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a b s t r a c t

An approach to assay proteolytic activity in vivo by altering the subcellular localization of a labelled
substrate was demonstrated. The assay included a protein shuttling between different cellular com-
partments and a site-specific recombinant protease. The shuttle protein used was the human im-
munodeficiency virus type 1 (HIV-1) Rev protein tandemly fused to the enhanced green fluorescent
protein (EGFP) and the red fluorescent protein (RFP), while the protease was the site-specific protease
VP24 from the herpes simplex virus type 1 (HSV-1). The fluorescent proteins in the Rev fusion protein
were separated by a cleavage site specific for the VP24 protease. When co-expressed in COS-7 cells
proteolysis was observed by fluorescence microscopy as a shift from a predominantly cytoplasmic lo-
calization of the fusion protein RevEGFP to a nuclear localization while the RFP part of the fusion protein
remained in the cytoplasm. The cleavage of the fusion protein by VP24 was confirmed by Western blot
analysis. The activity of VP24, when tagged N-terminally by the Myc-epitope, was found to be com-
parable to VP24. These results demonstrates that the activity and localization of a recombinantly ex-
pressed protease can be assessed by protease-mediated cleavage of fusion proteins containing a specific
protease cleavage site.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Proteases play an important role in many biochemical path-
ways such as blood coagulation, complement activation, meta-
morphosis and digestion [1]. They have been the focus of both
biological and disease-related studies, including ones involving
apoptosis, Alzheimer's disease, cancer and viral infections. This has
made them attractive targets for drug development [2–5], as the
inactivation or inhibition of a specific protease can block either
cellular or disease-related processes [6]. Both for monitoring the
activity of a target protease and for drug development purposes
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there are benefits by carrying out testing in a living cell that re-
presents a complex biological system. Accordingly, there has been
significant interest in developing new technologies for monitoring
the activity of a target protease inside a living cell. Different
technologies for monitoring the activity of a target protease have
been developed and assayed, for instance ones involving fluores-
cence cross-analysis, dimerization-dependent fluorescent protein
exchange or translocation of a fluorescent biosensor after proteo-
lytic cleavage [7–12]. Here, we present an assay to monitor re-
combinant protease activity in vivo by combining an altered sub-
cellular distribution with fluorescence-based separation of a sub-
strate in the form of a co-expressed shuttle protein fused to dual-
colour fluorescence.

The system included two components: (1) a shuttle protein
fused to two different fluorescent proteins separated by a pro-
tease-cleavable linker and (2) a cognate protease carrying an
epitope detectable by an antibody. The two proteins were co-ex-
pressed in cells, and cleavage of the fusion protein was observed as
separation of the two fluorescent markers by immunofluorescence
microscopy.

In the current implementation of the in vivo protease assay, the
herpes simplex virus type 1 (HSV-1) protease (VP24) was chosen
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as the site-specific protease. The HSV-1 protease catalytic domain
(VP24) is contained within the first 247 amino acid of the 635-
amino acid precursor protein, and it is released from the precursor
through cleavage by the HSV-1 protease itself [13,14]. The cleavage
of precursor protease occurs between the Ala and Ser residues at
amino acids 247/248 and 610/611 [15]. The HSV-1 protease is
characterized as a serine-protease, but unlike serine digestive
enzymes, the HSV-1 viral protease is a highly selective catalyst
[16,17]. Furthermore, a temperature-sensitive mutant version of
this protease has been identified, which can allow for a further
level of control of the system [18]. As a shuttle protein the HIV-1
Rev was chosen, since there is extensive documentation of Rev
trafficking inside cells [19,20]. Rev shuttles between the nuclear
and cytoplasmic compartments by means of its nuclear (NLS) and
nucleolar localization (NOS) signals and the leucine-rich nuclear
export signal (NES) [21–24].

