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Aging is a complex process characterized by a steady decline in an organism’s ability to perform life-sustaining tasks. In the present
study, two cages of approximately 12,000 mated Drosophila melanogaster females were used as a source of RNA from individuals
sampled frequently as a function of age. A linearmodel formicroarray datamethodwas used for themicroarray analysis to adjust for
the box effect; it identified 1,581 candidate aging genes. Cluster analyses using a self-organizingmap algorithmon the 1,581 significant
genes identified gene expression patterns across different ages. Genes involved in immune system function and regulation, chorion
assembly and function, and metabolism were all significantly differentially expressed as a function of age. The temporal pattern
of data indicated that gene expression related to aging is affected relatively early in life span. In addition, the temporal variance
in gene expression in immune function genes was compared to a random set of genes. There was an increase in the variance of
gene expression within each cohort, which was not observed in the set of random genes. This observation is compatible with the
hypothesis that D. melanogaster immune function genes lose control of gene expression as flies age.

1. Introduction

Aging is a general characteristic of life occurring across a
great range of life forms [1]. Aging is significantly affected
by genes [2]. Distantly related species exhibit similarity in
the pattern of gene expression as a function of aging [3]. As
may be predicted fromphylogenetic and genetic conservation
of aging, the mechanisms of aging may be classified into
general categories. Nine hallmarks of aging are indicated in
a review of the literature [4]: genomic instability, telomere
attrition, epigenetic alterations, loss of proteostasis, dereg-
ulated nutrient sensing, mitochondrial dysfunction, cellular
senescence, stem cell exhaustion, and altered intercellular
communication.These hallmarks of aging can provide a gen-
eral framework for interpreting patterns of gene expression
as organisms age.

Extrinsic factors, external threats to survival, can play
a major role in senescence [5]. One such factor is disease
and it is known that the immune system deteriorates as
a function of age in organism as diverse as humans [6]
and the worm Caenorhabditis elegans [7]. Clearly, there is a
connection between genes that affect aging and infectivity.
A relationship exists in Drosophila melanogaster in which
insulin signaling/IGF-like mutations increase lifespan and
increase resistance to infection [8].Mutations in this pathway
that act to extend life span can also oppose deterioration of
an aging immune system and provide resistance to infection.
There are various lines of evidence indicating the importance
of the immune system as an underlying factor affecting aging.

Previous research has been conducted on genome-wide
gene expression in the context of aging using model systems
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for genetic research, especially the worm C. elegans and the
fly D. melanogaster. Partially due to the degree of genetic
control of the trait, the importance of investigating gene
expression during the aging process has been emphasized
[9]. As described above, C. elegans has been used for such
research, for example,McCarroll et al. [3]. Moreover, relevant
studies have been conducted using D. melanogaster specific
body parts [10], quantitative trait loci [11], specific tissues
[12], overexpression of a heat shock protein [13], different
developmental stages [14], selection for mated longevity [15],
low dose radiation [16], selection for starvation resistance
[17], response to heat stress, oxidative stress, and ionizing
radiation [18], lines selected for late-age fertility and life
span [19], selection under hypergravity [20], and selection
for postponed senescence [21].The present study extends this
category of aging research on D. melanogaster by relatively
frequent sampling during the adult fly aging process.

Ourmotivation for conducting the present research using
D. melanogaster was multifold. There is a relatively high
degree of disease gene orthology between Drosophila and
humans [22]. Thus, research on D. melanogaster can have
human health implications. The genome of Drosophila is
sequenced and the function of many genes studied to good
degree. The life span of Drosophila is short and thus it is
possible to study the entire aging process in a relatively short
period of time. Culturing flies is well-established and it is
possible to rear large numbers in a controlled environment,
which was important for our research.

The present study was based on simultaneous establish-
ment of two large populations of D. melanogaster used to
obtain a relatively large number of adult age samples for
investigation of genome-wide patterns of genes expression
based on an experimental design of frequent sampling from
experimental cohorts. Nine clusters of age-associated differ-
ential gene expression were identified in the present study
as were a range of genes that are candidates for playing a
significant role in aging. Characterization of the variance of
gene expression of immune function genes as a function of
age was also a focus of the present study.

2. Methods and Materials

2.1. Drosophila Population, Rearing, and Replicate Population
Establishment. The D. melanogaster population used as a
source of flies for this study was an outbred population kept
at large numbers (approximately 15,000) for approximately
16 months in the laboratory using an overlapping generation
regime (i.e., only 20% of the food bottles were replaced
each week). This population was initiated from 20 lines that
were inbred for 20 generations by sib-mating each generation
starting from the progeny of a singly inseminated female
used to start each line. As the source for this population,
naturally inseminated females were collected from a natural
population in the Wolfskill Orchards in Winters California
maintained by the University of California at Davis. All flies
were maintained on standard food consisting of cornmeal,
molasses, and Torula yeast medium. The source population
used for the present study was initiated from the 20 inbred

lines using approximately 100 progenies from each of all
possible crosses between the lines. This population was
housed at the University of Nebraska-Lincoln. To initiate the
population samples for the present study, flies in the source
population were allowed to lay eggs in “pint bottles” for 48
hours at 25∘Cwith diurnal light. After 48 hours of egg laying,
50 vials were seeded with 75 eggs each and sent overnight
to the University of Nebraska at Kearney. Upon receipt, the
seeded vials were placed at 25∘C with diurnal light until
eclosion. After eclosion, the flies were lightly etherized and
separated by sex andmating sets of 25 of each sex were placed
in 8 oz bottles containing food. A total of 85 bottles were
prepared, and the flies in each bottle were allowed to mate
for 48 hours. After the initial mating, the parent flies were
transferred to a new set of 85 bottles, allowed to mate for 48
hours, and then transferred again to another set of 85 bottles
for third mating. In total, there were three sets of bottles for
all mating sets of 85 bottles each. The mating sets were held
in a laboratory at ∼22–24∘C with a diurnal light cycle.

The flies were watched closely once pupation was evident
and at the time of eclosion, they were lightly etherized,
separated by sex, and counted. At each collection, 75 females
or 75males were placed into individual 8 oz bottles with food,
until approximately 25,000 flies were collected (12,500 males
and 12,500 females).The females were allowed tomature for 3
days and the males were allowed to mature for a minimum of
2 days. After this time period, sets of 75 females and males
were allowed to mate for 24 hours. After mating, the flies
were gently etherized, separated by sex, and counted and
males were discarded. Approximately 12,000 mated females
were released into a 3× 2× 1 Plexiglas cage. Two cages
were initialized in this manner. Each cage had two holes on
either side covered with Tubigrip (ConvaTec, Princeton, NJ)
to allow access into the cage without the loss of flies. The
cages each contained six large Petri dishes of media and an
additional two large Petri dishes of cotton balls moistened
with Nanopure water. The cages were held in a laboratory at
∼22–24∘C with a diurnal light cycle. The media Petri dishes
were changed every day, the water was checked every day,
and water was replaced every other day. The cages had their
positions changed every day with respect to top or bottom
cages as they were stacked on top of each other.

