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Association of anti-TNF-α treatment with gut microbiota of 
patients with ankylosing spondylitis
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Yidan Chenc, Yang Wuc, Yuehong Chenc, Qianqian Houa, Yang Shua,  
Wei Zhangb, Heng Xua, Geng Yinc and Qibing Xiec  

Objective Gut dysbiosis contributes to multiple 
autoimmune diseases, including ankylosing spondylitis, 
which is commonly treated with tumor necrosis factor 
(TNF)-α inhibitors (TNFis). Because host TNF-α levels 
are considered to interact with gut microbiota, we aimed 
to systematically investigate the microbiota profile of 
ankylosing spondylitis patients with anti-TNF-α-based 
treatment and identify potential key bacteria.

Methods Fecal samples were collected from 11 healthy 
controls and 24 ankylosing spondylitis patients before/
after anti-TNF-α treatment, the microbiota profiles of 
which were evaluated by 16S ribosomal DNA amplicon 
sequencing and subsequent bioinformatic analysis.

Results Significantly different microbial compositions 
were observed in samples from ankylosing spondylitis 
patients compared with healthy controls, characterized 
by a lower abundance of short-chain fatty acid (SCFA)-
producing bacteria. All patients exhibited a positive 
response after anti-TNF-α treatment, accompanied by 
a trend of restoration in the microbiota compositions 
and functional profile of ankylosing spondylitis patients 
to healthy controls. In particular, the abundance 
of SCFA-producing bacteria (e.g. Megamonsa and 
Lachnoclostridium) was not only significantly lower in 
ankylosing spondylitis patients than in healthy controls 
and restored after anti-TNF-α treatment but also 
negatively correlated with disease severity (e.g. cor = -0.52, 

P = 8 × 10−5 for Megamonsa). In contrast, Bacilli and 
Haemophilus may contribute to ankylosing spondylitis 
onset and severity.

Conclusions Microbiota dysbiosis in ankylosing 
spondylitis patients can be restored after anti-TNF-α 
treatment, possibly by impacting SCFA-producing bacteria. 
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Introduction
Ankylosing spondylitis, characterized as a chronic rheu-
matic disease with unclear etiology, is a prototype of spon-
dylarthritis that can affect the spine and sacroiliac joints 
and is commonly accompanied by extra-articular manifes-
tations (e.g. dermatitis, uveitis and colitis) [1]. As a con-
sequence, ankylosing spondylitis has a serious negative 
impact on patients in terms of physical function, quality 

of life and work ability, and imposes a severe burden on 
society and families due to the high probability of disa-
bility [2]. Epidemiologically, ankylosing spondylitis pre-
dominantly affects young adults, with an overall incidence 
ranging from 0.2 to 0.54% in China [3,4]. Although a vari-
ety of factors may contribute to ankylosing spondylitis 
risk, including inherited predispositions (e.g. haplotype 
of HLA-B27) [5,6], the pathogenesis of autoimmunity in 
ankylosing spondylitis has not been fully elucidated.

Clinically, more than 50% of ankylosing spondylitis patients 
experience subclinical gut inflammation, 10% of whom 
may further develop inflammatory bowel disease (IBD) 
[7–9]. Accumulating evidence suggests that similar genetic 
risk factors and etiopathogenesis are shared by ankylosing 
spondylitis and IBD patients [10–12]. On the other hand, 
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complicated interactions between gut microbiota and the 
function of host immune systems have been well revealed 
[13], including a demonstration in patients with IBD [14,15]. 
Not surprisingly, gut dysbiosis was also recently observed in 
patients with ankylosing spondylitis, illustrating significant 
differences in the composition and functional spectrum of 
gut microbiota in ankylosing spondylitis patients compared 
with healthy individuals [7,16,17]. Consistently, germ-free 
conditions can reduce the risk of ankylosing spondylitis 
development in animal models [18], further supporting the 
causal status of disturbed microbiota for ankylosing spondy-
litis. Mechanistically, the gut may be the first site of antigen 
exposure, which then activates the pathogenic mechanisms 
within the joint [19]. Rheumatologists speculated that gut 
bacterial antigens may invade sacroiliac and spine joints 
through lymphatic vessels due to the imbalance of gut 
microbiota and accompanying damage to the intestinal 
mucosa, thereby triggering immune responses and inflam-
mation in these locations [20]. In addition, previous studies 
have pointed out that the genetic background of the host 
can affect gut microbes [21]. As the most common genetic 
susceptibility factor of ankylosing spondylitis, the patho-
genicity of HLA-B27 is likely to induce ankylosing spon-
dylitis by influencing the gut microbiome [22–24]. Based 
on this evidence, the gut microbiota is considered to play a 
critical role in ankylosing spondylitis development.

