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Abstract Sudden cardiac death (SCD) is a leading cause of
total and cardiovascular mortality, and ventricular fibrillation
is the underlying arrhythmia in the majority of cases. In the
young, where the incidence of SCD is low, a great proportion
of SCDs occur in the context of inherited disorders such as
cardiomyopathy or primary electrical disease, where a
monogenic hereditary component is a strong determinant of
risk. Marked advancement has been made over the past
15 years in the understanding of the genetic basis of the
primary electrical disorders, and this has had an enormous
impact on the management of these patients. At older ages, the
great majority of SCDs occur in the context of acute
myocardial ischemia and infarction. Although epidemiologic
studies have shown that heritable factors also determine risk in
these cases, inheritance is likely complex and multifactorial,
and progress in understanding the genetic and molecular
mechanisms that determine susceptibility to these arrhyth-
mias, affecting a greater proportion of the population, has
been very limited. We review the most recent insights gained
into the genetic basis of both the monogenic and the more
complex ventricular arrhythmias.
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Introduction

Sudden cardiac death (SCD) accounts for 15% to 20% of all
natural deaths in adults in the United States and Western
Europe, and up to 50% of all cardiovascular deaths [1].
Ventricular fibrillation is the most common underlying cause
[2]. Ventricular arrhythmias present with various symptoms
including palpitations, chest pain, or syncope and may occur
in various pathologic settings such as cardiomyopathies,
congenital heart disease, inflammatory myocardial disease,
as well as in the structurally normal heart. SCD is rare
among young individuals. In individuals younger than
40 years of age, incidence of sudden death is approximately
1.3 to 8.5 per 100,000 person-years, and the vast majority of
cases are considered to be SCD [3, 4]. In this age group, a
great proportion of SCDs occur in the context of potentially
inherited disease such as cardiomyopathy and primary
electrical disease [5, 6], and a strong monogenic hereditary
component is thought to determine risk of sudden death in
most cases [7, 8]. In contrast, at older ages, the great majority
of SCDs occur in the context of acute myocardial ischemia/
infarction [9]. Epidemiologic studies have shown that
heritable factors also determine risk in these cases [10—12].

We review recent insights gained into the genetics of
ventricular arrhythmias. We provide a brief update on novel
genes uncovered for the monogenic primary electrical
disorders and highlight results of recent genome-wide
association studies that have uncovered novel genetic loci
that may contribute to risk of SCD in the general
population.
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Monogenic Primary Arrhythmia Syndromes

Molecular genetic research into the monogenic arrhythmia
syndromes over the past 15 years has had an enormous
impact on the management of patients with these disorders
[13]. They are now known to be caused primarily by
mutations in genes encoding ion channel subunits or their
regulatory components. The increased understanding of the
genetic basis of these disorders has provided great insight
into many aspects of these disease entities, including their
pathophysiology, and prognosis, and optimal treatment
options for the specific molecular genetic subtypes. Perhaps
the most significant impact has been on the management of
patients with the congenital long QT syndrome (LQTS).
This disorder is among the most prevalent of the monogenic
arrhythmia syndromes and has facilitated large studies looking
into genotype—phenotype relationships. Such studies have
uncovered triggers specific to the different genetic subtypes,
providing opportunities for lifestyle adjustments and an
explanation as to why [-blockers might not be equally
effective in all genetic subtypes (i.e., they are most effective
in LQTSI1 subtype and of high to moderate effectiveness in the
LQTS2 subtype, in accordance with the adrenergic triggers in
these subtypes, and of uncertain effectiveness in LQTS3 [14,
15]. Knowledge of the genetic subtype may therefore be
critical to the cardiologist in assessing optimal treatment
strategies.

