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A B S T R A C T

The protein-ligand residence time, τ, influences molecular function in biological networks and has been recog-
nized as an important determinant of drug efficacy. To predict τ, computational methods must overcome the
problem that τ often exceeds the timescales accessible to conventional molecular dynamics (MD) simulation.
Here, we apply the τ-Random Acceleration Molecular Dynamics (τRAMD) method to a set of kinetically char-
acterized complexes of T4 lysozyme mutants with small, engineered binding cavities. τRAMD yields relative
ligand dissociation rates in good accordance with experiments across this diverse set of complexes that differ with
regard to measurement temperature, ligand identity, protein mutation and binding cavity. τRAMD thereby allows
a comprehensive characterization of the ligand egress routes and determinants of τ. Although ligand dissociation
by multiple egress routes is observed, we find that egress via the predominant route determines the value of τ. We
also find that the presence of a greater number of metastable states along egress pathways leads to slower protein-
ligand dissociation. These physical insights could be exploited in the rational optimization of the kinetic prop-
erties of drug candidates.
1. Introduction

The residence time of a ligand-protein complex (τ, given by the in-
verse of the dissociation rate: 1/koff) has become an important parameter
in drug design, since for some targets, it shows a stronger correlation than
the binding affinity with in vivo drug efficacy (Bernetti et al., 2019;
Copeland, 2016; Romanowska et al., 2015; Schuetz et al., 2017). How-
ever, the determinants of protein-ligand residence times are not well
understood. Moreover, the prediction of τ by molecular dynamics (MD)
simulation is challenging, in particular because of the timescales
involved. Although simulations of protein systems may now routinely
extend to microseconds, they are short compared to typical values of τ for
drug-like molecules. To overcome this problem, many computational
methods to enhance sampling of ligand unbinding during MD simula-
tions have been proposed (Bruce et al., 2018; Nunes-Alves et al., 2020).
However, it remains to be determined to what extent such approaches,
which in some cases employ non-equilibrium perturbations, can correctly
capture mechanistic details of ligand egress routes.
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T4 lysozyme (T4L) mutants that contain engineered small artificial
cavities that can accommodate benzene and indole derivatives have long
served as model systems for investigating the fundamental mechanisms
underlying protein-small molecule interactions and for benchmarking
computational methods (Eriksson et al., 1992a, 1992b). Remarkably, no
less than thirteen computational studies have been published since 2018
by different research groups in which methods based on MD simulation
were used to identify paths from a buried cavity to the T4L exterior and to
try to characterize the ligand binding and unbinding processes energet-
ically and kinetically (see Fig. 1, review Nunes-Alves et al., 2020 and
recent papers of Capelli et al., 2019; Dandekar and Mondal, 2020; Feher
et al., 2019; Lamim Ribeiro and Tiwary, 2019; Lotz and Dickson, 2020;
Mondal et al., 2018; Niitsu et al., 2019; Nunes-Alves et al., 2018; Ryd-
zewski, 2020; Rydzewski and Valsson, 2019; Souza et al., 2020; Wang et
al, 2018, 2019).

Here, we apply the τRAMD (Kokh et al, 2018, 2019) procedure to
compute relative τ values for a set of T4L-ligand complexes with the goals
of (1) assessing the ability of the procedure to compute accurate relative τ
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Fig. 1. Egress routes observed for benzene and indole
dissociation from the T4L:L99A mutant. (A) Cartoon
representation of the protein with helices labelled. Egress
routes are denoted by the helices lining them. (B) Ligand
binding and unbinding routes observed in recent
computational studies are indicated by circles colored by
simulation type. Methods: MetaD_1 (Capelli et al.,
2019) and MetaD_2 (Wang et al., 2016) - metady-
namics, Maze (Rydzewski and Valsson, 2019), CG_1
(Dandekar and Mondal, 2020) and CG_2 (Souza
et al., 2020) - coarse-grained, WE MD (Nunes-Alves
et al., 2018) – weighted ensemble MD, aMD (Feher
et al., 2019) - accelerated MD, RAVE (Lamim Ribeiro
and Tiwary, 2019) - Reweighted autoencoded varia-
tional Bayes for enhanced sampling; PFIb (Wang et al.,
2019) - Past-future information bottleneck, MD_MSM
(Mondal et al., 2018) – conventional MD and Markov
State Model, gREST (Niitsu et al., 2019) - generalized
replica exchange with solute tempering, GaMD (Miao
et al., 2015) – Gaussian accelerated MD.
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values, and (2) comprehensively characterizing the ligand egress routes
and identifying the determinants of residence times. In the τRAMD
procedure, relative τ values are computed from the ligand dissociation
times observed in a set of random acceleration MD (RAMD) trajectories.
In RAMD, a randomly oriented force is applied adaptively to the ligand
during an MD simulation to enhance the rate of ligand unbinding. We
find that, due to its computational efficiency and accuracy, τRAMD, for
the first time, enabled a complete characterization of all T4L mutant
complexes with experimental kinetic data available. It yielded a good
correlation between computed and experimental residence times for the
set of measured binding kinetic data for T4L mutant complexes, which
includes data measured under different environmental conditions for
different ligands, and for different protein mutants with differing binding
cavities. Furthermore, the mechanistic insights obtained from the
τRAMD simulations allow us to understand how the presence of meta-
stable states along ligand egress paths can affect residence times and how
good estimates of protein-ligand residence times can be obtained without
having to sample all the egress paths.

