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Abstract: In this work, a simple enzyme-free flow cytometric assay (termed as TSDR-based flow
cytometric assay) has been developed for the detection of papillary thyroid carcinoma (PTC)-related
microRNA (miRNA), hsa-miR-146b-5p with high performance through the toehold-mediated strand
displacement reaction (TSDR) on magnetic beads (MBs). The complementary single-stranded DNA
(ssDNA) probe of hsa-miR-146b-5p was first immobilized on the surface of MB, which can partly
hybridize with the carboxy-fluorescein (FAM)-modified ssDNA, resulting in strong fluorescence
emission. In the presence of hsa-miR-146b-5p, the TSDR is trigged, and the FAM-modified ssDNA is
released form the MB surface due to the formation of DNA/RNA heteroduplexes on the MB surface.
The fluorescence emission change of MBs can be easily read by flow cytometry and is strongly
dependent on the concentration of hsa-miR-146b-5p. Under optimal conditions, the TSDR-based flow
cytometric assay exhibits good specificity, a wide linear range from 5 to 5000 pM and a relatively low
detection limit (LOD, 3σ) of 4.21 pM. Moreover, the practicability of the assay was demonstrated by
the analysis of hsa-miR-146b-5p amounts in different PTC cells and clinical PTC tissues.

Keywords: hsa-miR-146b-5p; magnetic beads; flow cytometry; thyroid carcinoma

1. Introduction

MicroRNAs (miRNAs) are single-stranded non-coding RNAs, ranging in length from
19 to 25 nucleotides, which were first unintentionally discovered in Caenorhabditis elegans
by Lee and colleagues in 1993 [1]. MiRNAs enable regulating the expression of target genes
by binding to target messenger RNA (mRNA) and inducing its degradation or translation
inhibition [2]. Consequently, miRNAs are involved in the regulation of various biological
processes in organisms, such as cell proliferation, differentiation, metabolism, embryogene-
sis, inflammation, senescence and programmed cell death [3,4]. Recently, massive studies
have demonstrated that the abnormal expression of miRNA is closely related to the occur-
rence and development of human malignant tumors including gastric cancer, liver cancer,
breast cancer and thyroid cancer [5]. There is a rapidly increasing demand for miRNA
detection [6,7], because miRNA is considered as a novel biomarker for cancer diagnosis,
prognostic analysis and molecular targeted drug development. Due to their inherent char-
acteristics including short sequence, low abundance and high sequence similarity among
family members, it is difficult to precisely detect and analyze miRNAs in practical samples.
Recently, various assays/methods have been developed for the detection of miRNAs, such
as Northern blot [8], microarray-based method [9], reverse transcription polymerase chain
reaction (RT-PCR) [10], isothermal exponential amplification method (EXPAR) [11] and
rolling-circle amplification (RCA) method [12]. Although most of these assays/methods
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can be employed to detect miRNAs with high sensitivity and accuracy, they have some
drawbacks/limitations, such as the complex design of probe/primer/template sequence,
tedious detection steps, long assaying time and requirement of expensive reagents (e.g.,
enzymes). Therefore, there is still a strong desire to develop a feasible approach with high
simplicity for rapid quantification of miRNAs in practical samples.

As a versatile tool, magnetic beads (MBs) have been extensively employed for the
purification and quantitative detection of different analytes in complex biological matrices
since MBs have several unique advantages including good stability, uniform size distri-
bution, easy functionalization and rapid response to applied magnetic field [13–15]. For
instance, Li and colleagues have developed a flow cytometric bead assay for the simul-
taneous detection of multiple miRNAs through the integration of size-coded MBs with a
two-step enzyme-mediated cascading signal amplification [16]. Toehold-mediated strand
displacement reaction (TSDR) generally takes place in the case of partially hybridized
duplex with an overhanging single-stranded toehold domain containing 5−8 nucleotides,
in which the displacement reaction is followed by the formation of the toehold-target du-
plex [17]. The TSDR is a useful strategy for the construction of analytical assays with good
performance because the displacement process is fast, predictable and easy to differentiate
the mismatched sequences [18–23]. In addition, MB-assisted TSDR with different detec-
tion principles including fluorescent [24,25], photoelectrochemical [22], colorimetric and
chemiluminescent [26,27] have been developed for the detection of cancer-related miRNAs.