The availability of a genetic test has also provided an
opportunity for presymptomatic diagnosis of patients with
these disorders. Active cascade screening within families is
generally advised after the identification of an affected
proband because it leads to timely presymptomatic treat-
ment of relatives also carrying the mutation, which may be
life-saving, whereas relatives not carrying the genetic defect
can be reassured [16°]. However, genetic testing is not
always straightforward, and a proper interpretation of the
genetic test result is critical considering the implications of
mutation identification. The occurrence of a mutation
within a likely gene does not automatically imply genetic
causation. Analysis for co-segregation with the disorder in
an extended pedigree is often helpful in establishing
causality of an identified mutation, but such pedigrees are
not always available. Distinguishing pathogenic mutations
from innocuous and clinically silent gene variants remains a
major challenge in many instances. Mutation type (e.g.,
nonsense vs. missense), mutation location in channel sub-
domain (e.g., pore vs. transmembrane vs. linker), and
ethnic-specific background rates have been shown to be
critical factors in predicting the pathogenicity of novel
mutations [17¢]. For instance, in LQTS, a novel mutation
(an unclassified variant) identified in the transmembrane
regions of the SCN5A4-encoded sodium channel is much
more likely to be pathogenic than when located in an

interdomain linker [17¢]. Thus, genetic tests must be
viewed as probabilistic tests to be interpreted along with
other diagnostic tests.

In the research setting, the identification of novel genes
underlying the monogenic rhythm disorders may be rather
challenging. Ideally for such studies, one has access to
genetic material from multiple clinically affected individuals
within an extended pedigree with the possibility of establishing
genetic linkage to a particular chromosomal segment followed
by the sequencing of candidate genes for identification of the
causal defect. However, availability of an extended pedigree is
rarely the case for these disorders in particular because
individuals within a pedigree might have already died suddenly
of arrhythmia before DNA collection is possible. Furthermore,
as is the case for most Mendelian monogenic disorders, these
disorders display reduced penetrance (not all mutation carriers
have clinical signs of the disorder) and variable clinical
expression [18, 19], which further complicates the process of
gene identification. One group of rhythm disorders for which
it is exceptionally difficult to track the genetic substrate is
idiopathic ventricular fibrillation (VF), defined as spontaneous
VF in the absence of identifiable structural or electrical heart
disease [20]. The diagnosis of this disorder, which accounts
for as many as 10% of sudden deaths, mainly in the young,
cannot be made on the basis of electrocardiogram (ECG)
abnormalities but can only be made after the occurrence of
(aborted) SCD. Many affected patients die young, thus
leaving only small numbers of patients and material available
for analysis. Using an alternative approach, searching for
shared ancestral haplotypes (chromosomal segments) among
three distantly related pedigrees with the disorder originating
from one region in the Netherlands, our group recently
implicated the DPP6 gene in this disorder [21es]. DPP6
encodes dipeptidyl-peptidase 6, a putative subunit of the
transient outward current potassium-channel complex (/)
[22]. Although, expression of DPP6 was increased in cardiac
biopsies of carriers of the risk haplotype [21¢¢], more research
is required to establish the pathophysiologic mechanism of
DPP6-related idiopathic VF and how such a genetic defect is
silent on ECG. Genetic testing is crucial in these patients
because it is the only means of identifying those at risk of
developing potentially fatal arrhythmia allowing for timely
presymptomatic implantation of an implantable cardioverter
defibrillator.

A disorder that has attracted much attention in recent
months is the Early Repolarization Syndrome. For a long
time, early repolarization, consisting of an elevation of the
QRS-ST junction (J point), QRS notching or slurring (J wave),
and a tall symmetric T wave, was considered to be a benign
feature [23]. Three case-controls studies however recently
demonstrated that a pattern of early repolarization in the
inferior and/or lateral leads was more frequent in patients
with idiopathic VF compared with controls [24ee, 252, 26]. A
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community-based study in Finland also showed that an early
repolarization pattern in the inferior leads of the ECG is
associated with an increased risk of death from cardiac causes
during very long-term follow-up in middle-aged individuals
[27]. So far, only one mutation in the KCNJS gene, encoding
a subunit of the Karp channel, has been reported for the
disorder in a single patient [28]. It is expected that unraveling
the genetic basis of this newly recognized disease entity will
aid in the understanding of the mechanism for this ECG
pattern and related arrhythmia.