2.2. Sample Collection and Mortality Tabulation. Each day,
the dead flies were collected by aspiration and tallied. Mor-
tality curves comparing the number of total dead flies over
time were constructed. Control time point sexually mature
female flies were collected at 6 days old (4 days old before
being released in the boxes and after two days residency in
the large cages that were sampled for the present study). Flies
from this time point were used for the standard sample in
the two-sample microarrays used in the present study. Over
the course of this study, twenty-two samples of 24 females
each were collected by aspiration, gently etherized, counted,
and allowed to recover for two hours in vials containing fly
food. After two hours, the females were flash-frozen in liquid
nitrogen, transferred to dry ice, and stored at −80∘C. Every
seven days after the collection of the control females, four
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samples of 12 females each were collected following the same
protocol as the control females.The flies were collected at 1:00
pm CST and frozen at 3:00 pm CST. Collection lasted until
day 79 after introduction of the flies into the each cage. At
this time point, there were only enough surviving females for
this last collection.

2.3. RNA Extraction and cDNA Microarray Analysis. Total
RNA was extracted from all sets of female flies collected at
days 2, 9, 16, 23, 30, 37, 44, 51, 58, 65, 72, and 79 in the cages
utilizing the standard TRIzol protocol following manufac-
turer’s instructions (Invitrogen, Carlsbad, CA).The RNAwas
cleaned using theQiagenRNeasyMiniKit permanufacturer’s
instructions (Qiagen, Valencia, CA).The quality and integrity
of the RNAwere assessed at the UNLGenomics Core Facility
by using an Agilent 2100 Bioanalyzer (Agilent Technologies,
Inc., Palo Alto, CA). The RNA was quantified and cDNA
microarray analyses were performed by the University of
NebraskaMedical Center (UNMC)Microarray Core Facility.
Two-color Version 2 DGRC oligonucleotide microarrays
(DrosophilaGenomics Resource Center [DGRC], Blooming-
ton, IN) were used to compare gene expression over time.The
microarrays consist of 15,158 oligonucleotides corresponding
to roughly 93% of the annotated genes of theD.melanogaster.
The use of two-color arrays in this experiment follows the
use of the same technique in one of the very first hallmark
microarray experiments to demonstrate genome-wide gene
expression in Saccharomyces cerevisiae [23]. In addition, this
technique has been employed to evaluate gene expression
changes of schizont and trophozoite stages of Plasmodium
falciparum [24].

Indirect labeling with Cy3/Cy5 fluorescent dyes was
performed using 12 𝜇g of total RNA per sample using
the Superscript Indirect cDNA Labeling System for DNA
Microarrays (Invitrogen). All reagents and buffers used were
included in the kit. Briefly, following reverse-transcription
(RT), the resultant amino-allyl labeled cDNA was incubated
with Cy3/Cy5 in DMSO to couple the Cy3 or Cy5 dyes
to the cDNA to create fluorescently labeled probes. The
CY3 and CY5 labeled probes were purified by gel-exclusion
chromatography using SNAP columns (Invitrogen). Prior to
hybridization, the microarray slides were prehybridized for
45 minutes at 42∘C in 3X SSC solution (3MNaCl, 0.3M
sodium citrate, 1mM EDTA) containing 1% bovine serum
albumin. The Cy3 and Cy5 probes were mixed together in
40 𝜇L Ambion hybridization buffer #2 (Ambion). Blocking
agents that included poly-dA (20𝜇g) and Cot-1 DNA (20𝜇g)
were added. Hybridization was performed overnight at 42∘C.
After hybridization, the slides were washed 2x times with
2.0x SSC, 0.5% SDS at 42 degrees for 15 minutes, followed by
washing 2x with 0.5x SSC, 0.50% SDS for 15 minutes each.

Cy3 (532 nm) and Cy5 (635 nm) scans were performed
using a ScanPix 4000B slide reader as per manufacturer’s
suggested conditions (Molecular Devices, Sunnyvale, CA).
Care was given during the scanning procedure to carefully
adjust the photomultiplier tubes (PMTs) such that the overall
intensity from both the Cy3 and Cy5 channels was equalized.
Following image capture, the overall images, as well as

the individual spots, were assessed for uniformity of
hybridization and individual integrity. Problematic spots (i.e.,
problematical morphology or those with aberrant hybridiza-
tion properties) were flagged for subsequent removal from
the final data set. The intensity assessment for gene spots
from 16 bit TIFF files was performed with the GenePix image
analysis software (Molecular Devices).

2.4. cDNA Microarray and Gene Ontology Analyses. The
initial cDNA microarray analysis was to determine pairwise
comparisons of each time point to the control (2 days in
the cage, at which point the females were 6 days post-
eclosion). The sample of females collected at 2 days in the
cage was used as a common reference. The later-age samples
from the cages were taken at 11 time points: 9, 16, 23, 30,
37, 44, 51, 58, 65, 72, and 79 days in the cages. Analyses
were conducted with Linear Models for Microarray Analysis
(LIMMA) package in Bioconductor [25, 26]. LIMMA uses
the linear model to analyze complex experiments involving
multiple experimental conditions, with an empirical Bayes
approach to effectively borrow information across genes
making the analyses stable even for experiments with small
number of arrays. First LIMMA (a Bayesian version of linear
model) from R was applied to compare the log ratio of gene
expression between each of the time points and the control
(day 2) after adjusting for the box effect. The Benjamini
Hochberg approach was used to control the False Discovery
Rate (FDR) to be less than 0.05 [27]. A gene was deemed
to be differentially expressed if and only if under at least
one time point the Benjamini Hochberg adjusted 𝑝 value
was no more than 0.05 and the raw fold change was ≥1.5 or
≤1/1.5.The box effects were partially removed by normalizing
the relative intensities with a zero median. In addition, the
box effects were adjusted on each gene when evaluating the
differential gene expression on that gene. All of the data
has been submitted to NCBI: Gene Expression Omnibus at
http://www.ncbi.nlm.nih.gov/geo/ (GSE67547).

