs between quality of the implemented operation or the prepared quantum state, the rate 
with which the desired operation succeeds, and the experimental challenges of the photon number resolving 
 detector26–29,52. For any given set of realistic detectors and any desired task we then need the ability to faithfully 
simulate the optical circuit to find out the required parameters leading to the optimal performance, or to find 
out whether the task is even feasible.

However, numerical simulation of simple quantum optical circuits, even though it is often employed in con-
tinuous variable quantum information  processing53–57, is not a straightforward task. It is burdened by various 
difficulties, including discretization errors in numerical models relying on continuous representation, trunca-
tion errors in discrete  models53, the omnipresent rounding errors due to finite precision of  arithmetics58–62 and 
numerical truncation errors occurring in finite approximations of infinite  processes60,62. If not prevented by 
rigorous analysis, these numerical artifacts can dominate the computed values and lead to rapid divergence 
from correct results.

In this paper we evaluate the numerical errors arising when an optical circuit for probabilistic preparation 
of non-Gaussian quantum states of  light14,38 is simulated on a classical digital computer. We then propose an 
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alternative method for construction of truncated unitary operators aiming to curtail these errors. Finally we 
take advantage of these tools to fully simulate the circuit for preparation of resource states for the cubic phase 
 gate51, and single mode qubit-like superpositions of zero and one photon. The goal is to find the optimal trade-
offs between the quality of the states and the probability of success for a range of available photon counting 
 detectors20,26–29,52.

This paper is structured as follows. In the State preparation circuit section we review the state preparation 
circuit. In the Perils of numerical simulation of CV systems section we describe the errors naturally occurring 
in numerical simulations. In the The curious case of coherent displacement section we focus on coherent dis-
placement and identify the numerical errors appearing in different methods of its calculation. In the Truncated 
approximate matrix exponential (TAME) section we propose an alternative method for its calculation, followed 
by an overview of verification process in the Verification of approximated matrices section. We then proceed 
with the Numerical simulation of the preparation circuit section, where we describe the methodology of the 
actual simulation and present the results of its applications in sections eight and nine.

State preparation circuit
The most common method of conditional state preparation is based on suitable manipulation of ENPR state with 
coherent displacement and subsequent photon counting  measurement14,39,63,64. In Fig. 1 we present a variant of 
the circuit which can be used for preparation of simple non-Gaussian quantum states, including the qubit-like 
|0� and |1� superpositions. Our circuit accounts for basic imperfections limited to detection inefficiencies and 
propagation losses. A physical EPR resource, generating the two mode squeezed vacuum (TMSV), lies at its very 
heart and serves as a source of perfectly correlated photons. One of the entangled modes is then displaced with 
controllable amplitude and phase and consequently measured. The detection can use either an avalanche photo-
diode (APD), a photon number resolving detector (PNRD) or its approximation employing an APD  cascade52. 
The resulting marginal state

conditioned on the detection outcome π , characterized by the POVM element �̂2(π) , is obtained with the 
probability of success

In both the expressions (1) and (2) we use the lower right indices to emphasize which modes the operators and 
channels act on. Starting from the inner-most component, the initial TMSV state is denoted with 
|γ �1,2 =

∑∞
i=0 µi(γ )|i�1|i�2 with coefficients µi(γ ) = cosh−1 γ tanhi γ  , where the parameter γ ∈ R sets the 

experimentally controllable squeezing strength. We model the overall losses and inefficiencies in the preparation 
scheme as attenuation of the measured mode prior to its displacement. This can represented by a Gaussian 
quantum channel G η

2 (ρ̂) with its action on the mode given in terms of Kraus  operators65 as 
G

η
2 (ρ̂) =

∑∞
i=0 M̂2(i)ρ̂M̂

†
2 (i) with M̂2(i) = 1√

i! (
√
1− η)i

√
ηN̂2 Âi

2 , where N̂2 := Â†
2Â2 defines the photon num-

ber operator and Â2 denotes the annihilation operator respective to the measured mode. The parameter η ∈ [0, 1] 
describes the efficiency of the preparation circuit. Subsequently the converse 1− η characterizes the overall losses 
and inefficiencies in the preparation scheme. The displacement of the second mode is given by the unitary opera-
tor D̂2(ξ) = exp(ξ Â†

2 − ξ∗Â2) , where ξ ∈ C is the displacement  amplitude66. In a more realistic analysis of the 
preparation circuit it would be straightforward to include the propagation losses affecting the mode carrying the 
resulting state. This form of decoherence can be accounted for by modifying the squeezing strength of the non-
linearly squeezed  state67. Consequently we do not consider this additional attenuation since it does not influence 
the fundamental properties of these non-Gaussian states.

From the experimental perspective the parameters γ and ξ can be fine tuned to engineer a desired state ρ̂ 
with optimal performance given particular experimental configuration characterized by the efficiency η and 
conditioning on the detection outcome π with respective POVM element �̂(π).

We can utilize this scheme to prepare a variety of quantum states. Consider now a lossless configura-
tion employing an ideal PNRD. Its POVM elements correspond to projectors |f ��f | onto individual Fock 

(1)ρ̂ = P−1 tr 2
{
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η
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Figure 1.  Variation of the conditional preparation scheme. We start with a two mode squeezed vacuum state 
|γ � . One of its modes is then displaced with D̂(ξ) and measured, using either APD, PNRD or an APD cascade 
approximating PNRD. The detection outcome is characterized by the POVM element �̂ . We model overall 
losses and inefficiencies within the scheme using a beam splitter with intensity transmittance η to represent 
attenuation of the signal state in the setup.
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states 
∣

∣f
〉

 . The output state, conditioned on the detection of a particular Fock state 
∣

∣f
〉

 , is then proportional 
to 

∑∞
i=0 µi(γ )[D(ξ)]fi|i� where the coefficients µi(γ ) follow from the definition of the TMSV state and 

[D(ξ)]fi = �f |D̂(ξ)|i� are matrix elements of the displacement operator. By tuning the parameters γ and ξ we 
can construct a set of states parametrized by the possible combinations of the µi and [D(ξ)]fi coefficients.

