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Simple Summary: The role of dual specificity phosphatase 1 (DUSP1) in metastasis-associated
processes in prostate cancer and its impact on patient outcome remains to be elucidated. Our results
reveal that this phosphatase reduces Snail expression and impairs cell migration and invasion in
prostate cancer cells through a mechanism involving the inhibition of DUSP1 molecular targets,
c-Jun N-terminal kinase (JNK) and extracellular-signal-regulated kinase (ERK). In clinical samples,
we evidence an inverse correlation between DUSP1 expression and Snail levels, which are further
associated with JNK and ERK activation. Importantly, patients with the pattern DUSP1high/activated
JNKlow/activated ERKlow/Snaillow exhibit a longer time to progression and a better outcome than
those with the opposite pattern. All these findings highlight new opportunities to improve current
therapeutic strategies for the diagnosis and treatment of prostate cancer.

Abstract: Dual specificity phosphatase 1 (DUSP1) is crucial in prostate cancer (PC), since its ex-
pression is downregulated in advanced carcinomas. Here, we investigated DUSP1 effects on the
expression of mesenchymal marker Snail, cell migration and invasion, analyzing the underlying
mechanisms mediated by mitogen-activated protein kinases (MAPKs) inhibition. To this purpose,
we used different PC cells overexpressing or lacking DUSP1 or incubated with MAPKs inhibitors.
Moreover, we addressed the correlation of DUSP1 expression with Snail and activated MAPKs levels
in samples from patients diagnosed with benign hyperplasia or prostate carcinoma, studying its
implication in tumor prognosis and survival. We found that DUSP1 downregulates Snail expression
and impairs migration and invasion in PC cells. Similar results were obtained following the inhi-
bition of c-Jun N-terminal kinase (JNK) and extracellular-signal-regulated kinase (ERK). In clinical
samples, we evidenced an inverse correlation between DUSP1 expression and Snail levels, which are
further associated with JNK and ERK activation. Consequently, the pattern DUSP1high/activated
JNKlow/activated ERKlow/Snaillow is associated with an overall extended survival of PC patients.
In summary, the ratio between DUSP1 and Snail expression, with additional JNK and ERK activity
measurement, may serve as a potential biomarker to predict the clinical outcome of PC patients.
Furthermore, DUSP1 induction or inhibition of JNK and ERK pathways could be useful to treat PC.
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1. Introduction

Prostate cancer is one of the most frequently diagnosed cancers in men worldwide and
is the second leading cause of cancer-related deaths among males [1]. The majority of the
deaths associated with this type of tumors are related to metastasis, in which the so-called
epithelial–mesenchymal transition (EMT) is one of the most important events involved [2].
EMT is a cell plasticity program that plays very important roles during embryonic de-
velopment and can be reactivated in adult physiological situations to maintain epithelial
homeostasis in order to guarantee tissue integrity and organ function [3,4]. Moreover, EMT
also has important roles in pathological processes such as cancer metastasis. This process is
defined by a loss of epithelial cell-specific characteristics, such as polarity and cohesiveness,
and by an acquisition of a mesenchymal-like morphology with increased motility [5]. The
abnormal activation of EMT in cancer disrupts the intercellular junctions, causing the
dissociation of surrounding cells and the acquisition of migratory phenotype. Thus, EMT
is often associated with the invasion and metastatic ability of tumor cells. In agreement
with this, a large amount of evidence have shown that metastatic cells display a decreased
expression of epithelial markers and an increased expression of mesenchymal markers
both in vitro and in vivo [4]. One of the hallmarks of the EMT is the overexpression of
Snail, which is a transcription factor that downregulates the expression of epithelial genes
and upregulates the expression of mesenchymal genes, ultimately leading to increased
migration and invasion [6]. Thus, Snail overexpression has been found in the invasive
fronts of several human tumors derived from epithelial cells, including hepatocellular,
breast, or thyroid carcinomas, among others [7–11]. Accordingly, Snail is widely associated
with invasiveness, metastasis, tumor recurrence, and poor prognosis [7–9]. In particular,
metastatic prostate cancer cells display typical features of EMT, and Snail plays an impor-
tant role in the regulation of cell polarity, the expression of epithelial and mesenchymal
markers, as well as migration and invasion [2,12]. Consistently, Snail expression increases
with prostate cancer progression from benign to bone metastatic tumors [13–15]. From a
molecular point of view, several studies in different tumor contexts have demonstrated that
the expression and activity of Snail can be regulated by multiple molecular mechanisms,
including transcriptional regulation and post-translational modifications. In this sense, one
of the most important mechanisms that affects Snail stability involves its export from the
nucleus and its subsequent degradation by the proteasome in the cytosol [16]. Further-
more, it has been demonstrated that mitogen-activated protein kinase (MAPK) activation
results in an increase of Snail protein levels, which in turn regulate the expression of
EMT-associated genes [16].