The genes identified as differentially expressed across
all the time points were subjected to clustering analyses.
Clustering is a powerful exploratory technique for the
analysis of gene expression data. The underlying biological
assumption for clustering of genes is that genes participating
in the same biological process are expected to exhibit similar
expression patterns. A self-organizing map (SOM) clustering
algorithm [28] was applied to the significantly differentially
expressed genes. These SOMs are somewhat related to 𝑘-
means clustering but allow users to impose partial structure
on the clusters. Specifically, the users need to prespecify the
geometry of nodes (i.e., a 2 ∗ 2 grid), and the nodes will
be iteratively mapped into 𝑘-dimensional gene expression
space. The data points with close distance will be grouped
into the same node and the neighboring nodes of the SOMs
tend to define related clusters. Tamayo et al. (1999) stated
that the SOMs provide easy implementation, visualization,
and interpretation with superior robustness and accuracy
[28]. We considered the available options for the geometry of
nodes and select the 3 ∗ 3 grid that the other settings with
more nodes will not produce fundamentally new patterns,
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and reasonable genes were classified into each SOM cluster.
In addition, the average fold changes at each time point
(when compared to day 0) of all genes within each cluster
have different patterns that have different signs of the fold
changes andmoderate (fold change > 1.2) or large fold change
(fold change > 1.5) at different time points. The mean log

2

ratios between any other time point and time point 2 days
for these identified genes were estimated and used as gene
expression profiles in the clustering analysis. The profile
for each gene was standardized so that each profile had a
mean = 0 and a standard deviation = 1. Data matrices were
constructed with genes in rows and time points in columns.
The GeneCluster 2 package was used [28]. The number
of iterations in SOM clustering was set to 500,000. From
this, self-organizing map (SOM) and hierarchical clustering
heat map (correlation-based distance, average link) were
generated. This type of analysis allowed each gene to be
uniquely clustered into one of the nine clusters. The identi-
fied differentially expressed genes were selected for further
analyses. These genes were subjected to ontology analyses
using PANTHER (Protein Analysis through Evolutionary
Relationships; http://www.pantherdb.org/) [29–31].

2.5. Gene Set Enrichment Analysis (GSEA). Light intensity
observations from the scanned image of five replicates were
subjected to quality assurance as implemented in various
Bioconductor packages [32]. Background correction, nor-
malization, empirical Bayes correction, and the calculation
of statistical significance for differential gene expression were
performed by using the LIMMA package [25]. For multiple
test correction, Benjamini and Hochberg’s False Discovery
Rate was used [27].

High-level overviews of the biological processes affected
by the transcriptional dynamics of aging were obtained
by using comprehensive classifications systems. These sys-
tems include the KEGG (Kyoto Encyclopedia of Genes and
Genomes) Database of Biochemical Pathways [33] and the
Gene Ontology (GO) categories for biological processes,
molecular functions, and cellular localizations, originally
developed by Drosophila experts [34]. Gene sets, such as
pathways, GO categories, or genes regulated by a particular
transcription factor, allow examination of transcriptional
changes at levels much higher than the level of single
genes. While, for example, none of the individual genes of a
pathway are induced at some level of statistical significance, a
consistent but possibly marginal upregulation in the majority
of the genes may be biologically more relevant than a major
induction of just a few genes. The statistical significance
of enrichment of a gene set in either the upregulated or
downregulated genes is calculated by using Gene Set Enrich-
ment Analysis (GSEA) [35]. GSEA applies a nonparametric
permutation test that does not rely on the normality of
the fold change value distribution. It is a high-performance
analysis method that can accurately integrate transcriptomics
or proteomics results into the context of gene ontology or
biochemical pathways. To this end, in-house PERL libraries
to transform LIMMA output and annotations to GSEA input
as well as for postprocessing of GSEA outputs were used.

Transcript level patterns across the seventy-nine day time
span of the experiments were assessed by k-means cluster
analysis using different numbers of clusters. The consistency
of transcript level changes through time was evaluated by the
MATLAB implementation of the biclustering method, that
is, clustering the base 2 logarithm fold change values both
by genes and transcript levels [36]. Biclustering, with minor
exceptions, faithfully reproduced time points in chronologi-
cal order.

2.6. Gene Expression Variance. Variation in gene expression
was calculated for two sets of genes. Immune function
genes were a focus for the measurement of variance as they
were relatively frequently represented among the genes that
exhibited differential expression as a function of age in the
present study. Immune function gene samples were selected
from a website in a publication describing such genes for D.
melanogaster [37]. Based on the correspondence between the
genes in this website and the probes in the microarrays used
in the present study, 316 genes were included in the analysis.
The measure of variance was based on the three samples
that were taken for each time point used for the present
study. Variance in expression of immune geneswas calculated
within cages (boxes A and B), and variance among cages,
which was based on a mixture of samples from box A and
boxB.Measurement of the variance of gene expressionwithin
cages allowed for insight into the pattern of gene expression
that was responsible for identification of this class of genes
identified by earlier analysis of the data including PANTHER
and GSEA clustering. Statistical mixing of the samples from
different cages was conducted; these samples were used to
calculate the slope of change in gene expression which allows
for an assessment of a potential cage (box) effect as an
environmental variable. For comparison to immune function
genes, a set of 200 genes was randomly selected using the
entire list of D. melanogaster genes, minus immune function
genes. This set of genes was analyzed as representative of the
genome ofDrosophila. A randomnumber generator was used
to selected genes from this list. Variationwas calculated as the
standard deviation of average gene expression.A linearmodel
was fitted between the variance of expression and time points
using SAS [38].

2.7. Assessment of cDNA Microarrays by qRT-PCR. Reverse
transcription was performed using Taqman Gene Expression
Assay kits and the 7500 Real Time PCR system (Applied
Biosystems, Foster City, CA) according to manufacturer’s
instructions. The primer and probe sets used were Metch-
nikowin (Mtk; assay #Dm01821460 s1), CG11671 (assay
#Dm02137913 g1), Neuropeptide-like precursor 3 (Nplp3;
Dm02369807 s1), Retinin (Rtn; Dm02363430 s1), and
Ribosomal protein 49 (Rp49; endogenous control; assay
Dm02151827 g1). Reactions were carried out in triplicate
and performed in a 50𝜇L volume utilizing 200 ng total
RNA sample and TaqMan One-Step RT-PCR Mix (Applied
Biosystems). Negative controls without RNA for each
primer/probe set were also run. Cycling parameters included
48∘C for 30 minutes, 95∘C for 10 minutes, and 40 cycles of
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Figure 1: Percent survivorship females from cages A and B over the
course of the experiment (day 79 in the cages). Peak of death occurs
near day 31. The 𝑥-axis is the number of days the D. melanogaster
remained inside the boxes. The 𝑦-axis shows the percent survivor-
ship of the population at each day of the experiment.The cages were
each initiated with ∼12,000 once mated females. An overall decrease
in survivorship was observed between days 30 and 60.

95∘C for 15 seconds and 60∘C for 1 minute.The PCR products
were analyzed in the linear range for amplification with Rp49
using the 7500 Real Time PCR System Sequence Detection
Software (Applied Biosystems). The relative quantitative
results were used to determine changes in gene expression
on a log

2
scale.

3. Results

3.1. SOM/Clustering and PANTHER Analysis. Each day, dead
flieswere collected by aspiration, separated by sex, and tallied.
Mortality curves comparing the number of total dead flies
over time are shown in Figure 1. The two cages demonstrate
almost completely overlapping curves, with death starting
at approximately day 30. Between days 30 and 60, there is
a noticeable decrease in overall survivorship in both cages
(Figure 1). Microarrays were based on a comparison of days
9, 16, 23, 30, 37, 44, 51, 58, 65, 72, and 79 in the cages to
the control time point (two days in the cages). After filters
and normalization were applied, 1,581 significantly changed
genes were found in comparisons to the day 2 control.
The cDNA microarrays were validated by qRT-PCR using
two upregulated genes, Metchnikowin (Mtk) and CG11671,
and two downregulated genes, Retinin and Neuropeptide-like
precursor 3 (Nplp3).The data from these genes was compared
with the cDNAmicroarray data for fold change at days 16 and
79. The patterns of gene expression (up- or downregulated)
showed good correspondence betweenmicroarrays and qRT-
PCR (Table 1).