2. Results and discussion

2.1. τRAMD accurately predicts relative residence times for benzene and
indole bound to T4L mutants

τRAMDwas used to generate dissociation trajectories and to compute
relative residence times (as described in Computational Methods in the
Supporting Information) for indole and benzene bound to the buried
cavity in the L99A mutant of T4L (T4L:L99A), and benzene bound to two
additional T4L mutants: T4L:M102A and T4L:F104A (at 20 �C). Addi-
tionally, the dissociation of benzene from T4L:L99A was simulated at 10
and 30 �C to compare with the experimental measurements in Feher et al.
(1996).

The computed relative residence times show a remarkably good
correlation with experimental data (R2 ¼ 0.78), with a mean unsigned
error of about 38% of the experimental τ values, see Fig. 2. Notably,
τRAMD captures the trends in residence time despite the different de-
terminants of τ, which does not correlate with the equilibrium dissoci-
ation constant for these systems (Table S1).
Fig. 2. Comparison of computed (τRAMD) and measured (τexp) residence times
for benzene and indole for three T4L mutants at 10, 20 and 30 �C. Values (which
are also given in Table S1) are plotted on the logarithmic scale and a linear
fitting of computed to experimental data with R2 ¼ 0.78 is shown by the line.
For benzene bound to T4L:F104A, τexp < 10�4 s and the error bar is defined as
25% (estimated from the uncertainty of the other measurements).
2.2. The populations of the unbinding paths depend on the binding site,
ligand type and temperature

To explore the ligand egress pathways, we generated protein-ligand
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interaction fingerprints (IFPs) for the last 300 snapshots (i.e. 0.3 ns) of
each RAMD trajectory, which generally encompass the last part of the
ligand motion in its bound state and the complete ligand unbinding
process (see Computational Methods in Supporting Information for de-
tails). We first extracted final frames with non-zero protein-ligand IFPs
from the dissociation trajectories and carried out hierarchical clustering
of these frames for each complex type.

For benzene dissociating from T4L:L99A, five egress routes were
identified (shown in Fig. 3A and Fig. S1). These were also reported in
most of the previous simulation studies (see Fig. 1), with the FGH route
(routes are named by the helices lining them) being clearly predominant
at all conditions. The FGH route was the only one recorded in several
publications using metadynamics, machine learning and aMD ap-
proaches (Feher et al., 2019; Lamim Ribeiro and Tiwary, 2019; Wang et
al, 2016, 2019). However, the FGH route can be subdivided further by
lowering the threshold for hierarchical clustering (see Fig. S1 and Ref
(Capelli et al., 2019).). Two additional pathways, CF and EJ, were
observed with low populations in several enhanced sampling simulations
(Capelli et al., 2019; Dandekar and Mondal, 2020; Nunes-Alves et al.,
2018; Rydzewski and Valsson, 2019) but were not observed here for
benzene although the CF pathway was observed for indole (see Fig. S5).