Recommendations for the use of tumor necrosis factor 
(TNF)-α inhibitors (TNFis) in patients with ankylosing 
spondylitis were proposed by several international guide-
lines [25,26]. TNFis have been proven to be effective in 
reducing disease activity, improving physical function and 
slowing radiographic progression; therefore, TNFis have rev-
olutionized the treatment of ankylosing spondylitis patients 
who are inadequate or resistant to nonsteroidal anti-in-
flammatory drugs and conventional disease-modifying 
anti-rheumatic drugs (DMARDs) [27–30]. Mechanistically, 
TNF-α is a cytokine mainly produced by macrophages, as 
well as other immune cells, including CD4+ lymphocytes, 
NK cells, neutrophils, mast cells and eosinophils, thus trig-
gering and aggravating inflammation [31]. Investigation of 
human sacroiliac joint specimens provided the earliest evi-
dence, observing abundant TNF-α in patients with early 
sacroiliac arthritis and suggesting a possible association of 
spondylarthritis with TNF-α [32]. Clinical studies on TNFi 
further supported the role of TNF-α in the pathogenesis 
of ankylosing spondylitis [33,34]. Intriguingly, in addition to 
the impact of inherited predisposition on the anti-TNF-α 
treatment response [35], the correlation of TNF-α with 
gut microbiota has also been revealed. For instance, some 
patients with ulcerative colitis were not sensitive to TNFi 
and exhibited significantly different baseline gut microbiota 
compared with patients who were sensitive to TNFi [36], 
and the TNF-α level of the host can also influence the gut 
microbiota composition [37]. All these studies indicated the 
possible interaction between TNF-α and gut microbiota.

Because a number of studies have indicated the potentially 
important role of microbiota in drug or treatment response, 

we aimed to investigate the profile of microbiota and the 
involvement of specific gut microbes in the treatment of 
ankylosing spondylitis with TNFi in this study.

Materials and methods
Study subjects and sample collection
Anti-TNF-α treatment-naive patients with recent-on-
set ankylosing spondylitis and healthy controls were 
enrolled. Ankylosing spondylitis patients were treated 
with TNFi through injection, and individuals who used 
antibiotics in the last 3 months were excluded. Finally, 24 
ankylosing spondylitis patients and 11 healthy controls 
were included in this study. The activity of ankylos-
ing spondylitis was measured based on the Bath anky-
losing spondylitis disease activity index (BASDAI). A 
reduction in the BASDAI score by at least 2 points or 
50% from baseline was considered an indicator of clin-
ical remission. Fecal samples were collected once from 
healthy controls and twice from ankylosing spondylitis 
patients (i.e. 1–3 days before anti-TNF-α treatment and 
~1 month after treatment, except for the time point at 
which the patient experienced clinical remission for five 
patients). Fresh fecal samples were collected and stored 
in tightly closed tubes and immediately preserved at −80 
°C, within 1 h from defecation to storage. Clinical infor-
mation was obtained from the electronic system of West 
China Hospital as described previously [38–40]. This 
study was approved by the Ethics Committee of West 
China Hospital, Sichuan University [2020 (1151)].

