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The phenotypic heterogeneity and functional diversity of macrophages confer on them
complexed roles in the development and progression of kidney diseases. After kidney
injury, bone marrow-derived monocytes are rapidly recruited to the glomerulus and
tubulointerstitium. They are activated and differentiated on site into pro-inflammatory M1
macrophages, which initiate Th1-type adaptive immune responses and damage normal
tissues. In contrast, anti-inflammatory M2 macrophages induce Th2-type immune
responses, secrete large amounts of TGF-β and anti-inflammatory cytokines, transform
into αSMA+ myofibroblasts in injured kidney, inhibit immune responses, and promote
wound healing and tissue fibrosis. Previous studies on the role of macrophages in kidney
fibrosis were mainly focused on inflammation-associated injury and injury repair. Apart
from macrophage-secreted profibrotic cytokines, such as TGF-β, evidence for a direct
contribution of macrophages to kidney fibrosis is lacking. However, under inflammatory
conditions, Wnt ligands are derived mainly from macrophages and Wnt signaling is
central in the network of multiple profibrotic pathways. Largely underinvestigated are
the direct contribution of macrophages to profibrotic signaling pathways, macrophage
phenotypic heterogeneity and functional diversity in relation to kidney fibrosis, and
on their cross-talk with other cells in profibrotic signaling networks that cause
fibrosis. Here we aim to provide an overview on the roles of macrophage phenotypic
and functional diversity in their contribution to pro-fibrotic signaling pathways,
and on the therapeutic potential of targeting macrophages for the treatment of
kidney fibrosis.
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INTRODUCTION

Kidney fibrosis is an inevitable outcome of all progressive chronic kidney diseases (CKD), including
hypertensive, diabetic, and vascular nephropathy. Chronic inflammation is a direct cause of kidney
injury. Chronic inflammation leads to excessive kidney repair and consequent kidney fibrosis and
thereby failure of kidney function. Macrophages have long been known to be master players in
inflammatory kidney diseases and to be associated with the development of kidney fibrosis in CKD.
However, evidence for a direct contribution of macrophages to kidney fibrosis is lacking. Here we
summarize the biological and pathological functions of macrophages polarized during the course
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of disease progression and their role in the development of kidney
fibrosis in CKD, in particular, their contribution to profibrotic
signaling networks.

MACROPHAGE AS A MASTER PLAYER
IN KIDNEY FIBROSIS

Macrophages are an important part of the mononuclear
phagocyte system comprising monocytes, macrophages, and
dendritic cells (Viehmann et al., 2018). Mouse F4/80 or human
epidermal growth factor module-containing mucin-like receptor
1 (EMR1) are considered to be signature markers of macrophage
(Khazen et al., 2005). Macrophages are primarily responsible for
pathogen clearance and the repair of injured tissues (Rosenberger
and Finlay, 2003; Das et al., 2015). They are multifunctional cells
with great phenotypic plasticity serving at the frontier of innate
immune defenses. Kidney macrophages include long-lived tissue-
resident macrophages and macrophages derived from circulating
monocytes of bone marrow origin (Tang et al., 2019). With
functional diversity depending on the local microenvironment,
macrophages play a critical role in inflammatory kidney disease
(Wang and Harris, 2011).

Kidney fibrosis develops in a milieu of inflammatory cell
infiltration, mesenchymal cell proliferation and activation, and
progressive deposition of extracellular matrix (ECM), leading to
scar formation (fibrosis) that destroys the parenchymal structure
of kidney and causes progressive loss of kidney function.
Observations from human CKD and experimental CKD models
have shown that tubulointerstitial fibrosis is an essential feature of
chronic kidney failure, and the degree of macrophage infiltration
is directly associated with the severity of fibrosis (Yu et al., 2010).
Accumulation of kidney macrophages correlates with severity of
kidney injury and kidney fibrosis in human and experimental
diabetic nephropathy (Chow et al., 2004) and also in other
classically non-inflammatory kidney diseases. The infiltration of
monocytes expressing chemokine (C-C motif) receptor 2 (CCR2)
leads to kidney inflammation and fibrosis in murine chronic
obstructive nephropathy (Braga et al., 2018). Kidney macrophage
numbers and chemokine (C-C motif) ligand 2 (CCL2) levels
correlate significantly with the progression of interstitial fibrosis
in human CKD (Eardley et al., 2008). Moreover, selective
depletion of macrophages reduces kidney fibrosis (Furuta et al.,
1993). These studies support a role for macrophages in genesis
and progression of kidney inflammation and fibrosis.

In CKD, macrophages polarize to various phenotypes in
response to complex microenvironmental stimuli in diseased
kidneys. Macrophages of different phenotypes secrete a
variety of growth factors, cytokines, proteins, and enzymes
which contribute to or mitigate fibrosis (Eddy and Neilson,
2006). Macrophages produce profibrotic mediators including
TGF-β, Wingless and Int-1 (Wnt), platelet-derived growth
factor (PDGF), tumor necrosis factor α (TNF-α), hepatocyte
growth factor (HGF), connective tissue growth factor (CTGF),
angiotensin converting enzyme (ACE), angiotensin I (Ang I)
and II (Ang II), plasminogen activators, plasminogen activator
inhibitor-1 (PAI-1), tissue inhibitor of metalloproteinases

(TIMP), collagen, fibronectin, thrombospondin, coagulation
factors, reactive oxygen species, and endothelin. They can also
produce mediators that protect against kidney fibrosis including
collagenases, matrix metalloproteinase 12 (MMP-12), nitric
oxide, and bone morphogenic protein-7 (BMP-7) (Eddy, 2011).
Macrophages of various phenotypes are therefore responsible
for several key processes in progressive fibro-inflammatory
kidney disease, including initiation of inflammatory damage,
resolution of inflammation, phagocytotic clearance of debris
after inflammation, tissue repair, remodeling of fibrotic tissue,
and excessive repair leading to irreversible kidney fibrosis. Thus,
macrophages play very complex roles in kidney fibrosis (Ricardo
et al., 2008; Shen et al., 2014; Table 1).