As the most common type of thyroid cancer, papillary thyroid carcinoma (PTC) has
been diagnosed with increasing frequency in recent decades in many developed countries
and China. Although up to 90% of patients with PTC at early stage can achieve long-term
(more than 5 years) survival, life-long surveillance is required [28–30]. Because of non-total
thyroidectomy, the presence of anti-thyroglobulin (Tg) antibodies, and/or lack of iodine
avidity, the clinical used gold standard of life-long surveillance of PTC, monitoring serum
thyroglobulin (Tg) levels is not suitable for up to 25% of patients with PTC [31]. It has been
demonstrated that the occurrence and development of PTC has strong association with high
levels of several miRNAs including miR-146b, miR-222, and miR-221 [32–35]. For instance,
the family member of miR-146b, hsa-miR-146b-5p exhibits very high expression level in
PTC, which can promote the proliferation, migration, invasion and cell cycle progression
of PTC cells through the regulation of cell signaling pathways including downregulating
the expression of CCDC6 [36], IRAK1 and other PTC-related genes [37,38]. Therefore,
hsa-miR-146b-5p can be used as a potential biomarker for the diagnosis of PTC and help
us to understand the mechanism of tumor development.

Herein, we proposed an enzyme-free flow cytometric assay (termed as a TSDR-based
flow cytometric assay) for the detection of thyroid cancer-associated miRNA, hsa-miR-
146b-5p through the combination of MB-based TSDR and flow cytometry fluorescence
detection. Taking advantage of the flow cytometry’s strong analysis ability (such as
high sensitivity and high throughput) and a MB’s magnetic separation capacity, the as-
proposed flow cytometric assay exhibits high performance compared to other methods,
which can be employed to rapidly monitor hsa-miR-146b-5p levels in practical samples
including cell lysates and the clinical tissue homogenate of PTC, showing great potential in
clinical diagnosis.

2. Materials and Methods
2.1. Materials and Reagents

Oligonucleotides (see Table 1 for details) were synthesized by Sangon Ltd. Co. (Shang-
hai, China). Dynabeads® M-270 streptavidin modified (M-270 MBs, 2.8 µm) and 5 × band-
ing and washing (B&W) buffer (25 mM Tris-Hcl, 2.5 mM EDTA, 5 M NaCl, pH 7.5) were
obtained from Thermo Fisher Scientific Co. (Asheville, NC, USA). Diethylpyrocarbonate-
treated distilled water (DEPC water) was supplied by Dingguo Biotechnology Ltd. (Beijing,
China). All buffers were prepared with DEPC water to prevent miRNA degradation.
Dulbecco’s modified Eagle’s medium (DMEM), RPMI-1640 medium and fetal bovine
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serum (FBS) were purchased from HyClone Co. (Los Angeles, CA, USA). Other used
reagents were analytical grade, and were purchased from Sinopharmaceutical Reagents
Ltd. (Shanghai, China).

Table 1. Sequences of oligonucleotides used in the experiments.

Name Sequence (5′ to 3′)

p-DNA Biotin-T10-AGCCTATGGAATTCAGTTCTCA
f-DNA FAM-TGAGAACTGAATTCCA

hsa-miR-146b-5p UGAGAACUGAAUUCCAUAGGCU
hsa-miR-146a-5p UGAGAACUGAAUUCCAUGGGUU

hsa-miR-21 UAGCUUAUCAGACUGAUGUUGA
hsa-miR-221 AGCUACAUUGUCUGCUGGGUUUC
hsa-miR-222 CUCAGUAGCCAGUGUAGAUCCU

2.2. Cell Culture and Tissue Sample Collection

Human thyroid cancer cell lines (TPC-1, K1 and C643) and human normal thyroid
cell lines (Nthy-ori 3-1) were purchased from Shanghai Cell Bank, Chinese Academy of
Sciences (Shanghai, China). All cells were cultured at 5% CO2 at 37 ◦C in a humidified
incubator (Thermo Co., Asheville, NC, USA). The PTC cell lines (K1 and TPC-1) cells were
cultured in DMEM supplemented with 10% FBS and 1% penicillin–streptomycin, while the
undifferentiated thyroid carcinoma cell lines (C643) and human normal thyroid cell line
(Nthy-ori 3-1) were cultured in RPMI-1640 supplemented with 10% FBS and 1% penicillin–
streptomycin, respectively. After full growth, the cells were digested with trypsin and
counted with a Dakewe mini cell counter (Dakewe Biotech Ltd., Shenzhen, China).