Sequencing and bioinformatic analysis
DNA was extracted from frozen fecal samples (200  mg 
each) using the QIAamp Fast DNA Stool Mini Kit 
(Qiagen, #51604). The DNA quality was measured with 
a NanoDrop and agarose gel electrophoresis. The gut 
microbiota in all samples was determined via 16S rDNA 
sequencing at Novogene Bioinformatics Technology 
Institute (Sichuan, China) with the Illumina HiSeq X10 
platform (paired-end 150 bp) and analyzed with the opti-
mized pipeline based on which we have described pre-
viously [41,42]. Briefly, the universal forward primer 
(5′-GTGCCAGCMGCCGCGGTAA-3′) and the reverse 
primer (5′- GGACTACHVGGGTWTCTAAT-3′) were 
used to amplify the V3–V4 hypervariable regions. The 
sequences were processed with a USEARCH (http://www.
drive5.com/usearch/) (VSEARCH) pipeline, clustered 
into operational taxonomic units (OTUs) based on a 97% 
similarity threshold, and then normalized according to 
the fewest number of OTUs in all samples for analysis of 
alpha diversity. The Ribosomal Database Project Classifier 
(https://www.drive5.com/sintax/) was used for taxonomic 
assignment of all OTUs, and the relative abundance was cal-
culated using the annotation results in R software. Principal 
coordinates analysis was conducted on Bray–Curtis matri-
ces using QIIME1 software (v.1.9.1). Linear discriminant 
analysis (LDA) effect size analysis (LefSe) was employed 
to identify features with significantly different abundances 
as unique bacteria between the indicated groups based on 
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annotation results assigned by the Silva reference database 
(http://www.arb-silva.de/). A log LDA score of >3 was the 
threshold for discriminating between the indicated groups. 
The sequences were assigned to the Greengenes reference 
database for PICRUSt functional prediction.

Statistical analysis
R (version 4.0.3) software was used for statistical anal-
yses. Statistical significance was calculated using the 
Wilcoxon rank-sum test or paired T-test for pairwise 
comparisons (e.g. α diversity, LefSe analysis, PICRUSt 
functional prediction). β diversity analysis was performed 
on Bray Curtis distances and statistical significance was 
calculated using the Adonis test. Differential OTUs in 
all groups were identified using the Kruskal–Wallis test. 
Spearman’s rank correlation test was used to assess cor-
relations between the abundance of unique bacteria and 
the disease activity index. The results were considered to 
be statistically significant at P < 0.05.

Results
Overall intestinal microbial profile of ankylosing 
spondylitis patients and healthy controls
We collected fecal samples from 11 age/sex-matched 
healthy controls and 24 ankylosing spondylitis patients 
(Table 1 and Supplementary Table 1, Supplemental digital 
content 1, http://links.lww.com/FPC/B422). All ankylosing 
spondylitis patients had a significantly positive response 
to anti-TNF-α treatment in terms of decreased disease 
activity score BASDAI and C-reactive protein (CRP) level 
(Fig.  1 and Table  1), indicating satisfactory therapeutic 
effect of TNFi on ankylosing spondylitis. Subsequently, 
16S ribosomal DNA amplicon sequencing was conducted 
to profile the gut microbiota with adequate sequenc-
ing depth (Supplementary Figure 1, Supplemental 

digital content 2, http://links.lww.com/FPC/B423). A total of 
4 384 401 unique sequences of all samples were obtained 
and clustered into 1246 OTUs based on 97% similarity. 
Although the species richness of microbial communities 
exhibited no significant difference among groups in terms 
of α-diversity (Fig. 2a), the compositions of the gut micro-
biome of three sample groups were clustered separately 
in terms of β-diversity (Fig. 2b), and anti-TNF-α treat-
ment shifted the microbial compositions of ankylosing 
spondylitis patients toward those of healthy controls.

Furthermore, we estimated the significantly altered com-
ponents of the gut microbiota among the three groups, 
identifying a total of 330 differently distributed OTUs. 
Considering the possible involvement of microbiota in anky-
losing spondylitis development and treatment response, we 
focused on the 83 OTUs that exhibited gradually changed 
compositions in the order of pretreatment, post-treatment 
of ankylosing spondylitis patients and healthy controls 
(Fig. 3a). After annotation with the reference sequence of 
bacteria, we observed that anti-TNF-α treatment restored 
the relative abundance of the microbiota profile, includ-
ing increased Bacteroidetes and Proteobacteria at the phylum 
level and decreased Erysipelotrichaceae, Lachnospiraceae and 
Ruminococcaceae at the family level (Fig. 3b,c).