Possible applications of this scheme include construction of generally non-classical superpositions of Fock 
 states38,39 and, in particular, non-linearly squeezed non-Gaussian  states14,63. Every application can be translated 
into constrained optimization of the tunable parameters with the constraint and objective functions embodying 
the nature of the particular application.

For example, if one were to construct a specific state |ψ� , the optimization objective could be to maximize 
some metric of similarity with the target state, e.g., fidelity. It would also be practical to construct the state with 
non-negligible probability of success. This requirement could be expressed either as a constraint P ≥ τ allowing 
only solutions with the probability greater than some threshold, or as an additional optimization objective in 
multi-objective optimization.

The constraint and objective functions generally involve the success probability (2) and the resulting density 
operator (1). Both of which can be obtained by simulating the preparation procedure numerically on a classi-
cal digital computer. But alas, numerical simulations come with their own hurdles which will be identified and 
subsequently addressed in the following sections.

Perils of numerical simulation of CV systems
Classical digital  computers68 encode information into finite sequences of bits and it is therefore impossible to 
represent arbitrary real numbers. The standard  approach59–62,69 is to approximate real numbers with floating 
point (FP) numbers. Real numbers are then rounded to their closest representable FP neighbors. This gener-
ally introduces rounding errors. To make matters worse, FP arithmetic with FP numbers does not necessarily 
produce exactly representable floating point numbers. Results of FP arithmetic must be rounded, possibly intro-
ducing additional rounding  errors59–62,69. Consequently complex sequences of arithmetic operations possess the 
potential to accumulate and even amplify rounding errors. Even the most straightforward tasks such as adding 
up a sequence of FP numbers can produce widely different results with varying degrees of accuracy based on the 
algorithm of  choice59–61. Rounding error analysis is therefore a crucial part of algorithm  design58–61 and com-
monly used numerical algorithms are frequently accompanied by rigorous rounding error analysis. Nevertheless 
numerical simulation cannot be considered completely accurate as the error analysis only establishes upper 
bounds on the numerical  errors58,60–62.

The practical concerns, when dealing with numerical simulation, are therefore always related to size of the 
errors, rather than to their presence. This is a familiar concept in physics, a discipline which is well acquainted 
with limited precision of measured  quantities70,71. Numerical simulation of CV systems suffers from further 
issues related to the fundamental representation of quantum states and quantum operations. CV states reside in 
infinite-dimensional Hilbert spaces and can be, in principle, described in two distinct ways. The first descrip-
tion employs continuous functions, either wave functions given in position or momentum representation, or 
quasi-probability  distributions5–7 which combine the two quadratures. The practical issue with this approach 
is the continuous nature and generally infinite support of these functions as their support must be limited to 
finite intervals and both their domains and ranges discretized during numerical  integration61,62, introducing 
additional numerical errors.

Alternatively we can take the advantage of the discrete Fock basis spanned by eigenstates of the number opera-
tor. This basis is still infinite but, unlike in the case of basis spanned by eigenstates of continuous operators, the 
number of its elements is countable. While exact representation of CV states in Fock basis remains impossible, 
we can truncate the basis to a finite number of elements and approximate the original Hilbert space with this 
truncated, finite-dimensional, restriction. We can thusly avoid discretization errors and deal with truncation 
errors instead. Consequently numerical simulations utilizing truncated Hilbert spaces spanned by truncated 
Fock basis are often employed in detailed analysis of CV quantum circuits.

Formal definition of truncated Fock spaces. Let H∞ denote the original Hilbert space and let 
S := {

∣

∣j
〉

∈ H∞� j = 0, 1, . . . } be the original Fock basis (FB). In this basis the vector components of indi-
vidual Fock states 

∣

∣j
〉

∈ S satisfy [
∣

∣j
〉

]Si := �i|j� ≡ δij , that is, Fock states form an orthonormal basis. We 
take the first F elements of FB, {|0�, . . . , |F − 1�} ⊂ S and truncate their vector forms to the first F compo-
nents, forming the truncated Fock basis (TFB) SF = {|0�(F), . . . , |F − 1�(F−1)} where we use the upper 
right indices in 

∣

∣j
〉(F) to denote dimensions of said vectors. Vector components of TFB elements satisfy 

[
∣

∣j
〉(F)]SFi := (F)�j|i�(F) ≡ [

∣

∣j
〉

]Si ≡ δij ∀i = 0, . . . , F − 1 . The basis therefore remains orthonormal. The linear 
hull of SF forms the F dimensional truncated Fock space (TFS) HF.

So far we have only defined TFS itself and the transition from FB to TFB. In the following we define the 
transition of vectors from H∞ into HF and linear operators from L (H∞) to L (HF) . Let |ψ� ∈ H∞ be an 
arbitrary state expressed as |ψ� =

∑∞
i=0 cψ(i)|i� (where |i� ∈ S ) with coefficients cψ(i) = [|ψ�]Si := �i|ψ� ∈ C . The 

expression truncF{|ψ�} :=
∑F−1

i=0 cψ(i)|i�(F) (where |i�(F) ∈ SF ) then defines its truncated variant from HF . Let 
Ĝ ∈ L (H∞) be a linear operator on H∞ expressed as Ĝ =

∑∞
i=0

∑∞
j=0 g(i, j)|i��j| (where |i�,

∣

∣j
〉

∈ S ) with matrix 
elements g(i, j) = [Ĝ]Sij := �i|Ĝ|j� ∈ C . Then truncF{Ĝ} :=

∑F−1
i=0

∑F−1
j=0 g(i, j)|i�(F)

〈

j
∣

∣ (where |i�(F),
∣

∣j
〉(F) ∈ SF ) 

defines its truncated analogue on L (HF) . A natural extension of this approach allows for transitions from 
higher-dimensional spaces to lower-dimensional spaces.
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Navigating truncated Fock spaces. In this description, pure quantum states become complex F dimen-
sional vectors of numbers, linear operators turn into complex F × F matrices and the operations we would 
otherwise perform, reduce to linear algebraic expressions such as matrix multiplication, Kronecker products 
and matrix traces. There is, however, a hefty price to be paid for this simplification, manifesting in the form of 
truncation errors with several distinct effects on the simulation.