Dual specificity phosphatase 1 (DUSP1) acts as a tumor suppressor by negatively
regulating MAPK activity in different tumors, including prostate cancer. Thus, we and
others have previously demonstrated that the expression of this phosphatase decreases
with prostate tumor progression. Whereas DUSP1 levels are high in benign prostatic hy-
perplasia (BPH) and hormone-sensitive prostatic adenocarcinoma (HS-PC), the expression
of this phosphatase is almost absent in hormone-refractory prostatic adenocarcinoma (HR-
PC) [17,18]. Consistently, DUSP1 overexpression in androgen-independent prostate cancer
cells promotes apoptosis through inhibition of the p38 mitogen-activated protein kinase
(p38MAPK)/nuclear factor-kappaB (NF-kB) signaling pathway [17]. Moreover, DUSP1
is also involved in the pro-apoptotic effects of the chemopreventive molecule resveratrol
in prostate cancer cells [19]. In addition, it has been reported that DUSP1 inhibits cell
migration, invasion, and metastasis in other cancer types [20–24]. However, despite all
these studies showing DUSP1 as an apoptosis inducer in prostate cancer, the role of this
phosphatase in cell migration and invasion in these kind of tumors remains largely un-
known. Therefore, in this work, we aimed to investigate whether DUSP1 is involved in the
motility of prostate cancer cells and whether this protein regulates the signaling pathways
that control these processes. In brief, our results demonstrate that DUSP1 decreases Snail
expression as well as cell migration and invasion in prostate tumor cells. Moreover, our data
also support that DUSP1 regulates both processes, together with Snail expression, through



Cancers 2021, 13, 1158 3 of 21

the inactivation of c-Jun N-terminal kinase (JNK) and extracellular-signal-regulated kinase
(ERK). Importantly, we also elucidate a new molecular pattern, which might be useful
as a prognosis biomarker for prostate cancer monitoring. This molecular signature is
characterized by an inverse correlation between DUSP1 and Snail levels with an additional
activation of JNK and ERK pathways. Finally, our results show that expression of DUSP1
and Snail, as well as levels of active ERK and JNK correlate with time of progression and
with exitus rate. In line with this, those patients with high DUSP1 expression, low JNK and
ERK activities, and low Snail expression exhibit a longer time until they reach metastatic
disease, a better outcome, and a lower exitus rate than those with the opposite expression
pattern (DUSP1low/activated JNKhigh/activated ERKhigh/Snailhigh). Importantly, we con-
sider that our findings suggest new opportunities to improve current strategies for the
diagnosis and treatment of prostate cancer.

2. Materials and Methods
2.1. Cell Lines, Inhibitors, Plasmids, Cell Transfection and Luciferase Assay

DU145 and PC3 androgen-independent prostate cancer cells were purchased from
the American Tissue Culture Collection (Manassas, UA, USA) and were cultured as
recommended. The inhibitors were U0126 (Promega Biotech Ibérica, Madrid, Spain),
SB203580, SP600125, and MG132 (Calbiochem, Merck Chemicals, Barcelona, Spain). The
pCMV-DUSP1 and the Snail-Luc reporter plasmids were previously described [25,26]. For
overexpression and siRNA experiments, cells were transiently transfected as previously
described [19]. Luciferase assays were performed as in [27], being the luciferase levels
normalized to those of renilla, and expressed as the induction over the controls.

2.2. Western Blot Analyses and Immunofluorescence Staining

Western blot analyses were performed as described in [27]. The antibodies were anti-
DUSP1, anti-p38MAPK, anti-JNK1, and anti-ERK2 (Santa Cruz Biotechnology, Heidelberg,
Germany); anti-phospho-p38MAPK (pp38MAPK), anti-phospho-ERK (pERK), and anti-
Snail (Cell Signalling Technology, Izasa S.A., Barcelona, Spain); anti-phospho-pJNK (pJNK)
(Promega Biotech Ibérica, Madrid, Spain); anti-Tubulin (Sigma Aldrich, Madrid, Spain);
peroxidase-conjugated secondary antibodies (GE Healthcare Europe GMBH, Barcelona,
Spain). Tubulin was utilized as a loading control for Western blotting analysis. Relative
protein levels compared to tubulin were analyzed by Image J software and plotted.

Immunofluorescence staining was performed as previously described [28]. Briefly,
cells cultured on coverslips were fixed, permeabilized, blocked and, after several washes,
stained for Snail with the specific antibody, followed by the anti-rabbit Alexa Fluor®

488 secondary antibody (BD Biosciences, Franklin Lakes, NJ, USA). Samples were mounted
using ProLong® Gold Antifade Mountant with DAPI (Invitrogen, Life Technologies, Carls-
bad, CA, USA), and fluorescence visualization was performed by ICTS “NANBIOSIS”,
more specifically by the Confocal Microscopy Service (Ciber in Bioengineering, Biomaterials
& Nanomedicine (CIBER-BNN)) at the Alcalá University.

2.3. Cell Migration and Invasion Assays

Cell migration was examined by wound-healing assays. After transfection/treatment
of cells, scratches were made using sterile 200 µL-pipette tips, and bright-field micropho-
tographs were taken at different times. The percentages of cell migration were quantitated,
by the ImageJ software, measuring the width of the cell-free zone immediately after making
the scratch, and at different times after scratching. Migration velocities represented the
average velocities at which the cells moved into the gap.

Cell invasion was examined in Matrigel-coated transwells (BD Biosciences, Franklin
Lakes, NJ, USA) as previously described [29]. The number of cells loaded onto the surface of
each Matrigel-coated transwell was 100,000 in DUSP1 overexpression and MAPK inhibitors
experiments, and 50,000 in DUSP1 silencing experiments. Invaded cells were stained with
crystal violet, and three different cell fields of each well were photographed under a phase
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contrast microscope (Nikon TS100). Changes in cell invasion were expressed as percentages
of the corresponded controls.