Specific microbiota components and pathways 
involved in ankylosing spondylitis onset and treatment 
outcomes
With LefSe discriminant analysis, we first compared the 
microbiota compositions of pretreated ankylosing spon-
dylitis patients with those of healthy controls (before vs. 
healthy control), and subsequently, the differences in 
pre- and post-treatment groups were identified (before 
vs. after). Several unique bacteria (log LDA >3) in each 

Table 1 Clinical characteristics of ankylosing spondylitis patients and healthy controls

Feature

Ankylosing spondylitis patients Control

P value(n = 24) (n = 11)

 Mean ± SD  
Age (years) at recruitment 32.3 ± 10.5 35.1 ± 11.1 0.48
Collection interval (days) 41.0 ± 17.8 NA NA
BASDAI level
 Pretreatment 3.86 ± 0.78 NA <0.0001
 Post-treatment 1.56 ± 0.68
CRP level (mg/L)
 Pretreatment 31.0 ± 18.6 NA 0.0002
 Post-treatment 6.8 ± 11.8
 No. (%) of patients  
Gender
 Female 2 (8.3) 2 (18.2) 0.57
 Male 22 (91.7) 9 (81.8)
Treatment strategy
 Home 12 (50) NA  
 Clinic 12 (50) NA  
Drug
 Antibody 7 (29.2) NA  
 Recombinant fusion protein 17 (70.8) NA  

P value was estimated by comparing AS patients with controls or pretreatment with posttreatment. 
BASDAI, Bath AS disease activity index; CRP, C-reactive protein; NA, not applicable.
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group were identified. For instance, four species were fil-
tered out by taking the intersection of two results of LefSe 
analysis: Bacilli phylum and Haemophilus genus were 
enriched in the pretreatment samples, and Megamonas and 
Lachnoclostridium genus were enriched in the post-treat-
ment and healthy controls (Fig. 4). Intriguingly, the healthy 
controls were enriched in short-chain fatty acid (SCFA)-
producing bacteria, such as Bifidobacterium, Megamonas, 
Lachnoclostridium, Lachnospira and Megasphaera (Fig.  4a 

and Supplementary Table 2, Supplemental digital con-
tent 3, http://links.lww.com/FPC/B424), and some of these 
bacteria (e.g. Megamonas and Lachnoclostridium) were sig-
nificantly restored in post-treatment samples (Fig. 4b and 
Supplementary Table 3, Supplemental digital content 4, 
http://links.lww.com/FPC/B425), suggesting the possible 
involvement of SCFAs in the pathogenesis of ankylos-
ing spondylitis as well as treatment outcomes. Not sur-
prisingly, the SCFA-producing bacteria (i.e. Megamonas 

Fig. 1

Impact of anti-TNF-α treatment on the disease activity of ankylosing spondylitis. (a) BASDAI and (b) CRP scores were significantly downregulated 
after anti-TNF-α treatment. A paired t-test was performed to estimate the statistical significance. BASDAI, Bath AS disease activity index; CRP, 
C-reactive protein; TNF, tumor necrosis factor.

Fig. 2

Microbiota diversity of ankylosing spondylitis patients and healthy controls. (a) α-diversity of microbiota was illustrated by the Simpson index; (b) 
β-diversity of microbiota calculated by Bray-Curtis was illustrated in three groups. HC, healthy control; before and after, before and after anti-TNF-
α treatment. TNF, tumor necrosis factor.
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and Lachnoclostridium) no longer exhibited a significant 
difference between the post-treatment group and the 
healthy group (Fig.  4c and Supplementary Table 3, 
Supplemental digital content 4, http://links.lww.com/FPC/
B425). These results illustrated that the microbiota dys-
biosis of ankylosing spondylitis patients was restored to 
normal conditions after anti-TNF-α treatment, particu-
larly SCFA-producing bacteria.

Next, we performed kyoto encyclopedia of genes and 
genomes (KEGG) pathway prediction with PICRUSt, 
revealing that a total of eight differential pathways were 
significantly altered in the pretreatment group vs. healthy 
controls, compared with four in the pretreatment group 
vs. the post-treatment group and 0 in the post-treat-
ment group vs. healthy controls (Fig. 5), indicating that 
the functional profile of ankylosing spondylitis patients 
was restored to normal levels. In particular, the butyrate 
metabolism pathway overlapped between the two 
PICRUSt analysis results (before vs. after and before vs. 
healthy control) (Fig. 5), which is worthy of attention due 
to the strong effect of butyrate on immunomodulation 
and inflammation.