MACROPHAGE CONTRIBUTIONS TO
KIDNEY FIBROSIS VIA INFLAMMATION

Inflammation, starting from recruitment and activation of
macrophages, is considered to be a key factor behind fibrotic
diseases (Cao et al., 2015). Macrophages are rapidly recruited to
the glomerulus or tubulointerstitium to initiate innate immune
responses and play important defensive as well as destructive
roles in kidney injury. Ongoing kidney damage can cause
continuing macrophage infiltration in a vicious cycle that leads to
destruction of the normal kidney tissue structure and irreversible
tissue fibrosis. Although it is widely believed that glomerular and
interstitial macrophages are closely associated with development
of kidney fibrosis, they also play beneficial roles in stromal
remodeling during tissue repair (Ricardo et al., 2008; Alikhan and
Ricardo, 2013). It is important to understand the complex roles of
macrophages in kidney inflammation and fibrosis.

Inflammatory Role of M1 Macrophages
The ability of macrophages to play complex roles in kidney
diseases is explained by their phenotypic heterogeneity and
functional diversity (Anders and Ryu, 2011). Macrophages are
activated and differentiated under specific microenvironmental
conditions into two broad phenotypes, namely classically
activated macrophages (CAM or M1) and alternatively activated
macrophages (AAM or M2) (Figure 1). However, the concept of
M1 and M2 macrophage phenotypes was mostly derived from
in vitro observations of cultured macrophages. Such distinct M1
and M2 macrophage phenotypes are not consistent with in vivo
observations, where M1 and M2 markers can co-exist on same
macrophage (Wang et al., 2014). We use the terms of M1 and
M2 macrophage phenotypes in this review for the convenience
in citing respective studies and for description of functionally
different macrophages. The existence of such heterogeneous
phenotypes is explained by the cellular plasticity of circulating
monocytes and macrophages in response to different stimuli.
There is compelling evidence that the major factor determining
kidney injury versus tissue restoration is the activation state
of macrophages within local tissues rather than the degree of
macrophage infiltration (Ricardo et al., 2008).

Circulating monocytes are recruited by cytokines and
chemoattractants within the pathogenic microenvironment of
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TABLE 1 | Macrophage phenotypes, stimuli, Secreted products, and functions.

Macrophage
phenotypes

Stimuli Secreted products Phenotypic function

M1 LPS (Kalish et al., 2015), TNF-α
(Venturin et al., 2016), IFN-γ (Lee et al.,
2011), S100A9 (Tang et al., 2019),
IL-1α (Tang et al., 2019)

IL-1 (Tang et al., 2019), IL-1β (Wong et al., 2018), IL-6
(Tang et al., 2019), IL-8 (Kadowaki et al., 2009), IL-12
(Tang et al., 2019), IL-17A (Wong et al., 2018), IL-23
(Tang et al., 2019), TNF-α (Inoue, 2017), iNOS (Inoue,
2017), MMP-12 (Tang et al., 2019), CCL-2 (Wong et al.,
2018), CCL-3 (Meng et al., 2015), CCL-5 (Meng et al.,
2015), CXCL1 (Meng et al., 2015), CXCL2 (Meng et al.,
2015), CXCL10 (Meng et al., 2015), ICAM-1 (Wong
et al., 2018), Wnt5a (Blumenthal et al., 2006) RAS
(Ulrich et al., 2011)

Pro-inflammatory and TH1-like immune
response (Tang et al., 2019)

M2a IL-4 (Zhang et al., 2017; Tang et al.,
2019), IL-13 (Zhang et al., 2017; Tang
et al., 2019)

Mannose and scavenger receptor (Anders and Ryu,
2011), decoy IL-1R11 (Anders and Ryu, 2011), FIZZ1
(Anders and Ryu, 2011), YM-1 (Anders and Ryu, 2011),
IL-10 (Lu et al., 2013), TGF-β (Lu et al., 2013), Wnt1,
Wnt3a (Cosin-Roger et al., 2019), Wnt7b (Lin et al.,
2010) CCL13 (Meng et al., 2015), CCL14 (Meng et al.,
2015), CCL17 (Meng et al., 2015), CCL18 (Meng et al.,
2015), CCL22 (Meng et al., 2015), CCL23, CCL24
(Meng et al., 2015), CCL26 (Meng et al., 2015), MMP-9
(Meng et al., 2015), MMP-12 (Meng et al., 2015), IGF-1
(Meng et al., 2015), arginase 1 (Tseng et al., 2020),
Fibronectin (Tseng et al., 2020)

Anti-inflammatory TH2-like immune
response (Tang et al., 2019), wound
healing and tissue fibrosis (Tang et al.,
2019), inhibition of T-cell proliferation
(Lu et al., 2013)

M2b Immune complexes (IgG4) (Bianchini
et al., 2019; Tang et al., 2019),
TLR/IL-1R ligand (Tang et al., 2019),
IL-1R (Lisi et al., 2014), IgG Fc receptor
ligands (Lisi et al., 2014), CD40 (Lisi
et al., 2014), IL-6 (Philipp et al., 2018)