In the approach described here, Rev was fused to EGFP and
DsRed1 separated by one of the cleavage sites (as) recognized by
Fig. 1. Schematic representations of Rev fusion proteins, protease fusion protein an
Rev, enhanced green fluorescent protein (EGFP) and red fluorescent protein (DsRed
GALVNASSAAHVDV was inserted. RevEGFP-DsRed1 represents the fusion protein witho
without DsRed1. The HSV-1 VP24 protein is N-terminally tagged with the Myc epitope.
RevEGFPasDsRed1, RevEGFP-DsRed1, RevEGFP and MycVP24 in COS-7 cells. The anti-My
fixed 48 h post-transfection and analysed by confocal laser scanning microscopy (CSLM
VP24 protease (AEAGALVNASSAAHVDV), while the VP24 protease
was fused N-terminally with a Myc epitope for antibody detection.
Expressed alone the RevEGFPasDsRed1 fusion protein localized
predominantly to the cytoplasm in COS-7 cells. When co-ex-
pressed with the VP24 protease, cleavage was demonstrated both
by cytoplasmic localization of DsRed1 and nucleolar and nuclear
accumulation of RevEGFP. The cleavage was confirmed by Western
blot analysis.
2. Materials and methods

2.1. Plasmids construction

An overview of the different proteins expressed from the re-
combinant plasmids created are shown in Fig. 1A. The plasmid
pcRev encoding wild-type Rev was kindly provided by Drs. M.
Malim and B. Cullen [21]. To construct the plasmid pRevDsRed1, a
d localization of these constructs in COS-7 cells. (A) RevEGFPasDsRed1consists of
1). Between the EGFP and DsRed1 the HSV-1 VP24 recognition sequence AEA-
ut the HSV-1 optimal recognition sequence while RevEGFP is the fusion protein
The molecular sizes are indicated. (B) The intracellular steady state localization of
c Mab 9E10 was used for immunofluorescent detection of MycVP24. The cells were
).
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polymerase chain reaction (PCR) was performed using primer
pairs 5′GAA GAT CTA TGG CAG GAA GAA GCG GAG AC-3′ and 5′-
CCG GAA TTC GTT CTT TAG TTC CTG ACT CCA-3′ with pcRev as a
template. The PCR product was cloned into EcoRI- and BglII-di-
gested pDsRed1-N1 (Clontech). The restriction sites, marked in
bold, were introduced in the primers. To construct the plasmid
pRevEGFP, a polymerase chain reaction (PCR) was performed using
the primer pairs 5′GAA GAT CTA TGG CAG GAA GAA GCG GAG AC-
3′ and 5‘-CCG GAA TTC GTT CTT TAG TTC CTG ACT CCA-3‘ with
pcRev as a template. The restriction sites were introduced in the
primers. The PCR was cloned into EcoRI- and BglII-digested pEGFP-
N1 (Clontech). To construct pbsGas (pBluescript vector), PCR was
conducted using the primers 5‘-CGG GGT ACC GAT GGT GAG CAA
GGG CGA-3′ and 5′-TCC CCC CGG GCC ACG TCC ACG TGG GCG GCG
CTG CTG GCG TTC ACC AGG GCG CCG GCC TCG GCC TTG TAC AGC
TCG TCC ATG-3′ with pEGFP-N1 (Clontech) as a template. The se-
quence encoding amino acids AEAGALVNASSAAHVDV represent-
ing the VP24 recognition sequence is underlined. The PCR product
was treated with kinase and cloned into SmaI-digested pBlueScript
(-) vector. To construct pRevGasR, pbsGas was digested with KpnI
and XmaI and cloned into KpnI- and XmaI-digested pRevDsRed1.
The protein expressed from the plasmid pRevGasR was called
RevEGFPasDsRed1. A control plasmid lacking this optimal protease
recognition site was named pRevGR, and was constructed using
the primers 5′CGG GGT ACC GAT GGT GAG CAA GGG CGA-3′ and 5′-
TCC CCC CGG GCC TTC TCG CTG GCC TGC AGG TAC TTG TAC AGC
TCG TCC AT-3′ with pEGFP-N1 as a template and cloned into KpnI-
and XmaI-digested pRevDsRed1. The restriction sites were in-
troduced in the primers and the sequence encoding the amino
acids YLQASEK representing a short VP24 recognition site is un-
derlined. The protein expressed from the plasmid pRevGR was
called RevEGFP-DsRed1.