Thyroid tissue collection for this work was approved by the Ethics Committee of Jilin
University, and all subjects had signed informed consent prior to participating in the study.
Samples were collected from 16 patients with PTC and 16 patients with nodular goiter (NG)
who underwent thyroid surgery at the Thyroid Surgery department of Bethune First Hos-
pital, Jilin University from June to July 2020, respectively. The diagnosis of each case was
independently confirmed by two pathologists according to WHO classification (see Table 2
for patient details). The clinical stages were classified according to the American Joint
Committee on Cancer (AJCC) tumor-lymph node metastasis (TNM) classification system.
The as-obtained tissue samples were immediately stored at −80 ◦C until further use.

Table 2. The information of 16 papillary thyroid carcinoma (PTC) and 16 nodular goiter (NG) patients.

Patients Number Gander Age Diagnosis TNM

1 Female 30 PTC T1aN0M0
2 Male 40 NG /
3 Female 28 PTC T1bN1bM0
4 Female 44 NG /
5 Male 40 PTC T1bN1bM0
6 Male 47 NG /
7 Female 28 PTC T1bN1aM0
8 Female 43 NG /
9 Male 46 PTC T1aN0M0

10 Male 49 NG /
11 Female 48 PTC T1aN0M0
12 Female 46 NG /
13 Female 46 PTC T1bN1aM0
14 Female 51 NG /
15 Female 58 PTC T1aN1aM0
16 Male 55 NG /
17 Female 52 PTC T1aN0M0
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Table 2. Cont.

Patients Number Gander Age Diagnosis TNM

18 Female 51 NG /
19 Female 55 PTC T1aN0M0
20 Female 48 NG /
21 Female 25 PTC T2N1bM0
22 Female 42 NG /
23 Male 49 PTC T1aN1aM0
24 Female 52 NG /
25 Female 53 PTC T1aN1aM0
26 Female 66 NG /
27 Male 36 PTC T1aN1aM0
28 Female 44 NG /
29 Male 73 PTC T1bN1bM0
30 Male 65 NG /
31 Female 48 PTC T1aN1aM0
32 Male 55 NG /

2.3. The Extraction of miRNAs

According to the manufacturer’s instruction, the total RNAs of 1 mL cell solution
(1 × 106 cells/mL) were extracted by the commercially available miRNA extraction kit
(Qiagen Co., Inc., New York, NY, USA) in the ultra-clean platform. The extracted total RNAs
were dispersed in 50 µL DEPC water. Thirty milligrams (30 mg) of thyroid pathological
tissue samples were crushed and homogenized. The total RNAs of pre-treated tissue sample
were extracted by the miRNA extraction kit in ultra-clean platform and re-dispersed in
50 µL DEPC water.

2.4. Preparation of MB-Probe Conjugates

The 0.2 mg M-270 MBs were resuspended in 1 mL 1 × B&W buffer, and washed three
times to remove the passivator and preservative from the surface of MBs. The MBs were
then collected under a magnetic frame (AMD06, Almedton Ltd., Shenzhen, China), and
resuspended in 400 µL 2× B&W buffer. Moreover, 400 µL p-DNA in various concentrations
of distilled water was mixed with the MBs suspension, and incubated under gentle shaking
(170 rpm) at 25 ◦C for 30 min. The as-obtained products (MB@ssDNA) were washed with
1 mL 1 × B&W buffer (three times) and resuspended in 400 µL reaction buffer (20 mM
Tris-HCl, 150 mM NaCl, 15 mM MgCl2, pH 7.0). In addition, 4 µL f-DNA (100 µM) was
added into the MB@ssDNA suspension, incubated under gentle shaking (170 rpm) at
30 ◦C for 1 h, and washed with 1 mL reaction buffer. The final product (MB@dsDNA)
was dispersed in 2 mL reaction solution for further use. The fluorescence intensity of
MB@dsDNA was read by a BD ACCURI C6 flow cytometer (BD Co., New York, NY, USA).