IL-1 (Anders and Ryu, 2011), IL-6 (Anders and Ryu,
2011), TNF-α (Anders and Ryu, 2011), MHCIIhi (Anders
and Ryu, 2011), IL-10hi (Anders and Ryu, 2011),
IL-12lo (Anders and Ryu, 2011), IL-1β (Wang et al.,
2019), MCP-1 (Chen et al., 2013), iNOS (Chen et al.,
2013)

Immunoregulation (Tang et al., 2019),
Th2 activation (Meng et al., 2015)

M2c IL-10 (Tang et al., 2019), TGF-β (Tang
et al., 2019), glucocorticoids (Tang
et al., 2019)

IL-10 (Anders and Ryu, 2011), TGF-β (Anders and Ryu,
2011), mannose receptor (Anders and Ryu, 2011),
B7-H4 (Lu et al., 2013), arginase 1 (Meng et al., 2015)

Immunosuppression (Tang et al., 2019),
matrix remodeling and tissue repair
(Tang et al., 2019), inhibition of T-cell
proliferation (Lu et al., 2013), induction
of Tregs (Lu et al., 2013)

PAMPs, pathogen-associated molecular patterns; DAMPs, danger- associated molecular patterns; FGF2, basic fibroblast growth factor; LPS, lipopolysaccharide; TLR,
toll-like receptors; TNF, tumor necrosis factor; iNOS, inducible nitric oxide synthase; MINCLE, macrophage-inducible C-type lectin; Arg1, arginase-1; MCHII, major
histocompatibility complex (MHC) class II; MR, mannose receptor; IGF-1, insulin like growth factor; IRF, interferon-related factor; IL-1R, IL-1 receptor; TGF-β, transforming
growth factor-β; Wnt, Wingless and Int-1; RAS, renin angiotensin system.

diseased kidneys. They adhere to activated endothelial surfaces,
infiltrate into interstitial and/or glomerular compartments, and
differentiate into pro-inflammatory M1 macrophages (Tang et al.,
2019). M1 macrophages can be polarized by pathogen-related
molecular patterns (PAMPs) such as lipopolysaccharides (LPS),
alarmins such as S100A9 and IL-1α, and pro-inflammatory
cytokines such as tumor necrosis factor α (TNF-α) (Kalish et al.,
2015; Venturin et al., 2016). Polarized M1 macrophages highly
express major histocompatibility complex (MHC) class II and
co-stimulating molecule CD86 and initiate Th1 type adaptive
immune responses, resulting in cytotoxicity and more effective
killing of bacteria, intracellular pathogens and tumor cells (Lv
et al., 2017; Tang et al., 2019). Concurrently, M1 macrophages
secrete a series of pro-inflammatory factors (including IL-1, IL-
6, IL-12, TNF-α), chemokines (such as IL-8), activated oxygen
species, and nitric oxide (NO) which promote inflammation and
damage of normal tissues (Inoue, 2017; Tang et al., 2019).

In the early stage of kidney ischemia-reperfusion injury (IRI)
in rats, macrophages are M1 in phenotype and highly express
iNOS (Huen and Cantley, 2015). Depletion of macrophages

at this stage by liposome clodronate significantly attenuated
kidney injury, accompanied with decreased expression
of inflammatory and profibrotic cytokines (Ko et al.,
2008). Similarly, miR-30c-5p agomir which directly inhibits
Interferon regulatory factor 1 (IRF1) reduced kidney ischemic
injury by reducing M1 macrophages and increasing of M2
macrophages, and by reducing inflammatory cytokine TNF-α
and increasing anti-inflammatory cytokines IL-4 and IL-10
(Zhang et al., 2019; Guo et al., 2020). In contrast, transfusion
of IFN- induced M1 macrophages following acute kidney IRI
increased tubulointerstitial fibrosis and functional impairment
(Lee et al., 2011).

Apart from inflammatory cytokines, activated macrophages
also secrete matrix metalloproteinases (MMPs), including
abundant MMP- 1, −3, −7, −9, −10, −12, −14, and −25
with less abundant MMP-2, 3, 8, 10, 11, 12 (Huang et al.,
2012). Those MMPs contribute not only to degradation of
extracellular matrix, but also to inflammatory injury in kidney
(Kunugi et al., 2011). Macrophage-derived MMP-9 has been
shown to contribute to kidney fibrosis through induction
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FIGURE 1 | Schematic diagram showing macrophage contribution to kidney fibrosis. Kidney resident macrophages and infiltrating bone marrow-derived
macrophages are stimulated by inflammatory factors such as IFN-γ, lipopolysaccharide (LPS), and IL-1, to be polarized into pro-inflammatory M1 macrophages
which promote inflammation and tissue damage by releasing IL-6, 12 and inducible nitric oxide synthase (iNOS). They can also be polarized into three functionally
different phenotypes of anti-inflammatory and reparative M2 macrophages by anti-inflammatory cytokines IL-4, IL-10, IL-13, and TGF-β. M2 macrophages resolve
inflammation, promote tissue repair and cause fibrosis by secretion of anti-inflammatory cytokines and tissue repair mediators including IL-10, transforming growth
factor.(TGF-β), Wingless and Int-1 (Wnts), Angiotensin II (Ang II), connective tissue growth factor (CTGF), and platelet-derived growth factor (PDGF).

of profibrotic changes in tubular epithelial cells (Tan et al.,
2010) and recruitment of macrophages via proteolytic activation
of osteopontin (Tan et al., 2013). More importantly, MMP-
mediated proteolytic releasing and activation of TGF-β bound
to extracellular matrix (Karsdal et al., 2002) may directly
contribute to kidney fibrosis and indirectly through induction of
profibrotic M2 macrophages.