Firstly, it is impossible to represent general quantum states exactly. Take an arbitrary quantum state |ζ � ∈ H∞ 
and its truncated variant truncF{|ζ �} ∈ HF . The quality of the truncated state can be determined from its nor-
malization, or rather the lack of it, using the cutoff error

where cζ (i) = [|ζ �]Si ≡ �i|ζ � are the vector components of the state |ζ � in Fock representation. In essence the 
quality of the representation is loosely given by the support of the state relative to the dimension of the TFS. This 
is not the only conceivable metric, but it is a convenient one as it is straightforward to calculate.

Secondly, the algebraic structure of the space changes with the transition to finite dimension. As 
a result the usual commutation rules no longer apply since for any pair of operators Ĝ and Ĥ the relation 
truncF{[Ĝ, Ĥ]} = [truncF{Ĝ}, truncF{Ĥ}] does not necessarily hold anymore. We can illustrate the change in 
algebraic structure on bosonic creation and annihilation operators. In the regular infinite-dimensional case 
we have [Â, Â†] = 1̂ , that is, the two operators commute to identity. With the truncated commutator the result 
remains the same truncF{[Â, Â†]} = truncF{1̂} ≡ 1

(F) , which is an identity matrix of the corresponding dimen-
sion F . Conversely the commutator of the truncated annihilation and creation operators differs from identity 
in the final element on the diagonal

which can be understood as a truncation error due to the product of two truncated matrices.
Thirdly and finally, replacing infinite-dimensional operators in arguments of operator functions with 

their truncated versions may not be without consequences. Consider an operator function f (Q̂) . In principle 
truncF{f (Q̂)} �= f (truncF{Q̂}) for general operator arguments. This has grave consequences for numerical simu-
lation of unitary evolution. It is customary to approximate the exponential operator, truncF{exp(Q̂)} , with the 
matrix exponential expm (truncF{Q̂}) of the truncated operator  argument53. However, this method can not be 
relied upon as truncF{exp(Q̂)} �= expm (truncF{Q̂}) . We must therefore seek alternative approaches: there are 
three primary techniques available for numerical simulation. The first one relies on the knowledge of a closed 
form formula for elements of the unitary operator. It has to be derived analytically and is not always attainable. 
The second method, proposed in the recent  paper53, is numerical and derives individual elements of unitaries by 
recurrent formulae. In the third approach the matrix exponential is simply computed with the truncated matrix 
argument as expm (truncF{Q̂}) and the dimension of the computation space is chosen large enough so that the 
errors are irrelevant in the particular simulation.

Neither approach is perfect. Each suffers from specific numerical errors. This is a valid concern even for 
the first method which uses analytical forms: it is because mathematical expressions, especially those involving 
factorials, large powers of non-negligible numbers or relying on special functions, which are often defined using 
similar expressions or recurrent formulae, still need to be evaluated numerically with finite precision in floating 
point arithmetic, leading to introduction and eventual accumulation of rounding errors. The numerical errors 
cannot be straightforwardly calculated without a priori knowledge of the ideal operator or without thorough 
numerical analysis of rounding errors, an area of expertise that is mostly out of the scope of theoretical physics 
and therefore scarcely present in research reports.

In the following section we apply these methods of construction to the simplest experimentally testable 
example, coherent displacement, and use this particular case study to demonstrate the fundamental shortcom-
ings of each approach.

The curious case of coherent displacement
Coherent displacement is a fundamental Gaussian operation in quantum optics used in a broad range of quantum 
protocols for quantum state preparation, manipulation, and  measurement5–7,13,14,66. Coherent displacement is 
represented by the unitary operator

where ξ ∈ C gives the displacement amplitude and Â, Â† represent the annihilation and creation operators. It is 
one of the operations for which a closed form formula  exists66, given as

where Lαβ(x) denotes the associated Laguerre polynomial  function72. This relation only covers the lower triangular 
matrix; the rest of the matrix can be easily recovered from (6) using

(3)cutofferror
F

{|ζ �} := 1−
F−1
∑

i=0

∣

∣cζ (i)
∣

∣

2
,

(4)[trunc
F

{Â}, trunc
F

{Â†}] = 1
(F) − F|F − 1�(F)�F − 1|

(5)D̂(ξ) := exp(ξ Â† − ξ∗Â)

(6)�m|D̂(ξ)|n� =
√

n!
m! ξ

m−n exp

(

−1

2
|ξ |2

)

L(m−n)
n (|ξ |2) , m ≥ n

(7)�m|D̂(ξ)|n� = (−1)m−n (�n|D̂(ξ)|m�)∗ , m < n .
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The formula (6) can be computed in multiple different ways with varying numerical accuracy impacted by the 
simplifications made in the expression and the order of their evaluation. When implemented exactly as it stands 
in (6), it is plagued by the limitations of FP arithmetic. Its first term underflows for comparatively large m, while 
the second term overflows for |ξ | > 1 and large enough difference m− n . When both the numerical underflow 
and the overflow coincide, the ill-defined expression 0×∞ is evaluated, resulting in error. We discuss the cir-
cumstances in detail in Sect. S1 of the Supplementary material and establish a set of acceptable combinations of 
the m, n and |ξ | parameters such that formula (6) is always well defined.

We can utilize the recurrent  formulae53 or the plain matrix  exponential73,74 with a truncated argument instead 
of the closed form formula (6). While we can not ascertain their accuracy without a priori knowledge of the 
ideal operator, we can easily determine whether the generated matrices G are outright incorrect by checking 
the normalisation

of displaced truncated Fock states {|0�(F), . . . , |F − 1�(F)} . It corresponds to the sum of squared abso-
lute values of elements in the jth column of the truncated displacement matrix G := truncF{D̂(ξ)} or its 
approximation employing the matrix exponential expm (truncF{Q̂}) with truncated argument where we set 
truncF{Q̂} := ξ truncF{Â†} − ξ∗ truncF{Â}.