2.5. Detection of hsa-miR-146b-5p

Five microliters hsa-miR-146b-5p in various concentrations were added into 45 µL
MB@dsDNA, incubated under gentle shaking (170 rpm) at 37 ◦C for 1 h, and directly read
by flow cytometry. In total, 10,000 MBs were recorded, and the FL1-A mean fluorescence
intensity (MFI) of the MB was used for the quantitative analysis of hsa-miR-146b-5p.
The content of hsa-miR-146b-5p in the tested sample was analyzed by calculating the
difference value (∆F) between the MFI of the tested sample and the blank sample. For the
detection of hsa-miR-146b-5p in practical samples, 5 µL RNA extracts were added into
45 µL MB@dsDNA, incubated and detected as previously described.

3. Results
3.1. Principle of the TSDR-Based Flow Cytometric Assay

Scheme 1 shows the principle of TSDR-based flow cytometric assay for detection
of PTC-related miRNA, hsa-miR-146b-5p through the TSDR on MBs. In this case, the



Molecules 2021, 26, 1628 5 of 12

biotinylated probe ssDNA (p-DNA) was conjugated on the surface of the streptavidin
functionalized MBs by the strong interaction of biotin with streptavidin. The carboxy-
fluorescein (FAM)-labeled ssDNA (f-DNA) was then hybridized with p-DNA to prepare the
fluorescent MB probe (MB@dsDNA). The MB@dsDNA is readily read by flow cytometry.
After hybridization, an exposed toehold of six bases length was formed at 5′-end of p-
DNA. Based on literature reports [17–23], a longer (>8 bases) toehold region will cause
the instability of the hybridization of f-DNA and p-DNA, resulting in a poor detection
specificity, while shorter (<5 bases) toehold region will cause a decrease in the reaction
rate, resulting in a low detection sensitivity. Therefore, the toehold of six bases was used in
our experiment. In the presence of hsa-miR-146b-5p, p-DNA is hybridized with hsa-miR-
146b-5p through the exposed toehold region, and TSDR is initiated. The process leads to
disassociate f-DNA from the surface of MBs, resulting in the decrease in the fluorescence
signals of MB@dsDNA. The change of fluorescence signal of MB@dsDNA (∆F = F0 − F,
here, F0 is the fluorescence intensity of MB@dsDNA, while F is the fluorescence intensity
of MB@dsDNA after interaction with a certain amount of hsa-miR-146b-5p) is negatively
dependent on the concentration of hsa-miR-146b-5p. For obtaining high detection accuracy,
the average fluorescence intensity (MFI) of 10,000 MB samples was used to evaluate the
concentration of hsa-miR-146b-5p.
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Scheme 1. The schematic illustration of the as-proposed toehold-mediated strand displacement
reaction (TSDR)-based flow cytometric assay for the detection of hsa-miR-146b-5p.

3.2. Optimization of the Experimental Conditions

In order to obtain the high detection performance of hsa-miR-146b-5p, several experi-
mental conditions were optimized including the concentration of p-DNA on the surface
of MB, the reaction temperature and reaction time of MB@dsDNA with hsa-miR-146b-5p.
It known that the detection efficiency of TSDR-based assays largely depend on the initial
concentration of p-DNA on the surface of MBs. As shown in Figure 1, the fluorescence
signal (F0) increased with the increase in p-DNA concentration, while the concentration of
MB was kept constant. However, the detection sensitivity (∆F/F0) was decreased when
the concentration of p-DNA is higher than 1 nM. In order to obtain the ideal dynamic
range and the sensitivity of hsa-miR-146b-5p detection, 1 nM p-DNA was selected for
the preparation of MB@dsDNA. DNA hybridization efficiency and miRNA replacement
efficiency are strongly affected by reaction temperature. As shown in Figure 2, ∆F was
increased by increasing the reaction temperature in the range of 27–37 ◦C, and obtain
saturation when the reaction temperature was higher than 37 ◦C. Thus, 37 ◦C was selected
as the optimal reaction temperature. To further increase assay performance, the reaction
time was also optimized. As shown in Figure 3, the highest ∆F was obtained when the
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MB@dsDNA was reacted with hsa-miR-146b-5p at 37 ◦C for 60 min. Therefore, in the
following experiments, the MB@dsDNA were prepared by the reaction of 0.2 mg/mL MBs
with 1 nM p-DNA, and the MB@dsDNA were reacted with hsa-miR-146b-5p at 37 ◦C for
60 min.
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Figure 1. Effect of the p-DNA concentration on the detection of hsa-miR-146-5p: (a) fluorescence
responses of the as-prepared MB@dsDNA treated with 100 pM hsa-miR-146b-5p (blue lines) in
comparison with blank control (red lines) under different p-DNA concentrations from up to down
(0.25, 0.5, 1, 5, 50 and 50 nM), respectively; and (b) the ∆F/F0 as a function of p-DNA concentration.
Error bars mean standard deviations (n = 3).
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Figure 2. Effect of reaction temperature on the detection of hsa-miR-146b-5p: (a) fluorescence
responses of the MB@dsDNA treated with 100 pM hsa-miR-146b-5p (blue lines) and blank control
(red lines) under different reaction temperatures (27, 32, 37, 42 and 47 ◦C) for 60 min, respectively; (b)
the corresponding relative fluorescence intensity changes (∆F) with different reaction temperatures.
Error bars mean standard deviations (n = 3).
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at 37 ◦C under different reaction times (20, 30, 40, 50, 60, 70 and 80 min), respectively; (b) the
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3.3. Detection Performance of the TSDR-Based Flow Cytometric Assay