In addition to promotion of inflammation and tissue damage,
pro-inflammatory M1 macrophages were found also to be
capable of switching to anti-inflammatory and reparative M2
macrophages (Arnold et al., 2007). Thus, the classification of
M1 and M2 macrophage phenotypes may well represent but
oversimplify the plastic functional status of macrophages at
different stages of disease progression.
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Anti-inflammatory and Pro-fibrotic Roles
of M2 Macrophages
Alternatively activated macrophages, M2 macrophages, can be
defined from in vitro experiments into three functional subtypes
according to their activation stimuli and functions: M2a, M2b,
and M2c (Tang et al., 2019; Figure 1). M2a macrophages are
typically induced by IL-4 and IL-13 (Zhang et al., 2017); M2b
macrophages are induced by immune complexes, LPS, IgG Fc
receptor ligands, and CD40 (Lisi et al., 2014); M2c macrophages
are induced by IL-10 and TGF-β or glucocorticoids (Kim et al.,
2015). Those phenotypic definitions of anti-inflammatory M2
macrophages are used for the convenience in description of their
respective functions.

The subtypes of M2 macrophages are thought to suppress
immune responses and promote tissue repair, but with different
and sometimes controversial functions (Mantovani et al., 2004).
M2a macrophages, highly express the marker arginase 1 (Arg-
1), produce a large amounts of anti-inflammatory IL-10 and
IL-1 receptor antagonist (IL-1ra), and inhibit secretion of pro-
inflammatory cytokines (IL-12, IL-1, TNF-α) and production of
NO, thereby exerting anti-inflammatory and immunosuppressive
functions. M2b macrophages specifically up-regulate IL-10 and
down-regulate IL-12, and induce T cells to secrete IL-4, which
in turn promotes B cells to produce antibodies, and induce anti-
inflammatory Th2 immune responses. M2c macrophages secrete
large amounts of IL-10 and TGF-β, suppress inflammatory
immune responses, and promote wound healing and tissue
fibrosis (Tang et al., 2017, 2019). Supporting evidence includes
that reduced infiltration of macrophages (mainly M2) in murine
models of kidney disease can prevent progressive interstitial
collagen deposition and inhibit kidney fibrosis (Kim et al.,
2015). Furthermore, the adoptive transfer of M2c macrophages
rather than M1 macrophages reversed the beneficial effects of
macrophage depletion in kidney fibrosis (Tang et al., 2019). In
the unilateral ureteral obstruction (UUO) model, depletion of
macrophages from day 4 significantly reduced kidney fibrosis,
while the adoptive transfer of M2 macrophages promoted
the accumulation of αSMA+ cells and kidney fibrosis (Shen
et al., 2014). In a rat model of anti-glomerular basement
membrane disease, inhibition of M2 macrophage infiltration by
inhibitor of the macrophage-specific c-fms receptor at days 14–
35 resulted in a significant reduction in both glomerular sclerosis
and interstitial fibrosis (Han et al., 2013). Consistent with
findings from experimental animal models, the number of M2
macrophages expressing CD206 and/or CD163 is associated with
kidney interstitial fibrosis and tubular atrophy in human kidney
diseases such as diabetic nephropathy, IgA nephropathy, and in
kidney transplants (Wu et al., 2020). Together these findings
indicate that M2 macrophage polarization and infiltration can
promote kidney fibrosis and progression of kidney disease.
However, in acute or non-persistent kidney injuries such as
acute tubular necrosis (ATN), M2 macrophages were mainly
anti-inflammatory and promoted epithelial healing and rapid
regeneration of intact tubules (Anders and Ryu, 2011).

M2 macrophages were thought to promote kidney fibrosis via
secretion of TGF-β1 which is well-known to cause fibrosis; larger

quantities of TGF-β1 were detected in M2 macrophages than in
myofibroblasts in the UUO model (Shen et al., 2014). However,
macrophage-specific deletion of TGF-β1 failed to prevent renal
fibrosis after severe ischemia-reperfusion or obstructive injury
(Huen et al., 2013). In contrast, selective deletion of TGF-β
receptor II (TβRII) in monocytes/macrophages promoted kidney
fibrosis by enhancing renal macrophage infiltration (Chung
et al., 2018). These controversial findings suggested that it
would be too simplistic to conclude or disprove profibrotic
roles of macrophage TGF-β1 by selective depletion of either
TGF-β1 or its receptor (TβRII) alone, given that TGF-β1
is also the most potent anti-inflammatory factor secreted by
M2 macrophages (Ricardo et al., 2008), and inflammation is
unarguably the initial cause of kidney fibrosis (Tang et al., 2019).
We found that by alteration of TGF-β1 signaling in bone marrow-
derived macrophages via shifting β-catenin binding from TCF
to Foxo1 using β-catenin/TCF inhibitor ICG-001, the anti-
inflammatory function of TGF-β1 was enhanced by increased
production of anti-inflammatory IL-10 and reduced production
of IL-6 and TNF-α in the bone marrow-derived macrophages.
Concurrently the pro-fibrotic effect of TGF-β1 was abolished
by significant reduction of GFP (+) F4/80 (+) α-SMA (+)
bone marrow-derived macrophages undergoing macrophage-
myofibroblast transformation (MMT) (Wang et al., 2017) and
thereby kidney fibrosis was reduced in the murine model of
unilateral ureteral obstruction (UUO) (Yang et al., 2019).