In Fig. 2 we show the normalisation (8) for trunc101{D̂(3− 2ı)} constructed using the closed form formula (6), 
represented with a blue solid line, the recurrent  formula53 shown with a red dash-dotted line, and approximated 
with the matrix exponential (black dashed line). We utilize double  precision60,69 in the computation and try to 
avoid numerical issues plaguing the direct method (6) by keeping the working dimension sufficiently low. There 
are two regions of qualitatively distinct behaviour in the plot. The first region, spanning the first 40 Fock states, 
shows correct normalization for all three methods of construction. In the following region the normalisation 
dwindles for both the closed form and the recurrent formulae whilst the matrix exponential remains incorrectly 
normalized. It remains normalized only because the matrix exponential function, by definition, produces unitary 
matrices from anti-Hermitian arguments. Unitarity is not necessarily the desired outcome here since the goal is 
to obtain the correct trunc101{ expm (Q̂)} matrix rather than the computed approximation expm (trunc101{Q̂}).

Let us explicitly discuss the issue at hand. The displacement operator (5) is unitary by definition. Columns 
of its matrix representation can be understood as coefficient vectors of displaced Fock states. In the infinite-
dimensional case these states should be normalized, that is the vector 2–norm75 of each column should satisfy 
�D̂(ξ)

∣

∣j
〉

�2 ≡ 1∀
∣

∣j
〉

∈ S . However, this will not generally hold in finite dimension where we can find a threshold 
state |τ �(F) ∈ SF that, when displaced, will not be properly represented on the TFS. The states j ≥ τ will suffer 
from non-negligible errors (3), making their normalization � truncF{D̂(ξ)}

∣

∣j
〉(F)�2 < 1.

The plot in Fig. 2 reveals that when the matrix is constructed via (6), the higher states are correctly denormal-
ized. Conversely the matrix exponential produces incorrectly normalized states. In this context such behavior 
can be considered a manifestation of truncation errors.

The normalisation of the recurrently computed matrix starts to rise exponentially somewhere around j ≈ 50 
due to accumulation of rounding errors. This behavior depends on the chosen ξ and the breakdown is more 
prominent when ξ is large. Here the displacement ξ = 3− 2ı was chosen to emphasize this effect. For instance, 
when ξ = 1 , a similar exponential breakdown appears for  j ≈ 400 instead.

Truncated approximate matrix exponential (TAME)
So far we have seen that, when it comes to numerically generating truncated representations of unitary opera-
tors, both direct calculation and the recurrent formulae have fundamental issues leading to significant rounding 
errors or numerically invalid expressions. The matrix exponential function avoids these issues mostly at the cost 

(8)�G
∣

∣j
〉(F)�2 :=

√

√

√

√

F−1
∑

i=0

∣

∣

∣
[G]SFij

∣

∣

∣

2

Figure 2.  Normalisation (8) of individual displaced truncated Fock states 
∣

∣j
〉(101) with 0 ≤ j ≤ 100 . The 

displacement operator trunc101{D̂(3− 2ı)} is constructed on 101 dimensional TFS using the closed form 
formula (blue solid), the recurrent formula (red dash-dotted), and approximated with the matrix exponential 
(black dashed line).
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of truncation errors and their subsequent amplification. However, the observations in Fig. 2 also suggest that 
these errors tend to be significant only in higher regions of said matrices.

This opens up a new possibility of approximating the exponential operators. We can use the matrix exponen-
tial on a sufficiently higher dimension d1 and only then truncate the result to the required d0 , thus avoiding the 
erroneous areas, while, at the same time, keeping the computational dimension d1 low enough to avoid needlessly 
increasing the time of computation. We call this approach truncated approximate matrix exponential (TAME). 
Consider the approximation of the truncated displacement operator, truncd0{D(ξ)} ∈ L (Hd0) , constructed in 
such a way,

Here d1 represents the initial working dimension and d0 the final dimension of the target TFS. Following (5) we 
set truncd1{Q̂} := ξ truncd1{Â†} − ξ∗ truncd1 {Â}.

In Fig. 3 we compare trunc101{D̂(3− 2ı)} constructed using the closed form formula (6) and approximated 
with TAME. We chose the dimension d0 and the displacement magnitude |ξ | to accommodate the limits estab-
lished in Sect. S1 of the Supplementary material. The secondary dimension d1 = 161 was chosen high enough to 
suppress the effects of truncation errors. The plot suggests that our method produces results equal to the closed 
form formula in terms of the normalisation (8). Further comparison of individual matrix elements reveals that, 
on average, the approximate matrix matches (6) up to 14 decimal places with the worst difference matching only 
up to 11 decimal places.

What remains to be determined is the proper choice, or rather the methodology of choosing a sufficiently 
large working dimension d1 given the target dimension d0 . In the subsequent paragraphs we are going to show 
that it is practical to set the dimension d1 as small as possible. The de facto standard scaling and squaring matrix 
exponentiation  algorithm73,74 relies on matrix multiplication with the actual number of matrix products depend-
ing on the binary logarithm of the 1–norm75 of the exponentiated matrix.

The 1–norm75 of the truncd1{Q̂} argument inside the matrix exponential within (9) reads

where the final approximation holds asymptotically. Therefore the asymptotic computational complexity of 
the matrix exponential in (9) scales as O (log2 d1) in terms of matrix products. The complexity of each matrix 
multiplication, specified in terms of FP operations, depends on the algorithm it utilizes. A naive textbook imple-
mentation scales as poorly as O (d31) , whereas the more sophisticated Strassen  algorithm76 scales approximately 
as O (d2.8071 ) . Consequently the computational complexity of (9) scales as O (d2.8071 log2 d1) under optimal condi-
tions. It is therefore imperative to keep the dimension d1 as low as possible.