2.4. Experimental Subjects and Immunohistochemistry of Prostate Tissues

Paraffin-embedded samples from patients diagnosed with BPH (n = 9) or PC (n = 35)
were used (Table 1). Five-micron thick sections from samples were incubated overnight
at room temperature with each primary antibody (anti-DUSP1 and anti-Snail1, clone G7
(Santa Cruz Biotechnology, Heidelberg, Germany); anti-pJNK (Promega, Promega Biotech
Ibérica, Madrid, Spain); anti-pERK (Cell Signalling Technology, Izasa S.A., Barcelona,
Spain)). Afterwards, samples were washed and sequentially incubated with the biotin
free, peroxidase-detection system (polymer-based detection kit, MasVisionTM, Master
Diagnostica, Spain). Nuclei were stained with Caracci’s hematoxylin. Samples were
dehydrated and mounted with DePex. The intensity of the immunostaining was evaluated
by two independent observers who were blinded to patient clinical information through a
system of subjective gradation. Immunostaining scores were ranged into four categories
based on the staining pattern of the majority of tumor cells in the whole section, which
were grouped into two main categories for statistical purposes (0–1: negative/low staining;
2–3: moderate/high staining).

Table 1. Clinical data of prostate cancer patients (n = 35).

CLINICAL DATA n

Age (median = 65)

<65 15

≥65 20

Gleason grade

≤7 13

>7 22

Invasivity (T)

T1 5

T2 11

T3 15

T4 4

Metastatic disease at diagnostic (M)

M0 31

M1 4

Response to androgen blockade

Hormone-responsive (HS) 20

Hormone-refractory (HR) 15

OUTCOME n

Alive 22

Exitus 13

PROGRESSION months

Median survival 16

Time to biochemical progression 15

Time to clinical progression 50
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2.5. Statistical Analyses

In the experiments with cell lines, all data were expressed as means ± SEM. Student’s
t test was performed using the SSC-Stat software (V2.18, University of Reading, UK). In
the immunohistochemistry assays, GraphPad Prisma 3.0 software was used for statistical
purposes. Immunostaining score and clinical data were analyzed using one-way ANOVA
and either the Bonferroni’s or Dunnet´s multiple comparison tests. The correlation among
markers was analyzed using the Pearson´s test (95% confidence interval). Log-rank test
and survival curves were used to determine the relationship among markers and time to
clinical progression. The statistical significance of difference between groups was expressed
by asterisks (* 0.01 < p < 0.05; ** 0.001 < p < 0.01; *** p < 0.001).

3. Results
3.1. DUSP1 Downregulates Snail Expression and Impairs Cell Migration and Invasion in Prostate
Cancer Cells

To study the role of DUSP1 in the migration and invasion of prostate cancer cells, we
first analyzed the effect of DUSP1 knockdown on Snail expression in DU145 cells. DUSP1
silencing efficiency was tested by measuring its protein levels, observing a significant
decrease in DUSP1-deficient cells (Figure 1a). The results showed an increase in Snail
levels both at a transcriptional (Figure 1b) and at a protein level (Figure 1c). Consistently,
DUSP1-deficient cells significantly displayed an enhanced capacity of both cell migration
(Figure 1d–f) and invasion (Figure 1g,h). Conversely, cells overexpressing DUSP1 showed
a significant increase in protein levels (Figure 1i), significantly reduced Snail expression
levels (Figure 1j,k), were less migratory (Figure 1l–n), and displayed limited cell invasion
(Figure 1o,p). Similar results were obtained from experiments performed in PC3 cells, thus
ruling out the cell-type specific effects of this phosphatase (Figure S1 in Supplementary
Materials). All these results indicate that DUSP1 downregulates Snail expression, which in
turn results in a further decrease in migration and invasion of prostate cancer cells.

3.2. The Inhibition of JNK and ERK Downregulates Snail Expression, Cell Migration and Invasion

Given that DUSP1 is able to dephosphorylate and inhibit different MAPK signal-
ing pathways, we next investigated which of them were involved in the effects of this
phosphatase on Snail expression, cell migration, and invasion in DU145 cells. Our results
confirmed that p38MAPK, JNK, and ERK were targets of this phosphatase, since the abro-
gation of its expression activated these three MAPKs (Figure 2a). In addition, the inhibitory
effect of DUSP1 on MAPK’s activities was confirmed by monitoring the levels of their
phosphorylated forms in cells overexpressing this phosphatase (data not shown).