In addition to TGF-β1, M2 macrophage polarization is also
tightly regulated by the Wnt pathway. Wnt5a can enhance
TGF-β-induced macrophage M2 polarization and the expression
of Yes-associated protein (Yap)/transcriptional coactivator with
PDZ-binding motif (Taz) to promote kidney fibrosis (Feng et al.,
2018a). The Wnt ligand Wnt3a induces the polarization of
M2 macrophages by enhancing IL-4 or TGF-β1 (Feng et al.,
2018b). Conditional deletion of Wnt3a in bone marrow cells
lessens the accumulation of macrophages and the polarization
of M2, and reduces kidney fibrosis in the murine UUO model
(Feng et al., 2018b).

Bone Marrow Macrophage Contribution
to Kidney Fibrosis
Bone marrow-derived monocytes are recruited to the kidney
after injury. They constitute a large proportion of interstitial
infiltrating macrophages (Tang et al., 2019) and play a major
role in progression of kidney fibrosis as they polarize to
macrophages of various phenotypes (Conway et al., 2020). Bone
marrow-derived macrophages can differentiate into α-SMA+
myofibroblasts in injured kidney, via MMT (Ikezumi et al.,
2015; Wang et al., 2017). Flow cytometric analysis found
that most CD45+ leukocytes isolated from obstructed kidneys
expressed both collagen I and α-SMA (Chen et al., 2011). The
CD45+ cells in these fibrotic kidneys are infiltrating monocytes
derived from bone marrow. They have undergone MMT
and transdifferentiated into collagen-producing myofibroblasts
within the microenvironment of the damaged kidney, driven
by TGF-β1 (Nikolic-Paterson et al., 2014) secreted by M2
macrophages (Shen et al., 2014). In vitro TGF-β1 drove
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transdifferentiation of cultured macrophages into collagen-
secreting α-SMA+ myofibroblasts (Pilling and Gomer, 2012).
Cells expressing macrophage marker CD68 and myofibroblast
marker α-SMA+ have been identified in the kidney of patients
with active fibrosis (Meng et al., 2016b). Nikolic-Paterson
et al. (2014) found evidence of MMT in human kidney
disease with active fibrosis using confocal microscopy, and
showed that the severity of kidney fibrosis correlated with the
number of MMT cells co-expressing α-SMA and CD68. In
addition to TGF-β1, chemokine receptor CXCR6 contributes
to recruitment of bone marrow-derived fibroblast precursors
(Xia et al., 2014), while IL-4 and IL-13 activated Jak3/STAT6
signaling stimulates bone marrow–derived fibroblast MMT
in the UUO model of kidney fibrosis (Yan et al., 2015;
Liang et al., 2017).

The contribution of bone marrow-derived macrophages to
kidney fibrosis is also supported by the observation that
down-regulation of CCR2 expression reduced recruitment and
activation of myeloid derived macrophages and alleviated kidney
fibrosis in UUO model (Jiang et al., 2019). Production of
chemokine CXCL16 by kidney tubular epithelial cells is necessary
for recruitment of myeloid derived CD45+ col I+ α-SMA+ cells
and development of kidney fibrosis in UUO model (Chen et al.,
2011; Nikolic-Paterson et al., 2014).

MACROPHAGE CONTRIBUTION TO
PROFIBROTIC SIGNALING PATHWAYS

Kidney fibrosis is the direct result of activation of fibroblasts and
accumulation of myofibroblasts, driven by multiple profibrotic
signaling pathways (Kuppe et al., 2021). Profibrotic changes
in other cells, including mesenchymal transition of tubular
epithelial cells (EMT) (Zheng et al., 2009; Tan et al., 2010; Qiao
et al., 2018; Yang et al., 2020; Rao et al., 2021) and endothelial
cells (EndoMT) (Zeisberg et al., 2008; Li et al., 2010; LeBleu
et al., 2013; Zhao et al., 2016), also contribute to the activation
of fibroblasts and kidney fibrosis, but may not directly transform
into myofibroblasts (Kuppe et al., 2021).

Wnt/β-CATENIN SIGNALING PATHWAY

The Wnt/β-catenin signaling pathway is activated in various
kidney diseases, contributing to the development and progression
of kidney fibrosis (Zhou et al., 2020). Wnt/β-catenin signaling
is an evolutionarily conserved pathway involved in embryonic
development, tissue homeostasis, and organ injury repair
(Ng et al., 2019; Perugorria et al., 2019). Wnt ligands are
a large family of secreted glycoproteins and fundamentally
indispensable for transduction of the Wnt signaling pathway
(Nie et al., 2020).

Wnt/β-catenin signaling in kidney disease is versatile;
transient activation of Wnt/β-catenin signaling induces repair
and regeneration during acute kidney injury, but sustained
(uncontrolled) Wnt/β-catenin activation promotes kidney
fibrosis (Schunk et al., 2021). Lin et al. (2010) found that

FIGURE 2 | Schematic diagram showing macrophage contribution to
profibrotic signaling pathways. Macrophages promote tissue repair,
regeneration and fibroblast activation and myofibroblast proliferation via
multiple signaling pathways by secretion of transforming growth factor beta
(TGF-β), Wingless and Int-1 (Wnts), angiotensin II (Ang II), connective tissue
growth factor (CTGF) and platelet-derived growth factor (PDGF). Solid arrows
indicate secretion of cytokines and growth factors by macrophages. Broken
line arrows indicate autocrine effects of macrophage-secreted cytokines and
growth factors on macrophage functional polarization. Light blue arrows
indicate effects of macrophage secreted cytokines and growth factors on
kidney tissue repair and fibrosis.

Wnt7b secreted by macrophages facilitates kidney regeneration
through directing epithelial cell-cycle progression and basement
membrane repair; kidney injury repair was substantially retarded
after macrophage specific deletion of Wnt7b.