Correlation of microbiota components with disease 
activity
The correlation between the abundance of the unique 
microbiota components and disease activity was evalu-
ated. In particular, the SCFA-producing bacteria described 
above (i.e. Megamonas and Lachnoclostridium genera), 
which were restored in post-treatment group (Fig. 6a,b), 
were significantly negatively correlated with the BASDAI 
score (Fig. 6c,d). The abundance of Megamonas may have 
a stronger effect than that of Lachnoclostridium, consist-
ent with their association with the CRP score (Fig. 6e,f). 
Moreover, several microbiota components were enriched 
in ankylosing spondylitis patients and restored to healthy 
controls after anti-TNF-α treatment, including Bacilli 
and Haemophilus (Supplementary Figure 2A and B, 
Supplemental digital content 2, http://links.lww.com/FPC/
B423). Intriguingly, Haemophilus was positively associated 
with disease activity (Supplementary Figure 2D and F, 
Supplemental digital content 2, http://links.lww.com/FPC/
B423), suggesting that other gut microbiota-related fac-
tors may also be involved in ankylosing spondylitis onset 
and anti-TNF-α treatment outcomes.

Fig. 3

Different components and taxonomic analysis of fecal microbiota in ankylosing spondylitis patients. (a) Heatmap of significant differential OTUs 
among the three groups. (b and c) Overall composition of bacterial microbiota at the phylum and family levels. OTU, operational taxonomic unit.

http://links.lww.com/FPC/B425
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Discussion
Gut inflammation and damaged integrity of the intestinal 
mucosa are commonly observed in patients with ankylos-
ing spondylitis. Proinflammatory factors in the gut, such 
as IL-17, IL-23 or pathogenic bacteria, can invade the 
blood circulation through the inflamed intestinal mucosa 
and stimulate the host immune system. Subsequently, 
activated immune cells can produce several inflamma-
tory factors (e.g. TNF and IL-17), which accumulate in 

the joint cavity and trigger inflammation [5]. The imbal-
ance of gut microbiota has been well reported in patients 
with ankylosing spondylitis [7,16,17,43], and there was an 
obvious comorbidity between ankylosing spondylitis and 
gut inflammation. TNF-α inhibitors, second-line clini-
cal agents for ankylosing spondylitis, have been strongly 
effective in patients who were resistant or intolerant to 
standard treatment [25]. Although the TNF-α level of 
the host had a conversely regulatory effect on the gut 

Fig. 4

Microbiota differences among three groups. LefSe analysis illustrated the top differed microbiota components between pretreatment group 
(before) vs. healthy control (a), pretreatment group vs. posttreatment group (after) (b), and post-treatment group (after) vs. healthy control (c). log 
LDA >3 was defined as the cutoff for the identification of unique bacteria.
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microbiota [37], it is not clear whether TNFi could regu-
late the gut microbiota of ankylosing spondylitis patients 
or further exert a therapeutic effect by restoring the gut 
microbiota. Therefore, we aimed to link the relationship 
between the effect of TNFi on ankylosing spondylitis 
and the gut microbiota in this study. To the best of our 
knowledge, no other study has performed a longitudinal 
investigation on the correlation of anti-TNF-α treatment 
with the microbiota profile, particularly in ankylosing 
spondylitis patients.

After profiling the microbiota of healthy controls and 
patients before/after anti-TNF-α treatment, we noticed 
that the compositions of gut microbiota in ankylosing 
spondylitis patients were significantly different from 
those in healthy controls, which was consistent with 
previous reports [7,17]. The composition of some spe-
cific bacteria altered in ankylosing spondylitis patients 
can be restored to healthy controls after anti-TNF-α 
treatment, particularly SCFA-producing bacteria. For 
instance, Megamonas, a propionate-producing bacteria, 
was obviously upregulated after anti-TNF-α treatment 
and negatively correlated with the disease activity score 
BASDAI. Intriguingly, a significantly decreased abun-
dance of Megamonas was also found in an animal model of 
IBD [44], which exhibited obvious clinical comorbidity 
with ankylosing spondylitis [7–9]. In addition, Megamonas 

belongs to the Negativicutes class, the abundance of which 
increased to normal levels after anti-TNF-α treatment 
(Supplementary Figure 3, Supplemental digital con-
tent 2, http://links.lww.com/FPC/B423) and was consist-
ently downregulated in ankylosing spondylitis patients 
according to a previous report [16,45]. Taken together, 
Megamonas may be one of the key bacterial genera 
involved in the development of ankylosing spondylitis 
and the therapeutic efficacy of TNFi.