The plasmid pJK58 encoding VP24 (kindly provided by Dr V.
Preston) was here named pVP24 [25]. The protein expressed from
the plasmid pVP24 was called VP24. The VP24 gene in pVP24,
flanked by BglII sites, was digested with BglII and cloned into
BamHI-digested pBluescript II SK þ vector (pbsVP24). To construct
pcDNA3.1-MycVP24, PCR was performed using the primers 5′CCG
GAA TTC GCA CCA TGG AAC AAA AAC TCA TCT CAG AAG AGG ATC
TGA TGG CAG CCG ATG CCC C-3′ and 5′-ATT TGC GGC CGC TCA CGC
CTG GAG GTA GGT-3′ with pVP24 as template. The PCR product
was digested with EcoRI and BamHI together with a BamHI- and
NotI-digested pbsVP24 cloned together into EcoRI- and NotI-di-
gested pcDNA3.1þ(Invitrogen). The restriction site EcoRI was in-
cluded in the primer, while the BamHI restriction site was present
in the pVP24 sequence. To make pcMycVP24, pcDNA3.1-MycVP24
was digested with NcoI and NotI and cloned into NcoI- and NotI-
digested pCMV/Myc/cyto (Invitrogen). This recombinant vector
construct has been described before [26]. The protein expressed
from the plasmid pcMycVP24 was called MycVP24. All the con-
structs were verified by sequencing.

2.2. Cell culture and transfection

COS-7 cells were maintained in Dulbecco's Eagle medium
supplemented with 5% fetal bovine serum, Glutamine and Gen-
tamycin. A total of 3 μg of plasmid DNA were used in transfection
experiments with COS-7 cells at 80% cell density in 6-wells plate
using the Lipofectamine 2000 procedure in accordance with Gibco
BRL's instructions. For testing VP24 protease activity the amount of
Rev plasmid was 0.5 μg, while protease plasmids varied from 1 to
2 μg.

2.3. Immunofluorescence

Immunofluorescence microscopy was performed as described
previously [27]. Briefly, cells were fixed in 4% formaldehyde on ice
for 5 min and then treated with methanol at 20 °C overnight.
Monoclonal antibody (Mab) 9E10 against the Myc-epitope was
used to detct Myc-tagged VP24 [28]. The secondary antibody used
for immunofluorescence was fluorescein isothiocyanate (FITC) la-
belled anti-mouse IgG1. The cells were examined with confocal
laser scanning microscopy (CLSM) (LEICA, TCS-SP).

2.4. Western blot analysis and antibodies

Transfected COS-7 cells in 35 mm wells were prepared as de-
scribed previously [27]. For detection of Rev the anti-Rev Mab 8E7
cell culture medium was diluted 1:100 [29]. The anti-Myc Mab
9E10 was diluted 1:200 and used for immunofluorescent detection
of MycVP24. Secondary POD-conjugated anti-mouse was diluted
1:2000 (Amersham). The membranes were developed using the
ECL detection system.
3. Results

The methodology described here involves two components:
(i) a substrate protein fused to two different fluorescent proteins
separated by a linker cleavable by a highly sequence-specific
protease and (ii) the cognate protease fused to the Myc epitope.
Two different versions of fusions constructs were made:
(I) pRevGasR where the EGFP and the DsRed1 were separated by a
linker encoding the cleavage site for VP24 and (II) pRevGR without
this optimal recognition sequence (Fig. 1A). When Re-
vEGFPasDsRed1 was expressed in COS-7 cells a predominantly
cytosolic distribution was observed (Fig. 1B). This is in contrast to
the more nucleolar localization of RevEGFP shown here (Fig. 1B)
and previously [30,31]. In order to detect VP24, a Myc epitope was
fused to the N-terminal (Fig. 1A) and cytoplasmic localization was
evident when MycVP24 was expressed in COS-7 cells (Fig. 1B). To
visualise the subcellular localization of the cleaved products,
transfected cells were analysed by laser confocal microscopy
(Fig. 2). In COS-7 cells transfected with pRevGasR alone a strong
cytoplasmic fluorescence was observed with an aggregated ap-
pearance of the fusion protein (Fig. 2A–C). However, in COS-7 cells
transfected with pRevGasR together with pcMycVP24, a change in
intracellular distribution as a strong green signal in both the nuclei
and nucleoli similar to RevEGFP, while the red signal was found in
the cytoplasm (Fig. 2D–F).