Arrhythmias with a More Complex Inheritance Pattern

In recent years, interest in the genetics of cardiac
arrhythmias has shifted to include the search for those
genetic factors influencing risk of SCD in the general adult
population. In adults, the overwhelming majority (~80%) of
SCDs is caused by the sequela of coronary artery disease,
namely myocardial ischemia or acute myocardial infarction
MI) [9, 29], where SCD is the first clinically identified
expression of heart disease in up to one half of cases [30].

In the late 1990s, two important studies advanced the
concept that even in these more common arrhythmias, a
genetic component also contributes to risk. In a population-
based case-control study, a family history of MI or SCD,
after correction for all common risk factors, was positively
associated with the risk of SCD [10]. In the Paris
Prospective Study, selectively performed in men, among
whom 118 cases of sudden death occurred, parental sudden
death was found to be an independent risk factor for sudden
death [I1]. A study from our group investigated this
concept further in the Arrhythmia Genetics in the Netherlands
Study (AGNES), conducted specifically in patients with a first
acute MI [12]. In this study we demonstrated that familial
sudden death occurred significantly more frequently among
patients with a first MI complicated by VF (cases) compared
with patients presenting with a first MI but without VF
(controls) [12]. However, in contrast to the significant
advances made in the understanding of the genetics of the
monogenic arrhythmia syndromes, progress in understanding
the genetic and molecular mechanisms that determine
susceptibility to these common arrhythmias, affecting a
much greater proportion of the population, has been limited
[31-33]. An important reason for this slow progress is the
fact that most victims die outside of the hospital, making it
extremely difficult to include patients with appropriately
consented DNA samples for genetic studies.

In an effort to identify common genetic variation within
the genome contributing to risk of VF during acute MI, our
group recently conducted a genomewide association study
for VF in the AGNES population [34¢¢]. By comparing the
frequency of common single nucleotide polymorphisms
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(SNPs) spread throughout the 22 autosomes between MI
patients with VF (cases) and MI patients without VF
(controls) from the AGNES study, we identified a region on
chromosome 21 in the vicinity of the CXADR gene
associated with susceptibility to VF. CXADR encodes the
coxsackievirus and adenovirus receptor (CAR) protein,
which has a long-recognized role as viral receptor in the
pathogenesis of viral myocarditis and its sequela of dilated
cardiomyopathy [35, 36]. Interestingly, the frequency of
active coxsackie B virus infection has been reported to be
high in a group of MI patients who died suddenly [37]. Two
studies have reported a physiologic role for the receptor in
localization of connexin 45 at the intercalated disks of the
cardiomyocytes in the atrioventricular node, and a role in
conduction of the cardiac impulse within this cardiac
compartment [38e, 39¢]. Thus, CXYADR can be considered
a very relevant candidate gene for the association detected
at this locus.

As a complementary approach to establishing direct bridges
between genetic variation and arrhythmia susceptibility,
researchers in the field have also undertaken a strategy
whereby SNPs are first analyzed for effects on heart rate and
other ECG indices of conduction and repolarization. This
approach stems from knowledge that these ECG measures
constitute heritable traits [40, 41] and that their extremes (too
long or too short) influence risk of arrhythmia, both in the
general population [42, 43] as well in specific disease groups
[44], which makes ECG indices potentially relevant interme-
diate phenotypes. The most extensively studied ECG
parameter studied until now in this way has been the QT
interval, reflecting ventricular repolarization. These studies
have uncovered numerous genetic loci and SNPs modulating
this measure (Table 1), the most significant of which have
consistently been SNPs in and around the NOSIAP gene,
encoding the nitric oxide synthase 1 (neuronal) adaptor
protein [45, 46+, 47¢]. Although the exact mechanism for the
effect of SNPs in NOSIAP on ventricular repolarization is
still unknown, one must realize that this gene was previously
unlinked to cardiac electrophysiology, underscoring the power
of the genome-wide association approach to highlight
unknown pathways that could represent an important means
to ultimately unravel mechanisms of disease and development
of new therapies.