(9)trunc
d0

{D̂(ξ)} ≈ tame (Q̂, d1, d0) := trunc
d0

{

expm
(

trunc
d1

{Q̂}
)

}

.

(10)� trunc
d1

{Q̂}�1 = �ξ trunc
d1

{Â†} − ξ∗ trunc
d1

{Â}�1 = |ξ |
(

√

d1 − 1+
√

d1 − 2
)

≈ 2|ξ |
√

d1 ,

Figure 3.  Normalisation � trunc101{D̂(3− 2ı)}
∣

∣j
〉(101)�2 of displaced Fock states 0 ≤ j ≤ 100 . The matrix was 

constructed using the closed form formula (black bullets) and approximated with TAME (red, solid) where we 
set d0 = 101 and d1 = 161 . In both plots the dimension d1 for TAME was determined via Algorithm 1.
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We propose a simple iterative algorithm for finding optimal d1 . Suppose a sufficiently sized expm (truncq{Q̂}) 
matrix is correct on some region spanning {|0�(u), . . . , |u− 1�(u)} where u ≤ q . Suppose the matrix exponential 
( expm ) algorithm is also consistent: for a differently sized truncp{Q̂} matrix with dimension p > q the computed 
matrix exponential is correct on a region of at least the same size. Given these assumptions, which are upheld by 
the standard expm  implementation73,74, we introduce the Algorithm 1 as follows. First we take the desired dimen-
sion d0 of the correct region and set an equality tolerance ε1 for small numbers: our condition with ε1 = 10

−13 
proclaims two numbers identical if they match up to their twelfth decimal place. Then we search for a pair of 
larger matrices such that their d0 regions match. The search process is significantly simplified by taking the 
dimension of the second larger matrix to be constantly shifted from the first larger matrix. To improve its speed 
we always recycle one of the matrices in the next iteration instead of recalculating it every time. The depth of the 
search is specified by the factor h. In our experience the dimension is found somewhere well below q = 3 · d0 in 
the case of displacement, hence we set the depth h above that. Once the search algorithm finishes successfully, 
we obtain d1.

Verification of approximated matrices
In general, we can not verify the matrix (9) constructed via TAME simply by comparing its elements against 
some exact solution for the obvious reason: if we knew the exact solution we would not be in this situation in 
the first place.

We have used normalisation (8), or more precisely the implied necessary condition of unitarity 
maxij

∣

∣[G]ij
∣

∣ ≤ 1 , to detect outright incorrect matrices in Fig. 2, but alas, necessary conditions alone can not be 
used to prove the matrix correct. In Fig. 2 we determined that employing the recurrent  formula53 in construction 
of truncF{D̂(ξ)} was ill-advised due to accumulation and consequent amplification of rounding errors over the 
course of the computation. While we can not safely use the recurrent formula to construct an arbitrary truncated 
displacement matrix, we can use it to determine whether a candidate matrix, for example one constructed via 
TAME (9), possesses appropriate structure as the formulae define relations between neighboring matrix elements.

We can repurpose the relations Eq. (56–58)  from53 to construct an error matrix

for a given candidate matrix G. The rounding errors are not amplified in computation of the error matrix as 
there is no recursion. Its elements [E]ij give the difference between the actual elements [G]ij of the candidate 
matrix and the values they should have been based on their neighbors, [G]i−1,j−1 and [G]i,j−1 , and the structural 
constraints given  in53.

In Fig. 4 we compare the decadic logarithm of the difference [L]ij = log10
∣

∣[E]ij
∣

∣ for trunc201{D̂(3− 2ı)} 
approximated using (a) TAME ( d0 = 201 , d1 = 277 ) and (b) the plain matrix exponential (d0 = 201 ). In each 
plot we display the row-wise mean i([L]ij) value with blue line. The surrounding light-blue area stretches one 
standard deviation std i([L]ij) from the mean. The maximal difference maxi([L]ij) within each column is rep-
resented by the red line. Finally the dashed black horizontal line (at −16 ) roughly corresponds to the double 
precision unit round-off60.

In Fig. 4 (a) the matrix is structurally correct, with the maximal difference still matching up to 11 decimal 
places. On average the differences fall below the unit round-off, essentially making the errors negligible. In 

(11)

[E]0,0 = [G]0,0 − exp

(

−1

2
|ξ |2

)

[E]i,0 = [G]i,0 −
ξ√
i
[G]i−1,0

[E]i,j = [G]i,j −
(√

i√
j
[G]i−1,j−1 −

ξ∗√
j
[G]i,j−1

)
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Fig. 4 (b) the matrix constructed using the plain matrix exponential maintains the correct structure in the first 
third of its columns, however, the truncation errors begin to manifest at that point. This can be observed as an 
exponential explosion in the maximal difference (around the 75th column) and a steady rise in the mean value. 
We saw a similar manifestation of truncation errors in Fig. 2 where the columns incorrectly retained their nor-
malization as if the truncated matrix remained unitary.

Numerical simulation of the preparation circuit
The CV nature of the preparation scheme in Fig. 1, described with relations (1) and (2), makes its exact numerical 
simulation not only impractical, but outright impossible. We can, however, perform an approximate numerical 
simulation of the formulae on a TFS. We have already proposed TAME as the method for approximating the 
truncated displacement operator. We have yet to ascertain a key ingredient of the simulation. We must determine 
the optimal dimension d0 of the TFS, which should be large enough to support all the quantum states occurring 
in the simulation.