The 1,581 genes differentially regulated at one or more
time points (see Supplementary Table 1 in Supplementary

Table 1: Differential expression results for cDNA microarray
compared to qRT-PCR. Gene expression data from qRT-PCR was
normalized using Rp49. The fold change is reported as relative to
control day 2. Negative numbers represent a downregulation of gene
expression at that time point, whereas positive numbers represent
an upregulation of gene expression at that time point. Nplp3 =
Neuropeptide-like precursor 3 andMtk =Metchnikowin.

Day 16 Day 79
Microarray qRT-PCR Microarray qRT-PCR

Retinin −3.01 −4.59 −6.45 −18.23
Nplp3 −2.25 −5.07 −4.67 −15.48
Mtk 4.80 4.51 12.19 20.32
CG11671 3.58 5.46 7.25 18.86

Material available online at http://dx.doi.org/10.1155/2015/
835624) were submitted to PANTHER analysis and 525 of
the IDs were unrecognized. The PANTHER Classification
System is a resource that classifies genes by their functions,
using published experimental evidence and evolutionary
relationships to predict function even in the absence of
direct experimental evidence [28, 29]. Of the remaining
1,061 genes, the selected annotated biological functions (gene
ontology accession number; percent of gene hit against total
number genes; percent of gene hits against total number of
process hits) included various roles in cell communication
(GO: 0007154; 19.5; 9.8), cellular processes (GO: 0009987;
26.4; 13.3), localization (GO: 0051179; 0.5; 0.2), transport
(GO: 0006810; 16.3; 8.2), cellular component organization
(GO: 0016043; 5.9; 3), apoptosis (GO: 0006915; 4.0; 2),
system processes (GO: 0003008; 15.1; 7.6), reproduction (GO:
0000003; 4.3; 2.1), response to stimulus (GO: 0050896; 8.2;
4.1), homeostatic processes (GO: 0042592; 0.7; 0.3), devel-
opmental processes (GO: 0032502; 12.1; 6.1), generation of
precursor metabolites and energy (GO: 0006091; 4.0; 2),
metabolic processes (GO: 0008152; 56.3; 28.4), cell cycle (GO:
0007049; 6.4; 3.2), immune system processes (GO: 0002376;
12.8; 6.4), and cell adhesion (GO: 0007155; 6.2; 3.1). Clustering
analysiswas applied to the 1,581 significant genes to determine
their expression patterns over time. From these analyses, a 3×
3 SOM (Figure 2) was created. The genes present in each
cluster represent a gene that is significantly changed at any
one time point during the time course compared with the
day 2 time point control, but not necessarily differentially
regulated at every time point. Each cluster of genes uncovered
in the 3 × 3 SOM analysis was analyzed via PANTHER
to determine gene ontology groups and selected biological
functions (Table 2). In all the clusters, the category that
is most largely represented is metabolic processes (GO:
0008152).The gene ontology category that is least represented
is localization (GO: 0051179), with homeostatic processes
(GO: 0042592) also being underrepresented across all SOM
clusters at all time points (Table 2).

The number of genes changing per time point for each
cluster was determined and found to fluctuate to varying
degrees, with the exception of SOM clusters 0 and 8 (Table 3)
that remained fairly consistent in the number of genes
being expressed. The only cluster to show a change in gene
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c0: N = 60 c3: N = 267 c6: N = 233

c7: N = 254c4: N = 234c1: N = 120

c2: N = 244 c5: N = 127 c8: N = 42

Figure 2:Three rows by three columns self-organizingmap (3× 3 SOM) for gene expression patterns of clusters. Each cluster is represented by
the centroid (average pattern) for genes. The 𝑥-axis shows the time points (days in the cages). The 𝑦-axis is the standardized mean log

2

ratios
between any other time point and time point 0 and indicates average fold change. The number of genes within each cluster is represented by
the whole number in the top center of the square. For example, in the top left-hand corner is cluster 0 and the number 60, which indicates
𝑛 = 60 genes. Overall, cluster 0 (𝑛 = 60), cluster 1 (𝑛 = 120), cluster 2 (𝑛 = 244), cluster 3 (𝑛 = 267), cluster 4 (𝑛 = 234), cluster 5 (𝑛 = 127),
cluster 6 (𝑛 = 233), cluster 7 (𝑛 = 254), and cluster 8 (𝑛 = 42). The first black diamond represents day 9, followed by days 16, 23, 30, 37, 44, 51,
58, 65, 72, and 79 as the remainder of the sampled days. The red lines on either side of the blue line connecting the black diamonds represent
the confidence interval.

expression at day 9 was cluster 0, which had CG9297 and
Retinin downregulated −1.59- and −2.16-fold, respectively,
compared to the day 2 control. The consistency of cluster 0
begins at day 37 with 95% of the genes in this cluster being
downregulated and 98.3–100% downregulation achieved and
maintained by day 44. For cluster 8, the consistency begins
at day 23 with 88.1% of the genes being upregulated and
95.2% upregulation of all the genes in the cluster achieved
and maintained by day 30 (Table 3). The distribution of
genes at the latest time point, day 79, was analyzed (Table 4).
The genes were separated into groups of those upregulated,
downregulated, or not affected at day 79. SOM classes 0
and 8 demonstrated 100% downregulation or upregulation,
respectively, at this time point compared to the day 2 control
(Table 4).

Clusters 0 and 8 are relatively consistent in number of
genes differentially expressed across all time points (Tables
3 and 4). Cluster 0 demonstrated a downward trend in
gene expression levels with 60 genes being differentially
expressed. When applied to PANTHER analysis, 31 genes
from this cluster were not found. In cluster 0, there is

a large representation of genes involved in metabolic pro-
cesses (45%), as compared to other biological functions
(Table 2), with 61.1% of these being part of protein metabolic
processes (GO: 0019538). A majority of the genes in this
group have functionality as serine proteases (CG32523,
CG18180, and CG5246) or are part of a family of serine
proteases (Jonah 44E [Jon44E], Jon99Ciii, Jon25Bii, Jon25Biii,
and Jon99Fi). Of the 31 unmapped gene IDs in cluster 0, 16
have unknown biological function, 11 are involved in eggshell
chorion assembly (Chorion Proteins [Cp] 7Fa, 7Fc, 16, 19, 36,
and 38, and Vitelline membrane [Vm] 26Aa and 34Ca), 2 are
involved in cuticle formation (Tweedle [Twdl] M and F), 1 is
involved in neuropeptide signaling pathways (Nplp3), and 1 is
involved in viral reproduction (CG32642). In contrast, cluster
8 exhibits upregulation in the 42 genes found in this group,
specifically starting at day 30 (Tables 3 and 4). When applied
to PATHER analysis, 27 of the gene IDs were not found or
mapped. As with cluster 0, themetabolic processes GO group
is highly represented (25.6%). Upon further analysis of the 27
unmapped IDs, 16 have unknown biological function, 9 are
involved in immune system processes, specifically immune
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Table 3: Number of genes significantly differentially expressed across time from SOM clustering analysis.The number in the upper left-hand
corner of the SOM is the cluster number. The other number in the SOM is the number of genes in that cluster. To be included in the cluster,
a gene only needs to be significantly different at any one time point versus the day 2 control. The numbers in the table represent the number
of significantly differentially regulated genes at that time point.