The Rev fusion proteins RevEGFPasDsRed1 and RevEGFP-
DsRed1 was detected by the anti-Rev Mab 8E7 when analysing
expressing COS-7 cells by Western blot. Fig. 3A shows RevEGFP
after cleavage of the fusion protein RevEGFPasDsRed1 by VP24
(lane 1) and that this cleavage did not take place when VP24 was
omitted (lane 2). Lane 3 shows the migration of pRevEGFP. Fig. 3B
shows the same experiment as in A performed with the fusion
protein without the cleavage site for VP24. In Fig. 3C the experi-
ment was performed with the Myc-tagged VP24 showing that the
activity was retained after adding the Myc epitope N-terminally to
the VP24 sequence.

These results showed that the protein translated from pRe-
vGasR was cleaved by MycVP24. Moreover, the results demon-
strated that the sequences added N-terminally to VP24 did not
affect the catalytic activity of the protease. Interestingly, when the
Myc-epitope was placed C-terminally in fusion with VP24, pro-
tease activity was lost, underscoring the need for suitable activity
tests for recombinantly expressed proteins before conclusions re-
garding function can be made [32].



Fig. 2. Protease activity assayed by changes in localization of RevEGFPasDsRed1 after transfection with pRevGasR without or with pcMycVP24 in COS-7 cells. Panels
A–C show cells after transfection with pRevGasR, panels D-F show cells after cotransfection with pRevGasR and pcMycVP24. The left, middle and right columns show images
in red, green and merged channels, respectively. The cells were analysed by confocal laser scanning microscopy (CSLM). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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4. Discussion

This study demonstrated that the activity a recombinant, site-
specific protease can be tested by co-expression of a fluorescently
labelled target protein containing the cleavage site. Here, this was
shown both by Western blot analysis and by a changes in the
subcellular localization of a Rev fusion protein representing a
substrate protein and HSV-1 VP24 as the sequence-specific
protease.

Rev was fused to the tandem EGFP/DsRed1 with a connecting
sequence between them that included a HSV-1 VP24 recognition
site. One possible disadvantage of using EGFP and DsRed1 as
protein tags is their sizes and oligomerization tendency, which
could affect the localization of the fusion protein. However, in this
case it was an advantage since it allowed for detection of changes
in cellular distribution without using inhibitors for nuclear import
or export. This is apparent from the experiments shown here,
where RevEGFPasDsRed1 was localized to the cytoplasm in con-
trast to the normal nuclear and nucleolar distribution of wild-type
Rev and RevEGFP (Fig. 1C) [29,30,33].

Herpes Simplex virus 1 protease (VP24) was selected as a site-
specific protease. The MycVP24 protein localized to the cytoplasm
(Fig. 1B). We selected one of the two Ala/Ser sequences within the
protease precursor protein that are known sites for autoproteolytic
cleavage [15]. The sequence corresponding to the cleavage site
proximal to the C terminus of the 635-residue HSV-1 precursor
protein (AEAGALVNASSAAHVDV), inserted between the green and
red fluorescence protein of the RevEGFPasDsRed1 fusion protein,
was recognized by VP24 when co-expressed in COS-7 cells
(Fig. 2D-F). In contrast, the fusion protein with a sequence
representing the cleavage site proximal to the N-terminus of the
635-residue HSV-1 preprotease (YLQASEK), inserted between the
green and red fluorescence protein of the RevEGFP-DsRed1, was
not cleaved by the protease (Fig. 3B). Earlier results have shown
that cleavage of synthetic peptides by HSV-1 protease, requires 5–
8 residues on both sides of the scissile bond indicating that the
identity and length of the amino acids flanking the P1-P1′ is cri-
tical for recognition and efficient cleavage [34]. The observation
that the linker peptide YLQASEK was not digested also suggested
that the potential proteolysis of cellular proteins by the HSV-1
protease was a minor problem.