In kidney, Wnt5a promotes fibrosis by stimulating Yap/Taz-
mediated macrophage polarization in both UUO and IRI
models (Feng et al., 2018a). Wnt3a can also promote M2
macrophage polarization induced by IL-4 or TGF-β1,
following Wnt/β-catenin signaling activation, and in turn
accelerate macrophage proliferation and accumulation,
giving rise to kidney fibrosis (Cosin-Roger et al., 2019;
Figure 2).

Studies of fibrosis in other organs also demonstrated
macrophage contribution to the Wnt/β-catenin pathway.
After myocardial infarction in mice, macrophages within
the area of infarction exhibited an increase in expression
of non-canonical Wnt ligands Wnt5a and Wnt11 (Palevski
et al., 2017). The activated Wnt/β-catenin signal promoted
cardiac fibrosis by inducing the transition of endothelial
cells and epicardial cells to a mesenchymal state, fibroblast
differentiation into myofibroblasts and collagen production
(Palevski et al., 2017). In a murine model of intestinal fibrosis,
CD16+ macrophages expressed high levels of Wnt6, inducing
intestinal fibrosis (Salvador et al., 2018). M2 macrophage
release of Wnt7a promoted myofibroblast differentiation of
lung resident mesenchymal stem cells, leading to lung fibrosis
(Hou et al., 2018).
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FIGURE 3 | Schematic diagram showing cross-talk between different signaling pathways including those of transforming growth factor beta (TGF-β), Wingless and
Int-1 (Wnts), Renin Angiotensin System (RAS), Integrin linked kinases (ILK), connective tissue growth factor (CTGF), and PI3K–mTOR. Multiple signaling pathways
cross-talk and converge at β-catenin nuclear translocation and binding with different transcription factors to activate different target genes in macrophage and kidney
cells described. PI3K, Phosphatidylinositol 3 kinase; Akt, Ak strain protein kinase B; mTOR, mammalian target of rapamycin; PIP2, phosphatidylinositol
(4,5)-trisphosphate; PIP3, phosphatidylinositol (3,4,5)-trisphosphate; mTORC2, mTOR complex 2 including mTOR, Rictor, GβL, Sin1, PRR5/Protor-1, and DEPTOR;
Ang II, Angiotensin II; AT1, Angiotensin receptor 1.

TGF-β SIGNALING PATHWAY

TGF-β is a well-known inducer of kidney fibrosis. While secretion
of anti-inflammatory TGF-β by M2 macrophages contributes to
resolution of inflammation, it also mediates kidney injury repair
and causes kidney fibrosis when in excess. The mechanism by
which macrophages promote kidney fibrosis through the TGF-
β signaling has been extensively investigated. M1 macrophages
can be reprogrammed into alternately activated M2 macrophages

by anti-inflammatory cytokine stimulation (IL-10 or colony-
stimulating factor 1) or upon their phagocytotic ingestion of
apoptotic cells. M2 macrophages promote and coordinate the
regeneration of kidney tubular cells and maintain the integrity
of the kidney tubules after injury (Rogers et al., 2014). During
tissue repair, M2b and M2c macrophages are mainly responsible
for immunosuppression, matrix remodeling and wound healing
once tissue damage has been resolved (Tang et al., 2019).
In contrast, uncontrolled kidney inflammation triggers M2a
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macrophage polarization in the injured kidney through IL-
4 and IL-13, promoting increased TGF-β1 production and
kidney fibrosis (Pan et al., 2015). M2 macrophages exert anti-
inflammatory effects and promote kidney fibrosis through tissue
repair by producing a large amount of TGF-β1 in the UUO model
(Eddy, 2005).

RENIN-ANGIOTENSIN SYSTEM (RAS),
PDGF AND CTGF SIGNALING
PATHWAYS

In addition to Wnt and TGF-β, macrophages are also identified
as a source of components of the renin-angiotensin system
(RAS), including renin, angiotensin converting enzyme (ACE),
Ang I and Ang II, AT1 and AT2 receptors (Okamura et al.,
1999). The RAS is known to cause kidney fibrosis through
Wnt/β-catenin signaling (Miao et al., 2019; Figure 2). Other pro-
fibrotic mediators such as PDGF and CTGF were also found to be
produced by macrophages (Cicha et al., 2005; Eitner et al., 2008).

INTEGRIN/ILK AND NOTCH SIGNALING
PATHWAYS

Apart from direct secretion of pro-fibrotic mediators,
macrophages produce matrix metalloproteinases (MMP),
which not only contribute to tissue remodeling after injury,
but also activate other pro-fibrotic signaling pathways such as
Integrin/ILK (Zheng et al., 2009, 2016; Tan et al., 2010) and
Notch (Zhao et al., 2016).

ACTIVATION AND PROLIFERATION OF
MYOFIBROBLASTS BY CROSSTALK
BETWEEN PROFIBROTIC SIGNALING
PATHWAYS

Activation and proliferation of myofibroblasts is a central and
complex event in development of kidney fibrosis. It involves
multiple signaling pathways activated by profibrotic mediators
from the fibro-inflammatory microenvironment of the injured
kidney. Macrophages are unarguably a major source of those
mediators (Table 1). A profibrotic signaling network including
TGF-β/Smad, Wnt/β-catenin, the renin- angiotensin system
(RAS) and Integrin /ILK pathways cross-talk and synchronize to
promote kidney fibrosis (Figure 3).