Cluster Days in box
9 16 23 30 37 44 51 58 65 72 79

c0: N = 60

2 6 23 30 57 59 60 59 60 60 60

c1: N = 120

12 35 70 93 101 97 114 111 113 113

c2: N = 244

1 45 25 47 24 28 67 42 58 68

c3: N = 267

11 39 81 130 95 114 146 228 240 213

c4: N = 234

1 26 26 10 51 12 14 48 50 11

c5: N = 127

3 42 67 73 118 110 114 86 56 115

c6: N = 233

1 2 1 10 1 4 5 74 187 55

c7: N = 254

2 20 15 12 143 90 97 57 51 90

c8: N = 42

9 37 41 42 42 42 42 42 40 42

Total 2 46 269 356 474 634 557 658 746 855 767

response (Attacin [Att]-B, C, and D, Cecropin [Cec] A2 and
C, Diptericin [Dpt] andDptB, drosomycin-2 [dro2], andMtk),
and 2 are involved in stress response (Turandot [Tot] A and
Turandot C). PANTHER analysis failed to assign a GO group
for 9 genes involved in this GO group. When the percent of
gene hits against total number of process hits for the immune
system processes GO is considered; there are 11 of the 42
cluster 8 genes (26.2%) in this group, making the immune
system the most represented GO process group for cluster 8.

Similar to cluster 0, clusters 1, 2, 3, and 6, also
demonstrated a relative trend of downregulation of gene
expression over time (Figure 2). Cluster 1 contained 120
genes and when submitted to PANTHER, 78 gene IDs were

unmapped. Of the remaining 42 genes that were mapped,
once again a large group of proteases (Trypsin epsilon
[𝜀Try], 𝜃Try, CG1304, CG3088, CG6508, CG7542, CG8560,
CG8562, CG17633, CG31926, CG31928, and CG32483)
and more members of the Jonah serine protease family
(Jon65Ai, Jon65Aii, Jon99Ci, Jon99Fii, and Jon74E) were
found. Members of the protease group were found in
clusters 2 (Angiotensin-converting enzyme-related, CG1503,
CG3775, CG5794, CG5839, CG6726, CG7025, and CG8539),
3 (CG3734, CG4847, CG4914, CG5240, CG6733, CG8299,
CG8774, CG9675, CG10587, CG11911, CG16749, CG17475,
CG18179, CG31269, CG31661, Jon65Aiii, Jon65Aiv, Neprilysin
2, NnaD, nudel, scarface, Ser7, 𝛼Try, 𝜄Try, 𝜁Try, and yippee
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Table 4: Distribution of genes differentially regulated at day 79 from PANTHER analysis.The last time point sampled in the analysis was day
79, which represents the oldest living females. The numbers in the table are the number of genes for each SOM that are either upregulated,
downregulated, or unaffected at day 79 compared to the day 2 control time point. The numbers in parentheses are the % of genes that are
either upregulated, downregulated, or unaffected at day 79 compared to the day 2 control time point. The genes found in SOM clusters 0 and
8 are 100% affected at day 79.

SOM class Total number of genes Upregulated Downregulated Unaffected
0 60 0 (0) 60 (100) 0 (0)
1 120 0 (0) 113 (94.2) 7 (5.8)
2 244 1 (0.41) 67 (27.5) 176 (72.1)
3 267 0 (0) 213 (79.8) 54 (20.2)
4 234 11 (4.7) 0 (0) 223 (95.3)
5 127 115 (90.6) 0 (0) 12 (9.4)
6 233 1 (0.43) 54 (23.2) 178 (76.4)
7 254 90 (35.4) 0 (0) 164 (64.6)
8 42 42 (100) 0 (0) 0 (0)
Total 1581 260 (16.4) 507 (32.1) 814 (51.5)

interacting protein 7), and 6 (Ance-4, CG3344, CG3739,
CG6592, CG8586, CG9897, CG10081, CG10472, CG10477,
CG10469, CG17012, CG17571, CG18493, CG18585, CG32834,
prolyl-4-hydroxylase-alpha EFB, and Ser6). Among these
three clusters, cluster 2 contained 244 genes with 59
unmapped IDs, cluster 3 contained 267 genes with 65
unmapped IDs, and cluster 6 contained 233 genes with 63
unmapped IDs.

One cluster, cluster 7, exhibited a similar pattern of gene
expression to cluster 8 (Figure 2). This cluster contained 254
geneswith 104 unmapped IDswhen submitted to PANTHER.
Of the 254 mapped IDs, 84 genes were involved in metabolic
processes and 28 others were involved in immune system
responses (Alk, Antigen 5-related, Atf6, CG3640, CG6429,
CG6495, CG10089, CG10345, CG16713, CG16799, CG18480,
CG30273, GstD2, GstD9, Heat shock protein 23, lectin-24Db,
Lipase 4, Neuropeptides capa receptor, p38c, Peptidoglycan-
recognition protein-LB [PGRP-LB], PGRP-LF, Protein shifted,
Tetraspanin 42Eb [Tsp42Eb], Tsp42Ed, Tsp42Ei, Tsp42Er,
Thiolester containing protein II, and tolkin).

The only cluster that did not change in an obvious up- or
downexpression pattern over time was cluster 4 (Figure 2).
This cluster contained 234 genes with 85 unmapped IDs
when submitted to PANTHER. As with the other clusters,
the largest GO category represented was metabolic processes
(21%;Table 2). From the 85 unmapped IDs, 61 are of unknown
function. The remaining 24 genes are variable functions
including behavioral processes (RhoGAP18B), cellular pro-
cesses (CG3223, CG5466, Cytochrome c distal, and milton),
central nervous system development (jing), chitin metabolic
processes (CG13075 and Mucin 11A), dosage compensation
(Suppressor of variegation 3–7), immune response (Bre1 and
CG10433), mesoderm development (Myosin 31DF), neuron
projection morphogenesis (Down syndrome cell adhesion
molecule 2), potassium ion transport (CG42732), protein
folding (CG31287), proteolysis (CG15157 and CG42264),
reproductive processes (Accessory gland-specific peptide 26Ab,
bag of marbles, CG17097, closca, hopscotch, and stonewall),

and response to DNA damage (Breast cancer 2, early onset
homolog).