Further analysis of Snail expression after inactivation of these MAPKs was performed
upon treatment of cells with specific inhibitors. The efficiency of selective inhibition of
MAPK activity by SB203580 (p38MAPK inhibitor), SP600125 (JNK inhibitor), or U0126
(MEK inhibitor) was confirmed by measuring MAPK phosphorylation levels in cells in-
cubated with these compounds (Figure S2 in Supplementary Materials). Moreover, the
inhibition of these MAPKs differently affected cell proliferation and survival [17] (unpub-
lished results). Regarding Snail expression, the inhibition of p38MAPK with SB203580
did not affect Snail expression (Figure 2b,c). In contrast, treatment with either SP600125
or U0126 achieved a significant reduction in Snail levels (Figure 2b), although only ERK
inhibition exerted its effects at a transcriptional level (Figure 2c). Moreover, the effect of
JNK and ERK inhibition on Snail proteasomal degradation was assessed, and the analysis
of these data revealed that the reduction in Snail levels achieved by SP600125 or U0126 was
reversed by the inhibitor MG132 (Figure 2d), suggesting that Snail regulation by JNK or
ERK pathways is proteasome dependent.
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Figure 1. DUSP1 downregulates Snail expression and impairs cell migration and invasion in DU145
cells. (a) Cells were transfected for 48 h with the control siRNA (siControl) or the DUSP1 siRNA
(siDUSP1) and expression levels of DUSP1 and Tubulin were determined by western blotting.
(b) Cells were transfected for 48 h with the siControl or the siDUSP1 together with the Snail-Luc
plasmid and luciferase activity was measured in cell extracts. (c) Cells were transfected as in a
and expression levels of Snail and Tubulin were determined by western blotting. (d–f) Wound
healing assay and measurement of wound closure area and velocity in cells transfected as in a.
(g,h) Invasion capacity using transwell assays in cells transfected as in a. (i) Cells were transfected
with a control vector (Control) or a vector encoding DUSP1 (DUSP1) and expression levels of
DUSP1 and Tubulin were determined by western blotting. (j) Cells were transfected for 48 h with
the Control or the DUSP1 vectors together with the Snail-Luc plasmid and luciferase activity was
measured in cell extracts. (k) Cells were transfected with the Control or the DUSP1 vectors and
expression levels of Snail and Tubulin were determined by western blotting. (l–n) Wound healing
assay and measurement of wound closure area and velocity in cells transfected as in i. (o,p) Invasion
capacity using transwell assays in cells transfected as in i. For all the results, data are shown as the
mean ± SEM of at least three independent experiments. For migration and invasion assays, pictures
are from one representative experiment of three with similar results. Student’s t test: * 0.01 < p < 0.05;
** 0.001 < p < 0.01; *** p < 0.001.
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Figure 2. The inhibition of JNK and ERK downregulates Snail expression in DU145 cells. (a) Cells were transfected for 48 h
with the siControl or the siDUSP1 and expression levels of DUSP1, phosphorylated MAPKs (pp38, pJNK, pERK), total
MAPKs and Tubulin were determined by western blotting. (b) Cells were incubated at different times in the absence or
presence of 1 µM SB203580 (SB), 10 µM SP600125 (SP) or 20 µM U0126 (U0), and expression levels of Snail and Tubulin
were determined by western blotting. (c) Cells were transfected with the Snail-Luc plasmid, incubated for 48 h as in b
and luciferase activity was assayed in cell extracts. (d) Cells were incubated for 48 h with 10 µM SP600125 or 20 µM
U0126, treated in the absence or presence of 10 µM MG132 for the last 4 h and expression levels of Snail and Tubulin were
determined by western blotting. For all the results, data are shown as the mean ± SEM of at least three independent
experiments. Student’s t test: * 0.01 < p < 0.05; ** 0.001 < p < 0.01; *** p < 0.001.

Additionally, both JNK and ERK inhibition reduced cell migration (Figure 3a–f)
and invasion (Figure 3g–j), mimicking the results obtained following DUSP1 overex-
pression (Figure 1j–n). In contrast, p38MAPK inhibition did not affect cell migration
(Figure S3 in Supplementary Materials), suggesting that this kinase is supporting other
processes in prostate cancer progression. All these results, together with those showed
in Figure 1, demonstrate that both pharmacological inhibition of JNK or ERK and
DUSP1 overexpression exert similar effects on Snail expression, cell migration, and
invasion, suggesting that this phosphatase regulates these processes by specifically
targeting these two pathways.

3.3. Snail Subcellular Location Is Regulated by the Phosphatase DUSP1 and JNK and ERK
Signaling Pathways

One of the most common molecular mechanisms by which Snail expression is down-
regulated involves its nuclear export to the cytoplasm and its subsequent proteasomal
degradation. Since we demonstrated that JNK and ERK inhibition decreased Snail expres-
sion by affecting its proteasomal degradation (Figure 2d), we next analyzed Snail location
upon treatment with the specific MAPKs inhibitors. As expected, our results showed
that SP600125 and U0126 induced a more diffuse location of Snail with an increase in the
cytosolic compartment (Figure 4).
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Figure 3. The inhibition of JNK and ERK decreases migration and invasion in DU145 cells.
(a–f) Wound healing assay and measurement of wound closure area and velocity in cells incu-
bated for 48 h with 10 µM SP600125 (a–c) or 20 µM U0126 (d–f). (g–j) Invasion capacity using
transwell assays in cells incubated as above. For all the results, data are shown as the mean ± SEM
of at least three independent experiments. Pictures are from one representative experiment of three
with similar results. Student’s t test: ** 0.001 < p < 0.01; *** p < 0.001.
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Figure 4. Snail subcellular location is regulated by the JNK and ERK signaling pathways. DU145
cells were incubated for 48 h with 10 µM SP600125 or 20 µM U0126 and Snail subcellular location
was determined by immunofluorescence as described in Material and methods. DAPI was used to
identify the nuclei. Pictures are from one representative experiment of three with similar results.