Wnt/β-catenin signaling is a key player in kidney fibrosis
contributing to activation of fibroblasts into myofibroblasts
and consequent excessive extracellular matrix production. Upon
binding of Wnt ligands to its receptor Frizzled (Fz) and
transmembrane receptor LRP5/6, dishevelled (dvl) protein in
the cytoplasm is phosphorylated and activated to bind to Axin
to antagonize GSK3β, which prevents β-catenin signaling by
degradation of cytosolic β-catenin via phosphorylation and
ubiquitination machinery (Tan et al., 2014; Wang Y. et al.,

2018). Inhibition of GSK3β by Wnt ligands results in β-catenin
nucleus translocation followed by transcriptional activation of
Wnt target genes when β-catenin complexes TCF/LEF, the
transcription binding partners of β-catenin (Zhou et al., 2012;
Guo et al., 2019). This canonical Wnt/β-catenin signaling
pathway activates a transcriptome of profibrotic inducers such
as Snail/Slug, and fibrotic genes such as α smooth muscle actin
(α-SMA), collagen, fibronectin and other extracellular matrix
genes involved in fibroblast activation and extracellular matrix
production. Importantly, Wnt/β-catenin signaling is not acting
alone during the development of kidney fibrosis.

TGF-β released by M2 macrophage is also one of the most
important contributors to kidney fibrosis. TGF-β signals through
both Smad-dependent and Smad-independent pathways. TGF-β
binds to TGF-β receptor II which sequentially complexes with
TGF-β receptor I. TGF-β receptor II binding to receptor I then
leads to receptor I phosphorylation of Smad2/3 which translocate
into the nucleus with co-Smad4 to activate profibrotic gene
transcription in kidney myfibroblasts (Meng et al., 2016a). In
addition to Smad-dependent signaling in activating profibrotic
genes in myofibroblasts, TGF-β also promotes β-catenin nuclear
translocation through phosphorylation of β-catenin Tyr-654 and
dephosphorylation of β-catenin Ser-37 and Thr-41. Furthermore,
Smad-independent activation of Akt and p38 MAP kinase
(Wang et al., 2011; Zhou et al., 2012; Tan et al., 2014)
also subsequently inhibit GSK3β, thereby promoting β-catenin
nuclear translocation and activation of Wnt/β-catenin signaling.

The renin-angiotensin system (RAS) is also known to
cause hypertension and fibrosis in CKD (Floege, 2015).
Macrophage secretion of RAS components [renin, angiotensin
converting enzyme (ACE), Ang I and Ang II] promote
synthesis and release of profibrotic factors TGF-β, CTGF, PDGF,
ET1 (Wang M. et al., 2018; Zhou et al., 2020) and is a
direct target of the Wnt/β-catenin pathway, causing kidney
injury, and fibrosis. Reciprocally, blockade of Wnt/β-catenin
by inhibition of β-catenin/TCF signaling also blocks RAS
and consequent hypertension and kidney fibrosis in CKD
(Floege, 2015).

Integrin/ILK are known to contribute to both glomerular
and interstitial fibrosis in diseased kidneys (Liu, 2010; Zheng
et al., 2016). The underlying mechanism for ILK in causing
fibrotic signaling involves its direct or indirect (via activation
of Akt) inhibition of GSK3β in facilitating β-catenin nuclear
translocation and activation of Wnt/β-catenin signaling (Liu,
2010). We found that proximal tubular cell upregulation of
ILK via the compensatory increase of α3 integrin worsened
kidney fibrosis in the UUO model in proximal tubular specific
E-cadherin knockout mice (Zheng et al., 2016). Importantly,
ILK is downstream of TGF-β mediation of both glomerular
and tubulointerstitial fibrosis in kidneys (Li et al., 2009; Kang
et al., 2010). Our study demonstrated that autophagy links
TGF-β/Smad signaling with β-catenin through the pY654-beta-
catenin/p-Smad2/ILK pathway (Pang et al., 2016).

mTOR activation has been identified in macrophages
and myofibroblasts in kidney fibrosis (Chen et al., 2012).
mTORC1 activation in podocytes led to the development
of glomerular crescents contributing to fibrosis of glomeruli
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in both experimental and human glomerulonephritis (Mao
et al., 2014). mTORC2 is activated by TGF-β to transduce
profibrotic signaling through mTOR activation of PI3K-Akt
(Li et al., 2015) which subsequently inactivates GSK3β to
facilitate β-catenin nuclear translocation and thereby activate
β-catenin/TCF in the Wnt/β-catenin pathway. Macrophage
polarization has been shown to be controlled by the PI3K-
Akt-mTOR pathway; increased mTORC1 activity promoted
M1 macrophage polarization and reduced M2 macrophage
polarization (Weichhart et al., 2015). mTOR activation was
observed in myofibroblasts and macrophages and inhibition of
mTOR pathway by rapamycin ameliorated kidney fibrosis (Chen
et al., 2012). Both TGF-β and ILK activate PI3K-Akt and thus
cross-talk with mTOR, whereas mTORC2 activation of PI3K-
Akt also links with the Wnt/β-catenin pathway via PI3K-Akt
inhibition of GSK3β (Ching and Hansel, 2010).

Together multiple signaling pathways (TGF-β, Wnt, ILK, RAS,
mTOR, etc.) interact via activation of β-catenin in the initiation
and progression of kidney fibrosis. The functional status of
β-catenin determines the activity of these signaling pathways and
the progression or regression of kidney fibrosis. Studies from
us and others demonstrated the key role for β-catenin/TCF in
mediating profibrotic signaling of multiple pathways (Liu, 2010;
Qiao et al., 2018). Importantly, we found that shifting β-catenin
binding from TCF toward Foxo in both macrophages and kidney
tubular cells by inhibition of β-catenin/TCF redirected TGF-
β signaling from pro-fibrotic to anti-inflammatory, protected
against kidney fibrosis and promoted epithelial repair in UUO
and IRI models (Qiao et al., 2018; Rao et al., 2019, 2021;
Yang et al., 2019).