3.2. Temporal Gene Set Enrichment Analysis (GSEA). Gene
Set Enrichment Analysis (GSEA) was used to classify over-
represented categories of genes for each time point (days 9,
16, 23, 30, 37, 44, 51, 58, 65, 72, and 79) relative to the control
time point (day 2 in box), characterized by gene ontology.The
entire set of genes that were differentially expressed in at least
one time point was used for this analysis. Overrepresented
gene categories were similar to the analysis previously done.
An upregulation of the immune system GO categories was
found from days 16 to 79 (Table 5), as was seen in SOM
clusters 7 and 8 from analysis of the unmapped IDs from
the PANTHER analysis. These categories were consistently
upregulated from day 16 or 23 to day 79 in the box. The most
consistent downregulation was seen in phototransduction
genes (GO: 0007602). Two groups of genes that are involved
in eggshell formation or assembly (vitelline membrane for-
mation involved in chorion-containing eggshell formation
GO: 0007305 and eggshell chorion assembly GO: 0007306)
were consistently downregulated from day 30 to day 79 in the
box, which is consistent with the PANTHER analysis of the
SOM clusters.

The Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways was also considered using GSEA (Table 6). There
was only one fairly consistent pathway that changed across
all time points, which was the downregulation of the fly
phototransduction pathway (04745). At the three latest time
points (65, 72, and 79 days in the box), the largest proportion
of differentially changed pathways was observed. At day 65
in the box, there were seven downregulated pathways includ-
ing glycolysis (00010), alanine and aspartate and glutamate
metabolism (00250), pyruvate metabolism (00620), ribo-
some (03010), starch and sucrose metabolism (00500), galac-
tose metabolism (00052), and phototransduction (04745).
Both up- and downregulated pathways were detected at day
72 in the box, including DNA replication (03030), mismatch
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repair (03430), base excision repair (03410), glycosaminogly-
can biosynthesis (00534), ECM-receptor interaction (04512),
pyruvate metabolism (00330), oxidative phosphorylation
(00190), ribosome (03010), starch and sucrose metabolism
(00500), galactose metabolism (00052), and phototransduc-
tion (04745). At the latest time point, 79 days in the box,
5 pathways were downregulated, which include neuroactive
ligand-receptor interaction (04080), arginine and proline
metabolism (00330), ribosome (03010), starch and sucrose
metabolism (00500), galactose metabolism (00052), and
phototransduction (04745).

Shared expression patterns of differentially expressed
genes were investigated using biclustering analysis of gene
expression and experiments/replicates. Days 9–79 in the box
were compared to day 2 (5 days old) in the box. The data
demonstrates the reproducibility of the experiments. One
cluster of genes is upregulated at early time points, while
being downregulated at the later time points. Another cluster
of genes shows the opposite trend. The data are clustered
into three clusters, early, midlife, and late. The early time
points include four time points (9, 16, 23, and 30) with days
9 and 16 being closely related and days 23 and 30 being
closely related. The midlife time points (days 37, 44, 51,
and 58) demonstrate that days 44 and 51 are closely related
and days 37 and 58 are closely related. The late time points
(65, 72, and 79) are closely related. The significantly up- or
downregulated genes across time points compared to day
2 in the box were determined. In order to be included,
the gene had to be detected at only one time point. The
GSEA detected 263 upregulated genes (Supplementary Table
2) and 355 downregulated (Supplementary Table 3) genes. Of
these 618 differentially regulated genes, only 1, Retinin, was
significantly changed (downregulated) at all 11 time points
tested. Most of the genes were differentially expressed at
only one time point (upregulated = 92, downregulated =
108). Genes involved in immune system regulation (AttB,
AttC, AttD, CecA2, CecB, CecC, CG2056, Dpt, dro2, Immune
induced molecule 2 [IM2], IM3, IM4, IM23, Mtk, PGRP-SB1,
and PGRP-SD) were found to be upregulated across multiple
time points. The downregulated genes across multiple time
points included the Jonah family of serine proteases (Jon25Bii,
Jon25Biii, Jon44E, Jon65Ai, Jon65Aii, Jon99Ci, Jon99Ciii, and
Jon99Fi) and genes involved in chorion formation and assem-
bly (CG18349,CG18777,CG18779,Cp7Fa,Cp7Fb,Cp15,Cp16,
Cp18, Cp19, Cp36, Cp38, Dec1, Fcp3C, Lcp65Ac, Lcp65Ae,
Lcp65Ag1, Lcp65Ag2, Lsp2, Vitelline membrane [Vm] 26Aa,
Vm26Ab, Vm26Ac, Vm34Ca, yolk protein 2 [Yp2], and Yp3).

3.3. Variation in Gene Expression. Figure 3 shows the effect of
age on variance in immune system gene expression between
samples within boxes A and B (boxes are equivalent to cages).
The variation (heterogeneity) increases as a function of age.
With a linear regression fitting, the slopes were 0.0417 for box
A and 0.0455 for box B, and the fitting was significant: the
𝑝 values for boxes A and B were 2.4913 × 10−13 and 1.89 ×
10−17, respectively.The slope of the change in gene expression
generated from samples mixed among boxes was 0.0335 and
the 𝑝 value was 1.448 × 10−12 (Figure 4).The slope of the gene
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Days
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Figure 3: Change in the variation of gene expression of immune
function genes within cages (boxes A and B). This figure presents
the average variation over time.The slope of gene expression change
is shown on the 𝑦-axis and sampling points used for transcriptome
analysis on the 𝑥-axis.

expression among boxes did not differ from the slope within
boxes. Figure 5 shows the slope of a set of 200 randomly
selected genes, which was −0.0026. The slope of this random
set of genes was as not statistically significantly different
from an absence of slope (𝑝 < 0.5318). Presumably, this
randomly selected set of genes was representative of much of
the genome.

4. Discussion

In the present study, we conducted a fine-scaled temporal
analysis of genome-wide gene expression in replicate lab-
oratory populations. The only factor that obviously varied
over the course of the study was age, but the environment
could have varied from one cage to the other. The data in
the present study was generated from replicate populations,
initially very nearly 12,000mated femaleD.melanogaster.The
mortality curves were generated by counting the number of
dead females every day for the length of the study, which was
until all flies were dead. The mortality curves demonstrate
a decrease in survivorship starting at day 30, with a steady
decline until day 60. The LT

50
of survival for each cage

was 45 days (Figure 1). When comparing the two mortality
curves, the replicates essentially overlap at every time point.
This result suggests a high degree of similarity in the two
study populations. The high degree of similarity of slope of
change in gene expression (described in Figures 3, 4, and 5)
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Figure 4: Change in the variation of gene expression of immune
function genes among cages. For this analysis, samples from cages
(boxes A and B) were mixed then the slope calculated. The slope of
gene expression change is shown on the 𝑦-axis and sampling points
used for transcriptome analysis on the 𝑥-axis.

also supports the conclusion that the environment in the
Drosophila cages was quite similar.