Under optimal reaction conditions, the fluorescence intensity of MB@dsDNA is de-
creased by increasing the concentration of hsa-miR-146b-5p (as shown in Figure 4a). It
is consistent with the fact that the more hsa-miR-146b-5p exists in the solution, the more
f-DNA will be dissociated from the MB@dsDNA. As shown in Figure 4b, a linear relation-
ship between ∆F and the logarithm values of hsa-miR-146b-5p concentrations in the range
of 5 pM to 5 nM is obtained. The detection limit (LOD) is estimated to be 4.21 pM according
to the 3σ/S rule (σ is the standard deviation (n = 3) for the blank solution, and S is the
slope of the calibration curve), which is comparable and/or better than those reported in
the literature [8,39–41].
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3.4. Specificity of the TSDR-Based Flow Cytometric Assay

To address the specificity of TSDR-based flow cytometric assay, four miRNAs were
used as interferences. The hsa-miR-146a-5p has similar sequence with the hsa-miR-146b-5p
except for one base difference (A to G at no. 18 site). Hsa-miR-21, hsa-miR-221, and
hsa-miR-222 are associated with the occurrence and development of thyroid cancer [35].
As shown in Figure 5a, the TSDR-based flow cytometric assay shows negligible ∆F towards
four interferences. The experimental result indicates that the TSDR-based flow cytometric
assay has good specificity.
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3.5. Detection of Intracellular hsa-miR-146b-5p

To demonstrate its capability, the TSDR-based flow cytometric assay was applied to
the profile activity levels of hsa-miR-146b-5p in different cells including two PTC cells
(TPC-1 and K1), one undifferentiated thyroid cancer cell (C643) and one normal thyroid
cell (Nthy-ori 3-1). The expression levels of cellular hsa-miR-146b-5p exhibit significant
difference among different cells (as shown in Figure 5b), and follow the order, TPC1 ∼= K1
> C643 > Nthy-ori 3-1, which is consistent with literature-reported results [42,43], i.e., PTC
cells express a higher level of hsa-miR-146b-5p than that of undifferentiated thyroid cancer
cell, and normal thyroid cell expresses the lowest level of hsa-miR-146b-5p.

3.6. Detection of hsa-miR-146b-5p in Clinical Tissue Samples

For further demonstrating its applicability, the TSDR-based flow cytometric assay
was used to explore the expression differences of hsa-miR-146b-5p in tissue samples from
patients with PTC and/or benign thyroid lesions (NGs). In this case, 16 specimens from
PTC patients and 16 specimens from NG patients were collected through the surgery. The
relevant information of the patients was presented in Table 2. As shown in Figure 6a, the
expression levels of hsa-miR-146b-5p in PTC tissues were significantly higher than those in
NG tissues and the difference was statistically significant (p < 0.001), which is consistent
with the reported results of relevant studies [34]. In order to prove the accuracy of this
method, we drew a receiver operating characteristic curve (ROC) based on this result. The
area under the ROC curve (AUC) was calculated to be 0.87 (as shown in Figure 6b). The
sensitivity and specificity for the diagnosis of PTC are 81.3% and 75%, when the ∆F value is
639.01. The above results show that this method has good accuracy and practicability and
has the potential to be applied in clinical practice for discriminating benign from malignant
tumors. For comparison, the expression levels of hsa-miR-146b-5p in PTC tissues and
NG tissues were also analyzed by qPCR method (as shown in the Figure 7). The result of
TSDR-based flow cytometric assay is highly consistent with that of the qPCR analysis (as
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shown in Figure 8). These results demonstrate that the TSDR-based flow cytometric assay
has great promise as a practical approach that can provide high accuracy.