Consistently, DUSP1 overexpression also induced a predominantly cytosolic location
of Snail, while DUSP1 knockdown maintained this transcription factor in the nucleus
(Figure 5). These results reveal that both DUSP1 overexpression and JNK or ERK inhibition
induce the export of Snail from the nucleus to the cytoplasm; hence, these data strengthen
our hypothesis that this phosphatase exerts its effects on Snail subcellular location through
the downregulation of these MAPKs.

3.4. JNK and ERK Cooperatively Regulate Snail Expression, Cell Migration and Invasion

Given that DUSP1 impaired the activity of JNK and ERK (Figure 2a), and that the
individual inhibition of these MAPKs downregulated Snail expression (Figure 2b), as
well as cell migration and invasion (Figure 3), we further studied whether these MAPKs
cooperated in the regulation of these events in our prostate cancer cells. Interestingly, the
combination of SP600125 and U0126 significantly achieved a higher reduction in Snail
expression than the single treatments in DU145 cells (Figure 6a).

Notably, cells treated with SP600125 plus U0126 were even less migratory (Figure 6b–d)
and displayed less invasion capacity (Figure 6e,f) compared to cells treated with the single
agents. To further strengthen these results, we extended our study, performing similar
experiments in PC3 cells. As expected, our results showed that JNK and ERK cooperatively
regulated Snail expression and cell migration also in these cells (Figure S4 in Supplementary
Materials). All these results indicate that the dual inhibition of JNK and ERK pathways in
prostate cancer cells is more effective in decreasing Snail expression, cell migration, and
invasion than blocking each pathway independently. Altogether, these results suggest
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once again that DUSP1 regulates these events through a dual inhibition of both JNK and
ERK pathways.

Figure 5. Snail subcellular location is regulated by the phosphatase DUSP1. (a) DU145 cells were
transfected for 48 h with the Control or the DUSP1 vectors. (b) Cells were transfected for 48 h with
the siControl or the siDUSP1. In both set of experiments, Snail subcellular location was determined
by immunofluorescence as described in Material and methods. DAPI was used to identify the nuclei.
Pictures are from one representative experiment of three with similar results.
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Figure 6. JNK and ERK cooperatively regulate Snail expression, cell migration and invasion in DU145
cells. Cells were incubated in the absence (C) or presence of 10 µM SP600125 (SP, 24 h) and 20 µM
U0126 (U0, 48 h). (a) Expression levels of Snail and Tubulin were determined by western blotting.
(b–d) Wound healing assay and measurement of wound closure area and velocity. (e,f) Invasion
capacity using transwell assays. For all the results, data are shown as the mean ± SEM of at least three
independent experiments. For migration and invasion assays, pictures are from one representative
experiment of three with similar results. Student’s t test: * 0.01 < p < 0.05; ** 0.001 < p < 0.01;
*** p < 0.001.

3.5. DUSP1 Expression Inversely Correlates with Snail Levels and Activated JNK and ERK in
Human Prostate Samples

To investigate whether our results obtained from the experiments performed with the
cell lines were clinically relevant, we next analyzed the expression levels of DUSP1 and
Snail in a series of samples from patients with BPH, HS-PC, and HR-PC (Table 1). Prostatic
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glands from BPH samples showed a high expression of DUSP1 (Figure 7a-I) and a weak
expression of Snail (Figure 7a-X). In prostate cancer samples, DUSP1 expression was high
in HS-PC (Figure 7a-II), whereas low or no signal for Snail was detected (Figure 7a-XI).
Conversely, HR-PC samples showed a weak or even undetectable DUSP1 expression
(Figure 7a-III) but a moderate to strong signal for Snail (Figure 7a-XII). Consequently,
the immunohistochemical analyses demonstrated an inverse correlation between DUSP1
and Snail, with a DUSP1high/Snaillow pattern in both BPH and HS-PC samples, and a
DUSP1low/Snailhigh pattern in HR-PC samples. Importantly, results from the Pearson´s
Test confirmed the inverse correlation between DUSP1 and Snail expression (Figure 7b).

Figure 7. DUSP1 expression inversely correlates with Snail levels and activated JNK and ERK in
human prostate samples. (a) Immunohistochemical analysis of expression levels of DUSP1 (I–III),
phosphorylated JNK (pJNK, IV–VI), phosphorylated ERK (pERK, VII–IX) and Snail (X–XII) from hu-
man prostate cancer samples. Micrographs were taken at 200× magnification and show serial sections
from the same gland stained with each one of the four used antibodies. (b) Immunohistochemical
score for DUSP1, pJNK, pERK and Snail in samples from HS-PC and HR-PC. The statistical analysis
was performed with One-way ANOVA and Dunnet´s multiple comparison test, and asterisks show
the statistical significance of differences between the groups (a: comparison with DUSP1 from HS-PC
samples; b: comparison with DUSP1 from HR-PC samples; c: HS-PC vs HR-PC for each marker), *
0.01 < p < 0.05; ** 0.001 < p < 0.01.
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Since our data in prostate cancer cells revealed that DUSP1 inhibits JNK and ERK
(Figure 2a) and these MAPKs negatively regulated Snail expression (Figure 2b–d), we
also analyzed the levels of activated JNK and ERK (pJNK and pERK) in patient samples.
Accordingly, our results indicated that the levels of active JNK and ERK were low in BPH
samples (Figure 7a-IV,VII). Moreover, an inverse correlation was also detected for PC
samples, with a DUSP1high/pJNKlow /pERKlow pattern in samples from HS-PC patients
(Figure 7a-II,V,VIII) and a DUSP1low/pJNKhigh /pERKhigh pattern in HR-PC samples
(Figure 7a-III,VI,IX). As in previous results, the Pearson´s Test confirmed these inverse
correlations (Figure 7b).