The experiments shown in Fig. 2 demonstrate how a change in
subcellular localization can be changed by means of a specific
proteolytic cleavage. When the RevEGFPasDsRed1 protein was
expressed in COS-7 cells in the absence of the protease, both
fluorescent markers colocalize in the cytoplasm. When the cyto-
plasmic protease (MycVP24) is coexpressed with Re-
vEGFPasDsRed1 the two fluorescent markers separated. The
DsRed1 signal remained cytoplasmic after cleavage while the Re-
vEGFP protein accumulated in the nucleus and nucleoli similar to
cells transfected with pRevEGFP (Fig. 1B). These results strongly
suggested that cytosolic MycVP24 cleaved the RevEGFPasDsRed1,
allowing RevEGFP to enter nuclear/nucleolar compartments,
leaving the DsRed1 protein in the cytoplasm.

The aggregation of the DsRed1 protein together with Rev oli-
gomerization seemed to impair the nuclear import of the Re-
vEGFP-DsRed1 fusion proteins. Later versions of the RFP protein
were design to abolish the aggregation.

The results shown here demonstrated that the in vivo activity of
a recombinant protease can be monitored not only by band shift in



Fig. 3. Activity of HSV-1 VP24. COS-7 cells were transfected with the plasmids
indicated above the lanes. A) Western blot analysis of COS-7 cells expressing Re-
vEGFPasDsRed1 protein in the presence (þ) or absence (�) of VP24 protease. B)
Western blot analysis of RevEGFP-DsRed1 proteins in the presence (þ) or absence
(-) of VP24. C) Western blot analysis of RevEGFPasDsRed1 protein in the presence
(þ) or absence (�) of MycVP24. The Rev fusion proteins were detected using the
anti-Rev Mab 8E7. The RevEGFP in lane 3 is shown as a molecular size reference.
Arrowheads: 71-kDa Rev fusion protein and the 45-kDa cleavage product.
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Western blot analysis but also by a change in the subcellular lo-
calization of a double-labelled substrate shuttle protein. Thus the
detection of protease activity can easily be assessed by fluores-
cence microscopy, even in living cells. Given that we have de-
monstrated the basic components of the in vivo protease system,
we suggest that the same approach could be used to monitor
in vivo activities of other proteases. This could be achieved by
adding different cleavage recognition signals between EGFP and
DsRed1 and applying them to other proteases than HSV-1 pro-
tease. HSV-1 VP24 protease also offers the use of temperature-
sensitive mutants, allowing for monitoring the commencement of
the protease activity in a live cell setting.

Monitoring protease activity in living cells is an important tool
that enables testing in systems that more closely resemble real-life
conditions. Several methods have been developed for testing
proteolytic activity using autofluorescent proteins or nucleocyto-
plasmic transport in living cells. Here we combine the use of dual
autofluorescent proteins as an imaging tool with nucleo-cyto-
plasmic transport of the substrate to investigate protease activity
in a living cell. This gives the additional benefit of allowing for
observing the activity both at the level of separation of fluorescent
proteins and of changes in their location inside the cells. The
method seems to be a highly promising tool for high-throughput
screening for protease activity or drug discovery. Furthermore, a
method using this technology is now being developed in our lab to
monitor if a protein has visited a specific cellular compartment.
The availability of a generalized method for monitoring visits to
different subcellular compartments would be useful additions to
the toolbox for both cell biology and cancer research.
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