Following the Fig. 1, we begin with the TMSV state. One of its modes is attenuated by the G η
2  channel. This 

only reduces its energy and, as a consequence, the required support shrinks in size. We can therefore safely 
disregard the attenuating channel and simplify the expression for the marginal state (1) into 
ˆ̺ ∝ tr 2

{

D̂2(ξ)|γ �1,2�γ |D̂2(ξ)
†�̂2

}

 . We then require that both the initial and the displaced TMSV states are 
faithfully approximated on the d0 dimensional TFS for all the possible values of γ and ξ . By taking the largest 
displacement ξ⋆ and squeezing rate γ ⋆ considered in the simulation, we can iteratively determine d0 as the least 
dimension such that the cutoff error (3) falls below some threshold ε0 . This condition reads

for the displaced TMSV state. While the coefficients [|γ ⋆�]Sii = cosh−1 γ ⋆ tanhi γ ⋆ of the TMSV state are deter-
mined trivially, the matrix elements [D̂(ξ⋆)]Sij of the displacement operator can not be, in general, obtained 
analytically with (6) and we must employ alternate means such as TAME.

In the simulation we consider 0 ≤ γ ≤ 1 , corresponding to roughly 8.7 dB squeezing, and 0 ≤ ξ ≤ 1 , hence 
we set γ ⋆ ≡ ξ⋆ ≡ 1 while searching for d0 . Once the dimension d0 is found, we determine its respective d1 using 
the Algorithm 1. With the thresholds ε0 ≡ ε1 ≡ 10

−13 we get d0 = 70 and d1 = 90 for γ ⋆ ≡ ξ⋆ ≡ 1 . Note that 
for this particular d1 , the TAME matrices constructed on d1 and d1 + 1 dimensional TFS are identical in double 
precision FP arithmetic.

In the following sections we use the numerical methodology we developed to determine the benefits of using 
PNRD, APD, and APD cascades in a pair of applications of the preparation circuit. First we discuss preparation of 
non-linearly squeezed states (Section “Engineering non-linearly squeezed states”) and then follow with construc-
tion of well defined non-classical superpositions of Fock states (Section “Preparation of high fidelity qubit in Fock 
basis”). In both applications the figures of merit are functions depending on the resulting density matrix (1) and 
the associated probability of success (2). We approach the analysis with a rudimentary grid based exploratory 
strategy for optimization. We divide the [0 ≤ γ ≤ 1] ⊗ [0 ≤ ξ ≤ 1] region into equidistant 1001× 1001 grid of 
points pj := (γj , ξj) and evaluate the numerically approximated relations (1) and (2) for each point pj and each 

(12)1−
d0−1
∑

i=0

d0−1
∑

j=0

∣

∣

∣
[
∣

∣γ ⋆
〉

]Sii[D̂(ξ⋆)]Sij
∣

∣

∣

2

≤ ε0

Figure 4.  Verification of the trunc201{D̂(3− 2ı)} matrix approximated using (a) TAME ( d0 = 201 and 
d1 = 277 ) and (b) plain matrix exponential ( d0 = 201 ). Blue lines mark the row-wise mean i(Lij) values, light-
blue region stretches a standard deviation std i(Lij) away from the mean. The maximal difference maxi(Lij) 
within each column is represented by the red line. The dashed horizontal line corresponds to the unit round-off 
in double precision floating point number representation. (a) The matrix is structurally correct. The average 
differences are negligible, their values falling below the unit round-off. The maximal differences match up to 11 
decimal places. (b) The matrix maintains correct structure in its first third. The truncation errors manifest in the 
rest of the matrix as an exponential explosion in the maximal difference (around the 100th column) and a steady 
rise in the mean value.
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experimental scenario qi := (ηi ,πi) defined by the overall efficiency ηi ∈ {0.80, 1.00} of the setup and expected 
measurement outcome πi respective to the POVM elements. These entail

representing the click of the ideal APD and the first six PNRD outcomes relevant in our preparation scheme, as 
well as PNRD approximations employing APD cascades

where �̂M
n :=

∑d0−1
k=0 pM(n|k)|k�2�k| . The POVM elements �̂M

n  represent outcomes where exactly n detectors 
click within APD cascade comprising M  detectors52. The individual probabilities pM(n|k) read

This way we procure an assortment of probabilities P(i, j) and density matrices ̺ (i, j) corresponding to the pi and 
qj sequences. We then utilize these values in objective and constraint functions, that will be discussed in detail 
in the following sections, to analyze the performance of the preparation scheme in particular applications and 
its response to different experimental configurations.

The numerical simulation and the analysis of its results was implemented using a number of open source 
software  libraries77–83 in Python.

Engineering non‑linearly squeezed states
Nonlinear squeezing was originally  introduced51 as a measure quantifying the quality of approximate cubic 
states suitable for optical measurement-induced quantum  gates37,51. It has been shown to apply to higher ordered 
phase squeezing gates as  well37 and was recently discussed in  detail67. The ideal cubic operation facilitates unitary 
evolution with interaction Hamiltonian proportional to X̂3 . When approximatively implemented in the measure-
ment induced  fashion51 its action in the Heisenberg picture can be represented by the operator transformation

where the X̂S, P̂S operators correspond to the signal state and X̂A, P̂A to some ancillary mode. The first terms of 
both relations correspond to the ideal cubic interaction exp(ı ν

3
X̂
3) . The additional term ( ̂PA − νX̂2

A ) represents 
the nonlinear quadrature of the ancillary mode and embodies the undesirable noisy contribution. It can be 
suppressed by choosing an appropriate ancillary state with the right structure. Effects of this contribution, or 
more precisely its variance and mean, vanish for the ideal cubic state. In general, neither the variance nor the 
mean vanish for physical approximations of the ideal cubic state. Good approximations, however, minimize 
their values and consequently the variance of this contribution may be used to quantify the quality of these 
approximate cubic states.

The preparation scheme presented in Fig. 1 can be utilized for production of quantum states approximating 
the ideal cubic state. We have discussed the methodology of the simulation in detail in Section Numerical simu-
lation of the preparation circuit. In essence we search for optimal values of squeezing γ and displacement ξ that 
lead to high quality cubic state approximations while maximizing the probability of successful preparation. The 
optimization is performed for various experimental scenarios involving different detectors and taking a range 
of overall losses into account.