In all cases, subcellular localization for DUSP1 and pERK was mainly cytosolic,
while Snail was located in the cell nucleus. Regarding pJNK subcellular expression,
it was predominantly nuclear, although a mild-to-moderate signal for this marker
was also observed in cytosol (Figure S5 in Supplementary Materials). Moreover, a
compilation of different IHC images for each marker can be observed in Figure S6 in
Supplementary Materials.

3.6. The Relationship of DUSP1 and Snail Levels and JNK and ERK Activities Are Associated with
Disease Progression and Clinical Outcome in Patients with Prostate Cancer

Since we observed a differential expression of DUSP1, Snail, and the active forms
of JNK and ERK in samples from prostate cancer patients at different stages, we next
studied the interrelation between the levels of these proteins and some of the most im-
portant clinical parameters. Firstly, we analyzed the correlation of expression patterns
of DUSP1, Snail, and activated JNK and ERK with either Gleason score (Figure 8a) or
American Joint Committee on Cancer (AJCC) group staging at diagnosis [30] (Figure 8b),
and no correlation was observed in any of these cases. In contrast, we did observe
a significant correlation when we compared the levels of DUSP1, Snail, and activated
JNK and ERK with both the disease progression and the clinical outcome (Figure 8c–e).
Thus, shorter intervals to clinical progression were related with lower DUSP1 expression
and higher levels of activated JNK (log-rank, p = 0.0237) and ERK (log-rank, p = 0.0005)
(Figure 8c), although we did not observe correlation of time to clinical progression with
lower DUSP1 expression and higher levels of Snail (Figure 8c). Despite this, the combined
pattern DUSP1low/pJNKhigh/pERKhigh/Snailhigh was strongly related with overall time
to clinical progression (log-rank, p = 0.0002) (Figure 8d). More importantly, our data also
evidenced a significant relationship between the expression pattern of these proteins and
exitus (Figure 8e). Indeed, the median overall survival of patients with the combined
pattern DUSP1low/pJNKhigh/pERKhigh/Snailhigh was 29 months, compared to 79 months
in patients with DUSP1high/pJNKlow/pERKlow/Snaillow.

Collectively, all the results in human prostate samples reveal the existence of an
inverse correlation between DUSP1 expression and the levels of Snail and activated JNK
and ERK (negative correlation at Pearson´s test, p < 0.001), supporting our experiments
in prostate cancer cells which demonstrate that DUSP1 downregulates Snail expression.
In addition, our results indicate that low levels of DUSP1 and high levels of pJNK
(p < 0.02) and pERK (p < 0.0005), but not Snail (p > 0.05), are related to shorter intervals
to clinical progression. Finally, and more interestingly, we evidence that the levels of
all proteins tested are related to clinical outcome, suggesting that the ratio between the
expression of DUSP1, Snail, and activated JNK and ERK is an important marker for
diagnostic purposes in prostate cancer.
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Figure 8. The relationship of DUSP1 and Snail levels and JNK and ERK activities are associated with disease progression
and clinical outcome in patients with prostate cancer. (a,b) Immunohistochemical score for DUSP1, phosphorylated JNK and
ERK (pJNK and pERK) and Snail in samples ranged into three categories based on their Gleason Score (a) or AJCC group
staging at diagnosis (b). (c) Progression-free survival of patients showing immunohistochemical score for DUSP1/pJNK,
DUSP1/pERK or DUSP1/Snail. Samples were ranged into two categories based on the staining pattern of the majority of
tumor cells in the whole section (negative/low (ng/lo); moderate/high (md/hi)). (d) Progression-free survival of patients
showing immunohistochemical score for DUSP1/pJNK/pERK/Snail. Samples were ranged into two categories as described
in c. (e) Immunohistochemical score for DUSP1, pJNK, pERK and Snail in samples from patients either alive or dead. The
statistical analysis was performed with One-way ANOVA and Dunnet´s multiple comparison test, and asterisks show the
statistical significance of differences between the groups (a: comparison with DUSP1 from HS-PC samples; b: comparison
with DUSP1 from HR-PC samples; c: HS-PC vs HR-PC for each marker). TCP, Time to clinical progression, * 0.01 < p < 0.05;
** 0.001 < p < 0.01; *** p < 0.001.

4. Discussion

DUSP1 expression has been previously related to different stages of human prostate
carcinomas. In line with this, the expression of this phosphatase is high in BPH and HS-PC,
but it is lost in later stages, such as HR-PC [17]. Furthermore, DUSP1 overexpression in
androgen-independent prostate cancer cells induces apoptosis through both p38MAPK and
NF-kB dependent mechanisms [17]. Here, we show for the first time that this phosphatase
plays an additional anti-tumorigenic role in prostate cancer cells, since it decreases the
expression levels of the EMT master regulator, Snail, and inhibits cell migration and
invasion through the inactivation of JNK and ERK. Interestingly, we also demonstrate a
correlation between the expression levels of DUSP1 and Snail and the activity of JNK and
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ERK in samples from prostate cancer patients, discovering a novel approach to predict the
prognosis and outcome of this disease.