In particular, we noticed that SCFA-producing bacteria 
were enriched in healthy controls and ankylosing spon-
dylitis patients after treatment. As one of the major bac-
terial metabolites, SCFAs play an indispensable role in 
host and gut immune homeostasis. For instance, SCFAs 
can induce the differentiation of regulatory T (Treg) cells 
[46] and increase the secretion of IL-10 family factors 
and other anti-inflammatory cytokines from several types 
of T cells, including Tregs and CD4+ Th cells [46,47]. 
Therefore, SCFAs may have a positive therapeutic effect 
on ankylosing spondylitis, which is an autoimmune 
inflammatory disease. SCFAs can attenuate HLA-B27-
related inflammation [23], which is a risk factor for anky-
losing spondylitis susceptibility [5,6], further suggesting 
the possible interaction between germline variants and 
microbiota on ankylosing spondylitis onset. In particu-
lar, propionate produced by Megamonas is an important 

Fig. 5

Functional prediction of altered pathways among the three groups. Pairwise PICRUSt analysis illustrated the top affected pathways between the 
(a) pretreatment group (before) vs. healthy control, (b) and pretreatment group vs. post-treatment group (after). The results were considered to be 
statistically significant with P < 0.01.

http://links.lww.com/FPC/B423
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member of the SCFA family and can reduce TNF-α lev-
els in a dose-dependent manner [48]. A study has shown 
that propionate and butyrate can lower the abundance 
of osteoclasts in the joints of mice and alleviate arthritis 

symptoms [49], suggesting that Megamonas may play an 
essential role in ankylosing spondylitis through its metab-
olite propionate. In the present study, TNFi increased 
the abundance of SCFA-producing bacteria (e.g. 

Fig. 6

Relative abundance of unique bacteria and their correlation with disease activity. (a and b) Relative abundances of Megamonsa and 
Lachnoclostridium in the three groups. Spearman’s rank correlation between the relative abundance of each bacterium with BASDAI (c and d) and 
CRP score (e and f). BASDAI, Bath ankylosing spondylitis disease activity index; CRP, C-reactive protein.
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Megamonas and Lachnoclostridium), and the abundance 
of these bacteria was negatively correlated with disease 
severity, which supported the possible impact of micro-
biota on ankylosing spondylitis through their metabolites 
(e.g. SCFAs). Speculatively, TNFi may upregulate SCFA 
levels by increasing the abundance of SCFA-producing 
bacteria, and SCFAs thus enter the blood circulation and 
induce immune cells to secrete more anti-inflammatory 
cytokines and finally alleviate the severity of ankylosing 
spondylitis.

Several limitations of our study should be clarified. First, 
only relatively small samples were included in our study 
due to the difficulty of obtaining longitudinal fecal sam-
ples from the same patients at specific time points, thus 
requiring validation in independent cohorts. Second, 
the fecal samples were all used to perform 16S sequenc-
ing, and SCFA levels could not be accurately evaluated 
with the leftover due to the rapid degradation of SCFAs. 
Therefore, more evidence is required to establish the 
crucial role of SCFAs in ankylosing spondylitis and 
determine whether TNFis can exhibit a therapeutic role 
in ankylosing spondylitis by regulating SCFA-producing 
bacteria.

Collectively, we observed dysfunction of the microbi-
ota in ankylosing spondylitis patients, characterized 
by a reduced abundance of SCFA-producing bacteria. 
Meanwhile, TNFi can restore the microbiota dysbio-
sis of ankylosing spondylitis patients to healthy con-
trols. The abundance of SCFA-producing bacteria, such 
as Megamonsa and Lachnoclostridium, was significantly 
increased and negatively correlated with disease severity. 
We have also proposed that TNFi may upregulate SCFA 
levels by increasing the abundance of SCFA-related gut 
bacteria, which in turn modulate host immunity and 
alleviate ankylosing spondylitis severity. Exploring the 
potential mechanistic role of gut microbiota in ankylos-
ing spondylitis and corresponding anti-TNF-α treatment 
is largely required in the future.
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