Our data set included 1,581 genes that were differen-
tially expressed as a function of age as revealed by SOM
clustering and PANTHER analysis. There was consistency
among clusters in the pattern of gene expression. As one
example, clusters 0, 1, 2, 3, and 6 exhibited a marked decline
in gene expression starting the first week of life. Cluster
2 showed a leveling off of this decline starting the second
week of life. Clusters 0 and 1 consisted of genes whose
expression levels off late in life. Clusters 3 and 6 are apparently
characterized by an upturn in level of gene expression late
in life. As another example of consistency, clusters 5, 7, and
8 exhibited an increase in gene expression starting early in
life. In these clusters, the level of gene expression levels off
at approximately midlife and there was a trend of declining
gene expression after the midlife leveling off, followed by
an upturn of gene expression late in life. Another general
pattern observed in the data was that there was an apparent
tendency for an upturn in gene expression in five clusters
(3, 6, 5, 7, and 8). Cluster 4 was unique in the tendency of
genes in this group not to vary as a function of age. Although
many genes may change expression as a function of age in
D. melanogaster, there is no necessary loss of control of gene
expression underlying changes in mRNA abundance over
time [39].

Within the present study data set, there were a number
of SOM clusters of interest, for example, clusters 0 and 8, due
to their consistent number of differentially expressed genes
throughout the life span (Tables 3 and 4). Cluster 0 showed a
pattern of decline in gene expression over time as compared
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Figure 5: Change in gene expression of a set of 200 genes randomly
selected from the Drosophila genome. The slope of gene expression
change is shown on the 𝑦-axis and sampling points used for
transcriptome analysis on the 𝑥-axis.

to the day 2 control time point (Figure 2). When the genes
in this cluster were mapped over time, 57 of the 60 genes in
this cluster were downregulated by day 37 (Table 3), which
is over a week ahead of the LT

50
. At the LT

50
(day 45), 59 of

the 60 genes in this cluster are consistently downregulated,
with the exception of Arrestin 1 (Arr1), which promotes
light-induced rhodopsin endocytosis [40]. This gene was
consistently downregulated beginning at day 23. At the day 45
time point,Arrestinwas downregulated −2.53-fold compared
to control day 2 with a 𝑝 value of 0.0015. This finding is
similar to that of genes involved in synaptic transmission
that are downregulated in heads of aged flies [10]. The
only other day with a discrepancy in this cluster is day
58, in which CG13060 was not significantly downregulated
(−3.06 fold change, 𝑝 value = 0.127). This gene has unknown
biological and molecular functions but was implicated as a
miR-8 target site in a screen to identify genes upregulated in
miR-8mutants. These miR-8mutants showed reduced pupal
and adult survival, in fact ∼80% failed to eclose and the
others died within 24 hours [41]. If CG13060 is a functional
miR-8 target, then downregulation of this target site might
contribute to the normal aging process or possibly extend
life span. This gene should be further studied for functional
roles in the aging process. In cluster 0, 18.3% of the genes
are involved in eggshell chorion assembly and formation.
This was consistent with the GSEA of GO groups that also
showed a significant downregulation of this group over time
(Table 5). During aging, some biological processes, such as
egg formation, are expected to decline and were evident
in this study with the genes involved in eggshell chorion
formation decreasing steadily across time. This is consistent
with another genome-wide transcriptome study [42] and
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a study on gene expression during egg development before
and after reproductive diapause [43]. The age at when these
genes changed expression was not provided in these studies,
but in the present study, the SOM and PANTHER analysis
demonstrated that they became consistently downregulated
as a group starting at day 37. The exception was Cp7Fa,
which did not achieve constancy until day 44 (Supplementary
Table 1) and this was also observed in the GSEA data
(Supplementary Table 3). Phototransduction was the other
GO andKEGGgroup that showed consistent downregulation
over time (Tables 5 and 6). This observation is in line with
other studies that showed this group topping the list of
significant GO terms [10, 15, 44, 45]. Also within cluster
0, the largest group of genes were involved in metabolic
processes involving serine proteases. Serine proteases and
serine protease homologs play diverse roles in multiple
biological processes, including digestion, development, and
the immune response [46]. Serine proteases and related
homologs are important in development, immune responses,
and other biological functions [47]. In humans, the corre-
lation between proteolytic enzyme activity and age-related
pathology suggests a possible association with physiopatho-
logical aging. A study with rats demonstrates the activity
of three serum serine proteases as possible biomarkers of
aging [48]. In the current study, a family containing serine
protease genes, the Jonah family, was uncovered by both SOM
and PANTHER analysis (Supplementary Table 1) and GSEA
(Supplementary Table 3). The members of the Jonah family
are expressed both during the larval stage and a few hours
after eclosion throughout adult life. In situ hybridization
localized the Jonah mRNAs in the midgut [49] and some
Jonah proteins may aid in digestion [50]. Although the
functions of these proteins in the midgut are largely unclear,
this family of genes has been identified and is downregulated
in other Drosophila aging transcriptome studies [51, 52].
In addition to digestive functions, the gut plays a role in
immune homeostasis. Two effector mechanisms exist in the
gut, including reactive oxygen species (ROS) generation and
antimicrobial peptide (AMP) production. Alternative Imd
(immune deficiency pathway) regulation and stimulation of
the duel oxidation (duox) gene to produce ROS provides
innate immunity within the gut [53]. In a study evaluating
the correspondence of gene expression patterns in both aging
and oxidative stress, themajority of known immune response
genes were induced and a large number of proteases were
decreased both in aging and in response to oxidative stress
[18]. In D. melanogaster, only twenty-two genes are classified
as GO: serine-type endopeptidase and GO: defense response,
which makes the relationship between serine proteases and
immunity unclear [46].

In our study, a large number of immune-related genes
were overrepresented in PANTHER analyses (Table 2) and
in the gene ontologies derived from GSEA of temporal gene
expression (Table 5). The upregulation of immune function
genes has been seen in other studies onD.melanogaster aging
gene expression. Age-related upregulation of the immune
genes and functional decline in immunity (immunosenes-
cence) has been documented in other studies [reviewed
in [54, 55]]. This age-related immune status is termed

inflammaging [56]. This phenomenon is not restricted to
Drosophila, as it was first characterized in humans with the
observation that peripheral blood mononuclear cells from
elderly individuals produce greater amounts of proinflamma-
tory cytokines as compared to younger controls [57]. In fact,
this phenomena has been noted in a variety of species and
may be an underlying evolutionarily conserved mechanism
of aging [58].

In addition to the present study, other studies have
demonstrated upregulation of immune genes and downreg-
ulation of serine proteases, specifically the Jonah genes, and
in response to sigma virus infection [59] and xenobiotic
responses [60]. Neither of these studies had digestion as a
variable; therefore the idea that the Jonah genes produce
proteases that only deal with digestion should be questioned.
Another study demonstrated an upregulation of transcript
levels of immune-related genes and a downregulation of
genes involved in the aging of the gut [12]. These studies sug-
gest a connection between the gut and the immune system,
possibly between the downregulation of serine proteases and
the upregulation of immune response genes, with aging. In
a computational annotation of serine proteases and immune
response, 94 out of 2201 trypsin-like serine proteases were
identified as potentially involved in the Drosophila immune
response [47]. Contrary to the model, the serine proteases
predicted to be upregulated with aging were found to be
downregulated in the present study. One hypothesis is that
as aging persists, there is an accumulation of oxidized, cross-
linked, or aggregated proteins that cannot be processed
by proteolytic systems. In turn, a critical level of these
unprocessed proteins is reached and an immune response is
induced [57]. Our study indicated that this relationship may
occur at about the LT

50
(day 45), or even earlier (Table 3).This

suggests that the role of serine proteases and the Jonah family
of genes and the relationship with the immune related genes
should be further investigated as possible biomarkers of aging
and as candidate genes for identification of the underlying
pathophysiological mechanism of aging. The Jonah family of
genes considered solely on the basis of their general protease
activity may be important as foci for future research in
relation to loss of proteostasis as a hallmark of aging [4].