Previous studies have shown that the overexpression of Snail in prostate cancer cells
is associated with an increased cell migration and invasion, while its silencing induces a
decrease in these processes [31]. In agreement with this, here, we demonstrate that DUSP1
downregulates Snail expression and inhibits migration and invasion in prostate cancer
cells. Our data are similar to those observed in different types of tumors, in which DUSP1
suppresses cell migration, cell invasion, metastasis, and/or angiogenesis by inhibiting
either ERK [21,23], JNK [22,24], or p38MAPK [20]. Consistently with DUSP1 effects on
MAPK activity, the ERK pathway is one of the major oncogenic signals in human cancers
because its activation leads to an increase in proliferation, invasion, and metastasis [32].
Particularly in prostate cancer, the ERK pathway is often hyperactivated [33], acts as an
inducer of cell migration and invasion [34,35] through a Snail-mediated mechanism [36],
and is involved in the effects of different molecules on these processes [37–39]. In addition,
the JNK pathway has also been described to be important as a pro-tumorigenic signal
through Snail regulation in different tumors [40–42]. Regarding prostate cancer, it has been
previously described that JNK activity is related to elevated cell migration and invasion [43]
and controls tumor growth in DU145 prostate carcinoma xenografts [44], although the
involvement of Snail in these processes is still unknown. Our results are in agreement
with all these data, since we demonstrate that the effects of DUSP1 on Snail levels, cell
migration, and cell invasion are similar to those observed upon specific inhibition of the
ERK and JNK pathways. By contrast, our findings evidence that p38MAPK is not involved
in the regulation of these processes by DUSP1. Although several reports have showed that
this kinase promotes cancer by enhancing migration in tumor cells [45], we demonstrate
that the pro-tumorigenic role of p38MAPK in prostate cancer is more related to its effects
on cell apoptosis [17] than to those involved in cell migration and invasion. Overall, all
these data suggest that the role that DUSP1 plays as a tumor suppressor in prostate cancer
is complex and depends on the specific inactivation of one or the other MAPK, which
ultimately controls either cell apoptosis, or cell migration and invasion.

The regulatory mechanisms that control the cellular levels of Snail are very com-
plex and involve changes at the transcriptional level or post-translational modifications,
which affect its location in the cell nucleus and/or cytosol, as well as its susceptibility
to degradation [16]. Here, we show for the first time that DUSP1 expression regulates
the transcription of Snail. Moreover, only the concomitant ERK inhibition affects Snail
expression at this level, while JNK controls it exclusively at protein level. Similar data in
other cancer cell contexts have shown that the activation of Snail transcription requires an
active ERK pathway [46], whereas no data on JNK involvement in this process have been
reported. Regarding the regulation of Snail at a protein level, several mechanisms control
the migration and invasion of prostate cancer cells by modulating the location and stability
of this transcription factor. In this regard, one of the most common regulatory mecha-
nisms is the phosphorylation of Snail by glycogen synthase kinase 3 beta (GSK-3β), which
induces its nuclear export to cytosol and marks this protein for degradation in prostate
cancer [47–49]. Interestingly, active ERK phosphorylates and inhibits GSK-3β, maintaining
Snail in an active non-phosphorylated state and located at the cell nucleus [50]. Thus, the
location of Snail in the cytosol promoted by DUSP1-dependent ERK inactivation is a possi-
ble mechanism that explains the decrease of Snail levels following DUSP1 overexpression.
However, other regulatory mechanisms of Snail expression, independent of GSK-3β, have
been previously identified in different tumors. For example, in hepatocarcinoma and breast
cancer cells, the JNK pathway upregulates the lysil oxidase-2 (LOXL-2) [51], which oxidizes
Snail, preventing its phosphorylation by GSK-3β [52]. In prostate cancer cells, elevated
levels of LOXL-2 have been detected [53], supporting the possible involvement of this
protein in the effects of the JNK pathway on the prostatic carcinogenesis. Alternatively, our
group has previously shown that Snail expression is regulated by ERK and an autocrine
loop involving transforming growth factor beta (TGFβ)/Src/focal adhesion kinase (FAK)



Cancers 2021, 13, 1158 16 of 21

complex in thyroid cancer cells [28]. Similarly, other authors have demonstrated that FAK
activation induces Snail expression and enhances mesothelial cell migration, promoting
peritoneal metastasis from ovarian cancer [54]. Moreover, the JNK pathway activates
migration by inducing the phosphorylation of paxillin, which is an adaptor protein related
to FAK activation in different cancer cells [55,56]. In this regard, DUSP22, a member of the
DUSP1 family which reduces JNK activation, negatively regulates cell migration through
FAK dephosphorylation and inactivation in lung cancer cells [57]. Given that FAK and
paxillin expression is elevated in prostate cancer and both proteins are associated with
tumor progression, lymph node metastasis, and/or shortened survival [58,59], it is also
plausible that in our cancer model, the paxillin/FAK pathway could contribute to the
regulation of Snail expression by ERK and JNK. However, due to the difference between
ERK- and JNK-dependent mechanisms, further research is required to investigate the
molecular mechanisms underlying Snail regulation by these kinases.