The bound position of benzene in T4L:M102A is slightly shifted to-
wards A102 (away from helix D) relative to its position in T4L:L99A.
Accordingly, the egress routes are very similar to those for T4L:L99A:
FGH, DG, HJ and FI, except for CD, which is not observed. The DG route



Fig. 3. Paths and their relative populations
observed in RAMD trajectories for benzene dissoci-
ation from T4L:L99A at 10, 20 and 30 �C (A), ben-
zene dissociation from T4L:M102A (B) and
T4L:F104A (C), and indole dissociation from
T4L:L99A (D) at 20 �C. Averages and standard de-
viations of the relative populations were calculated
using bootstrapping. The main dissociation paths
observed were obtained from hierarchical clustering
and are labelled according to the helices that they
pass between. Each path is represented by one or
two arbitrarily chosen dissociation trajectories (that
belong to the corresponding cluster) displayed as
isosurfaces of the population density obtained by
mapping positions of the ligand center of mass in all
frames of the trajectory onto a 3D grid. The di-
rections of dissociation are indicated by arrows. The
protein is shown in cartoon representation with
helices labelled by letters and helices D, F and G
colored pink, yellow and blue, respectively. The li-
gands are shown in cyan ball-and-stick representa-
tion in their bound position.
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can be further divided into DG-1 and DG-2, depending on whether the
dissociation direction is perpendicular or parallel to the D and G helices
(Fig. 3B and S2).

In T4L:F104A, benzene occupies another binding site that is large and
highly solvent-exposed. The four main paths found lead directly from the
large open cavity that is lined by helices A, C and E. Only a few trajec-
tories were observed in the opposite direction, via pathway AC (Fig. 3C
and S3).

The dissociation routes of indole from the same bound position in
T4L:L99A as benzene are quite similar (Fig. 3D and S4). However, path
CD, which was observed for benzene, had a low population for indole,
likely due to its larger size (Fig. S5). Path FI was not identified for indole,
but could be considered as part of the wider path FGH (Fig. S4).

2.3. Different egress routes have similar ligand dissociation times

Remarkably, despite the large differences in population, there are
only small differences in the average dissociation times computed for all
the pathways (see Figs. S1–4). These results agree with other studies, in
which similar preliminary kinetic rates (Nunes-Alves et al., 2018) or
unbinding times (Rydzewski and Valsson, 2019) were computed for the
different paths. This suggests that a reasonably accurate prediction of the
unbinding rate for benzene can be made without exhaustive pathway
sampling, as long as the main path, FGH, is sampled, as done, for
example, in Mondal et al. (2018).
Fig. 4. Analysis of benzene unbinding from T4L:L99A (A), T4L:M102A (B) and T4
Clusters were defined by clustering of frames from egress trajectories in IFP space. Di
cluster or metastable state that is colored and placed according to increasing mean
denotes the cluster population; transitions between nodes are indicated by arrows fo
Fig. S6): the net transition flux between nodes is shown by gray arrows with their t
shown by orange arrows with their thickness proportional to the number of transitio
population density mapped onto the 3D grid. Helices D, F and G are shown in pink, ye
heat maps show the composition of the clusters, in terms of ligand-protein contact
hydrophobic interactions. AR: aromatic interactions.
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2.4. Visiting multiple intermediate metastable states makes dissociation
slower

Metastable states on the dissociation pathways for each complex were
identified using k-means clustering of the IFPs computed for the last 300
frames of each dissociation trajectory (see Supporting Information for
details). The pattern of the metastable states for the benzene-T4L:L99A
system is very similar for all temperatures simulated (Fig. 4A and S6):
there are twometastable states with relatively low populations at average
RMSD values of about 10 Å (clusters 6 and 7; cluster 8 corresponds to the
unbound state), which are intermediates on the dissociation paths FGH
and HJ (Fig. 3A), and there is a highly populated (often visited) meta-
stable state 5 at an RMSD of ~5 Å where benzene is located close to the
side-chain of M102. All other states (average RMSD< 3 Å, clusters 1–4 in
Fig. 4A) can be assigned to variations of the bound state. The dissociation
flow can be described as ligand transitions frommetastable state 4 to 5, 6,
and then complete dissociation (gray arrows in Fig. 4A). Direct transi-
tions from the bound states 1 and 3 to the dissociated state (via paths CD
and DG, respectively) and from 5 to 7 to dissociation (path HJ) are also
observed, albeit with a lower probability.