TARGETING MACROPHAGES AS A
TREATMENT FOR KIDNEY FIBROSIS

Anti-inflammatory and reparative properties of macrophages
(Lin et al., 2010; Urbina and Singla, 2014; Ratnayake et al.,
2021) argue for their therapeutic application. We have
shown that ex vivo programmed M2 macrophages protect
against inflammation and kidney injury in experimental
models of inflammatory renal disease (Wang et al., 2007;
Cao et al., 2010, 2011). Jung et al. (2012) found that infusion
of IL-10 overexpressing macrophages protected ischemia
injury in an IRI model. Adoptive transfer of genetically
modified macrophages expressing heme-oxygenase-1 (HO-
1) protected kidney function in mice with IRI (Ferenbach
et al., 2010). Netrin-1-induced M2 macrophages suppressed
inflammation and protected against kidney injury in IRI mice
(Ranganathan et al., 2013).

However, the phenotypic instability of those M2 macrophages
remains as a challenge (Cao et al., 2014). To overcome the hurdle
of phenotypic instability, adenovirus vector NGAL (Neutrophil
gelatinase-associated lipocalin-2) was used to stabilize phenotype
of injected M2 macrophages which reduced inflammation
and fibrosis in UUO model. While protection by anti-
inflammatory M2 macrophages has been reported increasingly,
the profibrotic effects of M2 macrophages remain largely

unaddressed as another hurdle for their therapeutic application;
M2 macrophages secrete large amounts of TGF-β which not
only suppresses inflammation but also promotes kidney fibrosis
(Kim et al., 2015).

Depletion of inflammatory M1 macrophages does not protect
against kidney fibrosis, while depletion of anti-inflammatory
and reparative M2 macrophages can reduce kidney fibrosis
(Shen et al., 2014). Thus, although inflammation is an important
driver of fibrosis, other non-inflammatory profibrotic pathways
are activated by anti-inflammatory and tissue reparative
cytokines from M2 macrophages such as TGF-β, Wnt, Ang II,
CTGF, and PDGF. Moreover, the results of these macrophage
depletion studies are consistent with the fact that M1 and
M2 macrophages represent different and sometimes co-
existing functional phenotypes of the same population. They
polarize across their life span according to stimuli within the
microenvironment in which they reside during the progression
kidney diseases.

Opposing roles of phenotypically distinct macrophages
suggested that targeting macrophages of different phenotypes
may not be practical in developing therapeutic treatment
for fibrotic diseases (Cao et al., 2014). More importantly,
precise targeting of functionally different macrophages
with opposing roles requires a better understanding of
downstream signaling events and the diverse functions
of multi-functional cytokines, such as TGF-β1 (Qiao
et al., 2018), which although profibrotic contributes to
suppression of inflammation and to tissue repair in kidney
(Tang et al., 2019).

Instead of targeting specific functional phenotypes of
macrophages, targeting a central factor in multiple profibrotic
signaling pathways in macrophages is likely to be a more
effective strategy for treating kidney diseases. Indeed, we
found in the UUO model that inhibition of β-catenin/TCF
promotes β-catenin/Foxo in the Wnt and TGF-β signaling
pathways of bone marrow-derived macrophages (Yang et al.,
2019). Importantly, redirection of β-catenin binding from
TCF to Foxo resulted in reduction of inflammatory cytokines
produced by bone marrow-derived macrophages, altered the
fate of MMT macrophages and protected against kidney fibrosis
(Yang et al., 2019).

CONCLUSION

Macrophages are master regulators of inflammation and kidney
fibrosis. Monocytes and macrophages are recruited and activated
in response to chemoattractants and stimuli released after
kidney injury. Macrophage plasticity adds complexity to their
central roles in kidney fibrosis. After kidney injury, macrophages
polarize into various phenotypes in response to alteration of
the microenvironment in kidney disease. M1 pro-inflammatory
macrophages clear infection but also cause kidney injury;
M2 anti-inflammatory macrophages contribute to resolution
of inflammation and kidney repair yet cause kidney fibrosis
(Tang et al., 2019). Functionally distinct macrophage phenotypes
contribute to the fibro-inflammatory microenvironment by
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abundant secretion of inflammatory and anti-inflammatory
cytokines, mediators of tissue repair including TGF-β, Wnt
ligands, PDGF, CTGF as well as all components of RAS.
Those tissue repair mediators are also key inducers of kidney
fibrosis when secreted in excess and maintained at higher
levels in the chronic inflammatory milieu of kidney disease.
Profibrotic mediators activate a profibrotic signaling network
by cross-talking among multiple signaling pathways including
TGF-β, Wnts, RAS, intergin/ILK, mTOR. Importantly, multiple
pro-fibrotic signaling pathways all converge at activation
of β-catenin/TCF, making β-catenin/TCF a key target for
prevention of kidney fibrosis. Switching β-catenin/TCF to
β-catenin/Foxo redirects signaling from profibrotic to anti-
inflammatory and protects against kidney fibrosis. Targeting
macrophages has long been proposed as a treatment for fibro-
inflammatory kidney diseases. However, the phenotypic plasticity

and conflicting roles of M2 macrophages are major hurdles for
their therapeutic application. Recently we have identified the
β-catenin/TCF/Foxo axis as a key determinant of the signaling
direction of multiple profibrotic pathways. Thus, targeting
macrophage signaling pathway via the β-catenin/TCF/Foxo axis
may provide a new promising strategy for the treatment of kidney
fibrosis in chronic kidney diseases.
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