To measure the approximation quality we adapted the nonlinear quadrature and the concept of nonlinear 
squeezing discussed  in51 to fit our simulation. We employ the nonlinear quadrature Ŷ = µP̂ −

√
2−1µ−2X̂2 

and use its variance V(ρ̂) = �(Ŷ − �Ŷ�ρ̂ )2�ρ̂ to measure the nonlinear squeezing of arbitrary states ρ̂ . Potential 
effects of Gaussian  squeezing51,67 on V(ρ̂) are eliminated by minimizing over the parameter µ . Consequently we 
base our analysis on the minimized quantity M(ρ̂) := �

−1
G minµ V(ρ̂) normalized with respect to the minimal 

variance �G := minρ̂G minµ V(ρ̂G) ≡ 0.75 achievable by Gaussian states ρ̂G67.
The numerical simulation yields density matrices ̺(i, j) along with the P(i, j) probabilities of success corre-

sponding to different experimental parameters. We then compute the individual moments required in the calcu-
lation of V(ρ̂) from the elements of density matrices ̺ (i, j) . We avoid the matrix representation of the operators 
in the computation to avert truncation errors and employ closed form formulae instead. The minimization with 
respect to µ within M(ρ̂) is solved analytically.

We thus obtain M(i, j) values for their respective ̺ (i, j) matrices and P(i, j) probabilities. We then divide the 
dataset corresponding to each experimental scenario qi into bins based on values of the variance M(i, j) and find 
the maximal attainable probability P(i, j) within each bin.

In Fig. 5 we present a comparison of the attainable variance M(ρ̂) as a function of success probability P. 
We examine different detection outcomes, in particular the PNRD projection onto |3� (red line) and its three 
approximations realized through an APD  cascade52 where three APD detectors out of four (dashed magenta), five 
(magenta) and ten (blue) click. Their respective POVM elements �̂4

3 , �̂
5
3 and �̂10

3  are given by the relation (14). 
We consider a single APD detector (black line) as well. The plots show (a) 99% , (b) 90% , and (c) 80% transmission 
efficiency η . The results are normalized with respect to the minimal variance achievable by Gaussian states. The 
optimal cubic state  approximations51 

∣

∣v⋆
〉

∈ Hv constructed on v dimensional TFS are marked with dashed 
horizontal lines. These states were found by searching for pure states spanning the first v Fock states that would 

(13)12 − |0�2�0|, |1�2�1|, |2�2�2|, |3�2�3|, |4�2�4|, |5�2�5|, |6�2�6|

(14)�̂10
1 , �̂5

1, �̂
2
1, �̂

10
3 , �̂5

3, �̂
4
3

(15)pM(n|k) := M−k
n

∑

l=0

(

n
l

)

(−1)l(n− l)k .

(16)
X̂S → X̂S ,

P̂S → (P̂S + νX̂2
S )+ (P̂A − νX̂2

A) ,
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minimize the variance M(ρ̂) of the non-linear  quadrature51. Their inclusion makes it possible for qualitative 
comparison with the states produced by our scheme.

In general using PNRD yields the best results. In the idealized scenario with 99% efficiency the PNRD project-
ing onto |3� approaches the variance of the optimal H4 non-linearly squeezed state 

∣

∣4⋆
〉

 . It also attains the best 
values consistently across the considered transmission efficiencies, therefore producing comparatively better 
approximations of the cubic state than either the APD cascades or a single APD. In the 90% and 99% regimes, 
the APD cascade comprising ten detectors promises better performance than a single APD or any other cascade 
configuration for that matter. In the low-efficiency mode ( 80% ) we can see that a single APD outperforms APD 
cascades for probabilities of success greater than 5% . This can be attributed to the imperfections inherent to APD 
 cascades52. Their flaws become emphasized with increased loss, rendering a single APD to be the better choice.

In conclusion, unless a PNRD capable of distinguishing at least three photons is available, it is advantageous to 
use a single APD in any practical scenario with non-ideal transmission efficiency as long as success probabilities 
larger than approximately 5% are desired. The advantage of a single APD can be offset by using an exorbitant 
number of detectors within APD cascade.

Preparation of high fidelity qubit in Fock basis
The qubit-like superposition |ϑ� := cosϑ |0� + sinϑ |1� represents one of the simplest non-Gaussian quantum 
states of light. It serves an important role in quantum information  processing84 and is one of the resources 
available in contemporary experimental quantum  optics85–87. As such it is has been employed in experimen-
tal demonstrations of various theoretical concepts including witnessing of non-Gaussianity88–91 and hybrid 
 entanglement44,92 in quantum communication.

This family of quantum states can be produced with the preparation scheme we have previously introduced 
in Fig. 1. We can search for the optimal squeezing γ and displacement ξ parameters to obtain a given target state 
|ϑ� with sufficient fidelity F = �ϑ |ρ̂|ϑ� and maximal performance in terms of success probability.

We compute the corresponding Fϑ(i, j) values for the P(i, j) probabilities and ̺ (i, j) density matrices obtained 
in the simulation described in detail in Section Numerical simulation of the preparation circuit. We then divide 
the dataset for each experimental scenario qi into bins comprising subsets of data satisfying Fϑ(i, j) ≥ τ where 
τ specifies a moving fidelity threshold. The maximal attainable probability P(i, j) is then found for each subset.

In Fig. 6 we demonstrate the relative improvement in probability of successfully engineering |ϑ� states by 
employing different detectors instead of a single APD. We consider a pair of target states, 

∣

∣

π
3

〉

 and 
∣

∣

π
6

〉

 , both 
evaluated for 99% and 80% transmission efficiencies. These target states were chosen to probe the improvement 
for unbalanced superpositions biased either towards |0� or |1� states. In the plot we show the result obtained 
for projection onto |1� (red line) realized by PNRD and the results obtained with its approximations real-
ized through APD cascades where a single detector out of ten ( �̂10

1  , magenta), five ( �̂5
1 , blue) and two ( �̂2

1 , 
black) clicks. The POVM elements �̂M

n  of the cascades were defined in (14). The figure of merit is defined as 
L := (log10 P• − log10 PAPD) with P• respective to individual detection outcomes.