The present results are consistent with previous conventional MD
simulations of ligand binding accompanied by a Markov State Model
analysis, where two main intermediate macrostates were identified
(Mondal et al., 2018): MS1 between helices G and H, and MS2 covering
the region between helices D and G, which is represented by clusters 1–4
close to the bound state in our simulations (see Fig. 4A). MS1, an
L:F104A (C), and indole unbinding from T4L:L99A (D) in RAMD trajectories.
ssociation pathways are shown in a graph-representation; each node represents a
RMSD of the ligand in the cluster from in the starting complex; the node size
r simulations at 20 �C (transitions for simulations at 10 and 30 �C are shown in
hickness proportional to the flux magnitude; the transitions between states are
n events. Some clusters are displayed as isosurfaces of the ligand center of mass
llow and blue, and the ligand is shown in cyan ball-and-stick representation. The
s (color pallet from white to dark-blue indicates increasing contribution). HY:
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intermediate on the main association pathway, is more spread out and
includes regions occupied by clusters 5, 6 and 7. MS1 is the intermediate
state with the most flux during ligand binding, while the alternative
binding path through MS2 (analogous to dissociation route DG from
cluster 1) was observed much less, in agreement with our analysis.
Remarkably, although cluster 6 is an intermediate on the main dissoci-
ation flow (see path FGH in Fig. 3A and the dissociation network in
Fig. 4A), it is slightly less populated and more spatially localized than
cluster 7. Gating by F114 on the dissociation pathway is likely to be the
main reason for the ligand spending time in cluster 6. However, flipping
of F114 is rather fast and thus does not slow down ligand dissociation
significantly, whereas squeezing between helices H and J (i.e. via
metastable state 7) is notably slower, making dissociation path HJ less
populated.

Enhanced sampling simulations of benzene binding by GaMD (Miao
et al., 2015) and gREST (Niitsu et al., 2019) revealed only the metastable
states between helices D and G (i.e. clusters 1–4). In unbinding simula-
tions using aMD (Feher et al., 2019), intermediate states between helices
G and H (cluster 5) and between helices F and H (resembling cluster 6 but
shifted closer to helix H) were identified. Thus, not all of the metastable
states identified in conventional MD and RAMD simulations were
revealed by these enhanced sampling methods. Moreover, small changes
in protein structure were associated with ligand unbinding (see Fig. S7).

The dissociation flow for indole has a similar pattern to benzene in
RAMD trajectories, albeit with a larger variety of bound states (clusters
1–5, Fig. 4D). Indeed, the indole residence time in T4L:L99A at 20 �C is
comparable to that for benzene at 10 �C. The temperature difference is
consistent with indole being slightly larger and needing to squeeze
through the narrow channel gated by F114.

In contrast to T4L:L99A, for the M102A and F104A mutants, the
pattern of benzene dissociation trajectories is different: the main flow
leads either directly from the bound state to dissociation (T4L:F104A,
Fig. 4C) or through the intermediate state located in the vicinity of the
bound one (T4L:M102A, Fig. 4B; cluster 5 is close to F114). Accordingly,
the dissociation time of benzene from both mutants is notably shorter
than from T4L:L99A.

Thus, the benzene residence times are related to the number of in-
termediate metastable states for egress from the three mutants in the
RAMD simulations (Fig. 4A–C). Each metastable state can be associated
with a subsequent transition barrier along the dissociation path, and
therefore, a corresponding prolongation of the dissociation time.

3. Conclusions

We have presented a computational characterization of the unbinding
processes for a set of complexes of T4L mutants with benzene and indole.
We find that τRAMD provides very good agreement between computed
relative unbinding rates and experimental data obtained for distinct
conditions: different ligands, different mutants with different binding
cavities, and different temperatures. We find that for benzene dissocia-
tion from T4L:L99A, there is one dominant egress path, FGH, which ex-
plains why only this pathway was found in many computational studies
and indicates that accurate dissociation rates can be computed for this
system even if just the main egress route is sampled. Our study also
showed that longer τ is associated with more complex dissociation
pathways with multiple intermediate metastable states (as seen for
indole and benzene dissociating from T4L:L99A), in contrast to the one-
step dissociation observed for complexes with shorter τ (benzene –

T4L:M102A and T4L:F104A). The physical insights revealed here can be
used in the rational optimization of the kinetic properties of drug
candidates.
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