Molecules 2021, 26, x FOR PEER REVIEW 9 of 13 
 

 

  

(a) (b) 

Figure 5. (a) Specificity of the TSDR-based flow cytometric assay. The concentrations of miRNAs are 1 nM, and (b) expres-
sion levels of hsa-miR-146b-5p in different cells. Error bars indicate standard deviations (n = 3, the significance of data is 

analyzed according to two-sided unpaired Student’s t-test: ** p < 0.01). 

3.6. Detection of hsa-miR-146b-5p in Clinical Tissue Samples 

For further demonstrating its applicability, the TSDR-based flow cytometric assay 
was used to explore the expression differences of hsa-miR-146b-5p in tissue samples from 

patients with PTC and/or benign thyroid lesions (NGs). In this case, 16 specimens from 
PTC patients and 16 specimens from NG patients were collected through the surgery. The 

relevant information of the patients was presented in Table 2. As shown in Figure 6a, the 
expression levels of hsa-miR-146b-5p in PTC tissues were significantly higher than those 
in NG tissues and the difference was statistically significant (p < 0.001), which is consistent 

with the reported results of relevant studies [34]. In order to prove the accuracy of this 
method, we drew a receiver operating characteristic curve (ROC) based on this result. The 
area under the ROC curve (AUC) was calculated to be 0.87 (as shown in Figure 6b). The 

sensitivity and specificity for the diagnosis of PTC are 81.3% and 75%, when the ΔF value 
is 639.01. The above results show that this method has good accuracy and practicability 
and has the potential to be applied in clinical practice for discriminating benign from ma-

lignant tumors. For comparison, the expression levels of hsa-miR-146b-5p in PTC tissues 
and NG tissues were also analyzed by qPCR method (as shown in the Figure 7). The result 

of TSDR-based flow cytometric assay is highly consistent with that of the qPCR analysis 
(as shown in Figure 8). These results demonstrate that the TSDR-based flow cytometric 
assay has great promise as a practical approach that can provide high accuracy. 

  
(a) (b) 

Figure 6. (a) The expression levels of hsa-miR-146b-5p in PTC tissues and NG tissues (the signifi-

cance of data is analyzed according to two-sided unpaired Student’s t-test: *** p < 0.001); and (b) 
Figure 6. (a) The expression levels of hsa-miR-146b-5p in PTC tissues and NG tissues (the significance
of data is analyzed according to two-sided unpaired Student’s t-test: *** p < 0.001); and (b) the
corresponding receiver operating characteristic curve (ROC) curve generated on the basis of 32 clinical
tissue samples.
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4. Conclusions

In summary, we developed an enzyme-free TSDR-based flow cytometric assay for the
rapid, sensitive and selective detection of PTC-related miRNA hsa-miR-146b-5p based on
the TSDR on MBs. The enzyme-free manner allows the convenient and robust detection of
target miRNA with low cost. In combination with the high throughput characteristic of
flow cytometry, the detection can be accomplished within 2 h except for sample preparation.
In particular, the TSDR-based flow cytometric assay has been successfully employed to
detect the content of hsa-miR-146b-5p in various cell lines and clinical pathological samples
of PTC tissues and NG tissues. Although only hsa-miR-146b-5p is detected in the proof of
principle experiment, this study provides a powerful tool for evaluating various miRNAs
levels in complex matrices though changing the TSDR. Therefore, an as-proposed TSDR-
based flow cytometric assay could be used as a valuable adjunctive method for improving
the diagnosis accuracy of PTC because several miRNAs are significantly unregulated
in PTC. In addition, with the help of existing nucleic acid enrichment techniques, our
approach could be used to detect miRNAs in body fluids, which exhibits great potential in
biomedical applications such as the noninvasive diagnosis of cancer.
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