Figure 5.  A comparison of attainable variance M(ρ̂) as a function of success probability. The variance is 
normalized with respect to the minimal variance achievable by Gaussian states. We use the same vertical and 
horizontal axes in the plots to show the contrast between the almost ideal (a) and lossy (b, c) scenarios with 
99% , 90% and 80% transmission efficiencies. Horizontal dashed lines are used to mark the optimal cubic state 
approximations 

∣

∣v⋆
〉

∈ Hv constructed on low-dimensional TFS. We encode the information about the POVM 
elements as follows: APD click with solid black line, PNRD projection onto |3� with solid red, APD cascades 
comprising four ( �̂4

3
 , dashed magenta), five ( �̂5

3
 , magenta) and ten ( �̂10

3
 , blue) detectors where three detectors 

click. Overall, utilizing the PNRD |3� (solid red) produces states with lowest non-linear variance, therefore 
producing comparatively better approximations of the cubic state. In both (b) and (c) a single APD outperforms 
the APD cascades comprising five and four detectors for probabilities greater than 1% . In this regime the cascade 
comprising ten detectors still offers advantage over single APD. In (c) a single APD outperforms APD cascades 
comprising either four, five or ten detectors for success probabilities larger than roughly 5%.
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In general, conditioning on the PNRD |1� detection outcome yields the best results. In the high-fidelity regime 
with 99% efficiency the relative improvement is roughly tenfold for 

∣

∣

π
3

〉

 and roughly four times better for 
∣

∣

π
6

〉

 . 
The APD cascades comprising ten and five detectors follow. The relative lead of the PNRD diminishes in the 
80% efficiency regime. Its advantage also dwindles when we consider target states closer to |0� , such as the 

∣

∣

π
6

〉

 
state. While the cascade comprising two detectors falls short in every case, it still outperforms a single APD, 
albeit not by a lot.

Conclusions
We have analyzed the numerical accuracy of several currently available  methods53,66 used in construction of the 
truncated coherent displacement operator, an essential ingredient of state preparation in quantum  optics14,30,32,36 
and many protocols used in quantum information  processing5–7,13,14,66. We have proposed an alternative approach 
promising a better accuracy. Our method is based on the standard matrix  exponential73,74 with truncated argu-
ment. We compute the matrix exponential on a higher-dimensional space and truncate the resulting matrix to 
the target dimension, thus stripping erroneous matrix elements away from the truncated displacement operator. 
To avoid negatively impacting computational performance, the higher dimension should be ideally kept as low 
as possible. To this end we provide an off-line search algorithm that can be used to determine its optimal value. 
To ascertain the accuracy of the resulting matrix we complement the construction method with a verification 
strategy based on the recurrent formulae discussed  in53.

We have used our construction method for analysis of non-Gaussian state preparation scheme based on suit-
able manipulation of a two mode squeezed vacuum with subsequent photon counting  measurement14,39,63,64 in 
the context of engineering non-linearly squeezed cubic  states14,38,51 for measurement induced cubic  gates14,37,51 
and construction of qubit-like superpositions between vacuum and single photon states. The latter application 
can be verified experimentally with currently available technology. We have compared the effects of differ-
ent detection mechanisms, including APD, PNRD and its approximations using APD  cascades52 with varying 
number of APD detectors, to determine practical approach towards state preparation. In our analysis we have 
optimized the free parameters of the prepraration scheme, the initial squeezing and the displacement, to attain 
optimal results in both applications. This analysis also provides additional metric which can be used to quantify 
the quality of APD cascades. We have found that in practical applications when PNRD is not available, using 
a single APD to engineer non-linearly squeezed states offers better performance compared to employing APD 
cascades comprising small number of detectors. We attribute this counter-intuitive result to the imperfections 
inherent to APD  cascades52 which are exaggerated with increased loss; these flaws became significant for 20% 
overall loss. The primary cause of this behaviour lies within the employed avalanche detectors as a single click 
may be triggered by multiple photons. While this is a critical issue for multi-photon state engineering, it is not 
as significant for single-photon states. We have determined that using APD cascade, even if one comprising 
only a pair of APD detectors, improves upon using a single APD in preparation of high-fidelity non-Gaussian 
qubit-like superpositions.

Figure 6.  Benchmarking the performance of PNRD and its approximations using APD cascades relative to a 
single APD detector in preparation of particular superpositions |ϑ� := cosϑ |0� + sinϑ |1� parametrized with 
ϑ ∈ R . The PNRD projection onto |1� is represented by red line, whereas the magenta line corresponds to APD 
cascade comprising ten detectors where a single detector clicks ( �10

1
 ), blue line to cascade of five detectors ( �5

1
 ) 

and black line depicts the case with two detectors (�2
1
 ). The plots demonstrate preparation of two distinct states 

while considering different transmission efficiencies. In (a) and (c) we aim to prepare 
∣

∣

π
3

〉

 . In (b) and (d) we 
target 

∣

∣

π
6

〉

 . In plots (a) and (b) we consider 99% transmission efficiency, while in (c) and (d) we consider mere 
80% . The horizontal dashed line marks a twofold improvement in each plot. (a) In the high-efficiency regime we 
obtain roughly tenfold improvement in the high-fidelity preparation of the 

∣

∣

π
3

〉

 state. The PNRD approximations 
using more than two detectors offer a significant improvement as well. (b) While the advantage of PNRD is 
reduced when targeting the state biased towards |0� , it still offers roughly four times better performance. (c) 
The PNRD detector and its approximations offer 2-3x higher success probability even in the lower-efficiency 
scenario. (d) The PNRD detector and its approximations offer roughly twofold improvement.
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Our circuit variant can be extended to utilize multiple displacements and detectors. Similarly the proposed 
method for numerical construction of truncated unitary operators is not limited to displacement only can be 
applied to, for example, squeezing or cubic phase-shift operators. Furthermore, the method could be employed 
in preparation of a wider variety of quantum states with practical applications, such as GKP  states14.
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