Interestingly, we also demonstrate in this work the existence of an inverse correlation
between DUSP1 and Snail expression levels in patients with different stages of prostate
cancer. Importantly, in BPH and HS-PC samples, high levels of this phosphatase and low
or none Snail expression were detected, while in HR-PC samples, either low or no DUSP1
expression and high Snail levels were observed. In agreement with our results, an increase
in Snail expression has been related to disease progression, since there are higher levels
of this protein in bone metastasis from prostate cancer compared to BPH samples [13–15].
Furthermore, other studies indicate that 66% of patients with prostatic adenocarcinoma
show elevated Snail levels [60]. Here, we add new related information, demonstrating
for the first time that Snail expression in patient samples is inversely correlated with
DUSP1 levels and directly correlated with activated ERK and JNK pathways. In addition,
the increase of active ERK in samples of HR-PC compared to those of HS-PC or BPH
observed in our study is coincident with previous works. Accordingly, higher levels of
phosphorylated ERK are found in samples obtained from tumors in advanced or metastatic
phase, with respect to more localized tumors or BPH samples [61,62]. However, to our
knowledge, this is the first study showing that the level of activated JNK is increased in
prostate tumors with a more invasive phenotype, as previously seen in breast and urothelial
carcinomas [63,64]. All these data obtained from the experiments carried out with patient
samples confirm the results derived from our experimental cell line models and suggest
that DUSP1 regulates prostate tumor progression by controlling Snail expression through
ERK and JNK inactivation.

The presence of Snail has been strongly associated in prostate tumors with a high
Gleason score [13,60] but not with other parameters such as the risk of recurrence or
the Stage T [13]. In fact, no significant differences have been previously found in Snail
expression in non-metastatic, non-recurrent cancer, recurrent cancer, or metastatic cancer
at the time of diagnosis, suggesting that increased Snail expression is a relatively early
event in the progress of the disease [13]. Most of the samples we analyzed in this study
were locally advanced cancers. In fact, just one of our samples was graded as Gleason 6.
Intermediate-risk Gleason grade 7 is usually considered as an individual group between
grade 6 or lower and grade 8 or higher. Previous studies focused on the differences among
the lower and the higher grades, but usually, no significant differences among grade 7 and
higher grades were reported. When we correlated the expression of DUSP1, Snail, and
activated ERK and JNK to clinical information, we found that their expression patterns did
not correlate with either Gleason score or AJCC group staging at diagnosis. However, our
results demonstrate that the pattern DUSP1low/pJNKhigh/pERKhigh/Snailhigh is closely
related with a worse survival. This observation is in agreement with previous data showing
that DUSP1 expression correlates with better prognosis in glioblastoma [22] and with other
studies where the association of Snail expression with a worse prognosis in prostate cancer
was reported [13]. Therefore, since low DUSP1 expression and high levels of Snail and
activated JNK and ERK are positively associated with final outcome (death), we can
conclude that besides the overall immunohistochemical profile, high levels of Snail might
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be considered an independent indicator of bad prognosis that is predictive for worst
outcome independently of time to progression. Moreover, since the expression pattern
DUSP1high/pJNKlow/pERKlow/Snaillow is associated with an overall extended survival
of patients and decreased cell migration and invasion, our results suggest that therapies
based on DUSP1 induction combined with ERK and/or JNK inhibition may be promising
in the treatment of metastatic prostate cancer.

5. Conclusions

Our study provides new insights about the molecular mechanisms underlying the
effects of the phosphatase DUSP1 on metastasis-associated events in prostate cancer
(Figure 9). In summary, our experiments show that the overexpression of this phosphatase
downregulates Snail levels and decreases cell migration and invasion, whereas DUSP1
silencing shows opposite effects. Moreover, we demonstrate that DUSP1 inactivates JNK
and ERK pathways. Interestingly, the inhibition of these two kinases leads to similar effects
on Snail expression, cell migration, and invasion to those observed following the overex-
pression of this phosphatase. In addition, JNK and ERK cooperate to regulate Snail levels,
cell migration, and invasion through different mechanisms. Strikingly, we also demonstrate
in human prostate tissue samples an inverse correlation between DUSP1 levels and both
active JNK and ERK, as well as Snail expression. Thus, we show that the expression pattern
DUSP1high/pJNKlow/pERKlow/Snaillow is associated with the overall extended survival
of patients. Based on all these data, we conclude that the ratio between the expression
levels of DUSP1 and Snail could be an important biomarker for diagnostic purposes in
prostate cancer, as they may serve for identifying patients at risk for an unfavorable clinical
outcome. In addition, our results strongly suggest that the induction of DUSP1 or the
inhibition of ERK and JNK pathways could be useful as a therapeutic approach to treat
prostate cancer.

Figure 9. The phosphatase DUSP1 regulates metastasis-associated events in prostate cancer. This
study demonstrate that DUSP1 overexpression downregulates Snail levels and decreases cell mi-
gration and invasion. Moreover, DUSP1 inactivates ERK and JNK pathways, whose inhibition
exert similar effects on Snail expression, cell migration and invasion than overexpression of the
phosphatase. In addition, JNK and ERK cooperate to regulate Snail expression, cell migration
and invasion through different mechanisms. Finally, in clinical samples, the expression pattern
DUSP1high/activeJNKlow/activeERKlow/Snaillow is associated with overall extended survival of pa-
tients and may serve as potential biomarker for identifying patients with favorable clinical outcome.
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