Other candidate geneswere identified in the present study
using the gene lists generated from both SOM clustering
(Supplementary Table 1) andGSEA for overrepresented genes
(Supplementary Tables 2 and 3). These were compared to
published literature and two databases: GenAge: The Age-
ing Gene Database (http://genomics.senescence.info/genes/
index.html) [61] and Genesdb (http://www.uwaging.org/
genesdb/). Of the overrepresented upregulated genes (Sup-
plementary Table 2), the first is drop dead (drd), which was
found in SOMcluster 1 (Supplementary Table 1). Earlier aging
studies found that the drd mutants die early in adult life [62]
and may cause an acceleration of the normal aging process
[63]. In SOM cluster 2 (Supplementary Table 1), Phospho-
enolpyruvate carboxykinase (Pepck) and Insulin-like peptide
4 (Ilp4) were found to be candidate genes. In Drosophila,
Pepck is major anaplerotic source of oxaloacetate, which is an
intermediate of the citric acid cycle and gluconeogenesis [64].
Mice with overexpressed Pepck-C had an extended life span
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relative to control animals and evidently such mice repattern
energy metabolism leading to greater longevity [65]. Insulin-
like peptide 4 (Ilp4) is part of a group of five insulin-like
peptide proteins that are highly homologous to those found
in mammals [66]. Like the Jonah genes, it is expressed in
the midgut, but also in the neurons [67]. In Drosophila with
the insulin-like peptide-producing median neurosecretory
cells ablated and reduction of the dIlp genes, there was an
extension of median and maximal lifespan [68]. In SOM
cluster 3 (Supplementary Table 1), there were two genes of
particular interest. The first is sugarbabe, which encodes a
predicted zinc finger protein regulating neurosecretory cell
insulin gene expression. InmiR-14mutant flies, sug was found
to control dIlp mRNA levels, suggesting that it may act as
a transcription factor to these genes [69]. In another study,
a 5–9% increase in mean life-span was achieved with sug
overexpression from a doxycycline-inducible promoter [18].
Of the overrepresented downregulated genes (Supplementary
Table 3), two genes from SOMcluster 5 (Supplementary Table
1) are of interest. The first is heat shock protein 68 (hsp68),
which is a JNK pathway inducible stress response gene.When
Hsp68 is constitutive overexpressed, D. melanogaster was
protected against oxidative damage and paraquat-induced
lethality. In turn, this overexpression led to an approximate
15% increase inmedian andmaximum life span [70]. Another
gene in this SOM cluster is the caspase Death associated
molecule related to Mch2 (Damm), which is found at high
levels in adults [71]. Changes in caspase activity correlated to
age-related apoptosis may play a role in muscle degeneration
[72]. In a study of age related changes in the transcriptome in
specific body regions, Damm was upregulated, suggesting a
relationship between proteasome activation and apoptosis in
age-related muscle degeneration [10].

There were a number of noteworthy patterns in gene
expression in the present study. Two important patterns are
described in this paragraph and the third is described in the
next paragraph. Firstly, there is a general trend in the results
in the present study in which gene clusters that change in
mean level of expression as a function of age start to change
relatively early in life (e.g., Figure 2). A related observation
was made in a metagenomic study comparing life time gene
express in C. elegans andD. melanogaster [3]. Apparently, the
gene sets that characterize aging begin to become manifest
early in adult life. Secondly, at the last three time points in the
present study (65, 72, and 79 days in a cage) there is a tendency
for pathways per se to shift in pattern of gene expression.This
observation is described in the second paragraph of Results,
Section 3.2 Temporal Gene Set Enrichment Analysis (GSEA).
Apparently our very large cohort sizes enabled us to sample
a sufficient number of exceptionally old flies for microarray
analysis, and only these ages exhibited shifts in pathway-wide
patterns of gene expression.

A third noteworthy pattern of gene expression in the
present study is the change in variance in immune system
genes as a function of age. The variance in gene expression
as a function of age was analyzed in the present study for
two sets of genes: immune function genes and a random
set of genes. The random set of genes was intended to be
representative of much of the genome apart from immune

system genes. This comparison of focal interest (immunity
versus random set of genes) considered the heterogeneity,
specifically variance, of gene expression not mean values
per se. No change in mean gene expression was observed
for a random set of genes in the present study (Figure 5).
This might be expected, as only approximately 10% of the
genes in the Drosophila genome were found to exhibit a
significant change in gene expression in our study. There
was an increase in the variation in immune system gene
expression within cages (Figure 3) compared to the random
sample of genes (Figure 5). This result is consistent with the
general observation of genomic instability as a hallmark of
aging. Presumably, mutations tend to increase the variation
in gene expression as some genes are regulated normally
whereas other genes exhibit impaired control of gene expres-
sion. Epigenetic alteration as a hallmark of aging [4] is also
consistent with our observation of an increase in the variance
of gene expression as a function of age. There was no added
increase in the variation in gene expression when samples
from the different cages were mixed for analysis (among
cages, Figure 4) compared to the variation in gene expression
when the cages were analyzed separately (Figure 3). This
result indicates that the environment between boxes (cages)
did not vary substantially. Overall, the analysis of immune
function genes in the present study revealed that there was
an increase in the variation of gene expression in this class
of genes (Figures 4 and 5). The pattern of gene expression
change in immune function genes as flies age, an increase in
gene expression variation, is compatible with the hypothesis
of a loss of normal regulation of gene expression. We focused
on immune system genes in our analysis of genes that tend to
increase in variance in gene expression as a function of age,
but other sets of genes could exhibit a similar age-dependent
pattern of change in gene expression. A question arising from
the observation of increasing variance in gene expression is
what causes immune function genes, or other genes, to be
especially liable to loss of control of gene expression as a
function of age.

5. Conclusion

Thepresent study has provided evidence about the identity of
differentially expressed genes that are associatedwith aging in
D. melanogaster. Immune function genes were identified as a
prominent class of such genes in our studywhich is consistent
with a large body of that data has accumulated to support
the inflammaging hypothesis of aging [73]. Our results
suggest that loss of control of gene expression of immune
function genes is part of the aging process. In conclusion,
the individual genes identified by changing expression in
the present study encompass a range of targets for future
research. Moreover, the clusters of covarying differentially
expressed genes identified in the present study could be
valuable for future studies of aging as a complex phenotype.
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