Crotti et al. [48<] and Tomas et al. [49¢] went on to test
whether SNPs in NOS1AP could modulate disease expression
(QTc and arrhythmia) in the congenital LQTS, where
pronounced inter-individual variability in QTc-prolongation
and occurrence of arrhythmia exists [19]. The first study
investigated South African families segregating a founder
mutation in KCNQ/ (all affected individuals were carriers of
the A341V mutation in KCNQI) and demonstrated that
carriers of risk alleles at NOS14P SNP sites had longer QTc
and an increased risk of cardiac arrest and SCD. Carrying out
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Table 1 Candidate genes
identified in genome-wide QT interval PR interval QRS interval Heart rate
association studies for heart rate
and ECG indices of conduction ATPIBI [47] ARHGAP24 [S1e, 53°] CAVI [51°] MYHG6 [51°]
(PR, QRS) and repolarization GINS3 [46°] CAVI1/CAV2 [51s, 539] CDKNIN [51¢]
(QTe) KCNEI [46°] MEISI [53¢] DKKI [51]

KCNH?2 [46¢, 47¢] MYHG6 [51¢] SCN10A4 [52¢]

KCNJ2 [47+] NKX2-5 [53¢] TBX5 [51+]

KCNOQI [46¢, 47+]
LIG3-RFFL [46¢]
LITAF [460, 47+]
NDRGA4 [46¢, 47+]
NOSIAP [45, 46+, 47+]
PLN [46¢, 47¢]
RNF207 [46¢, 47+]
SCN5A [460, 47¢]

Only candidate genes at loci
displaying association at
genome-wide significance
(P<5x 107%) are listed

ECG electrocardiogram

SCNI0A [51, 52¢, 53¢]
SCN54 [53+]

SOX5 [53+]
TBX5-TBX3 [51e, 53¢]
WNTIL [53¢]

such studies in the setting of families with a founder
mutation is attractive because it circumvents the inter-
individual variability in disease manifestations that could
otherwise arise as a consequence of the different primary
genetic defects among study participants. In the second
study, Tomas et al. [49¢], who carried out association studies
of NOSIAP SNPs in a large LQT patient cohort (901
patients from 520 families) with mutations in different genes,
subsequently demonstrated that the effects of SNPs in
NOSIAP are also detectable in a more diverse LQT patient
cohort. These authors proposed that genotyping NOSIAP
SNPs could in the future become useful in refining risk
stratification in this disorder. However, the situation remains
rather complex. One NOSIAP SNP (rs10494366) associated
with risk of cardiac events in the LQTS study by Tomas et
al. [49+] was not associated with risk of SCD in community-
based populations [50]. Furthermore, in the latter study,
another SNP (rs12567209), which was not correlated with
QT interval, was still associated with SCD, suggesting that
there may be multiple functional elements within the
NOSIAP region, some of which may modulate risk of
arrthythmia independently from the repolarization process.
Research is still required to resolve the underlying issue.
Following successful identification of several loci
impacting the QT interval, investigators also turned their
attention to other ECG parameters, namely heart rate [51¢],
the PR-interval (a measure of the time required for the
electrical impulse to travel from the sinus node, through the
atria and atrioventricular node to the Purkinje fibers) [51e,
52¢, 53¢], and QRS duration (a measure of the time required
for depolarization of the ventricles) [S1¢]. These studies
presented compelling evidence that SNPs in the SCN54 and
SCNI10A genes modulate cardiac conduction. This finding
is not surprising with respect to SNPs in SCN54, which
encodes the major sodium channel in the heart (Navl.5).
Sodium ion influx through this channel mediates the rapid

upstroke of the cardiac action potential and is therefore
a critical mediator of cardiac conduction, and mutations
in SCN5A4 cause cardiac conduction disease [54]. On the
other hand, the implication of the SCN10A4 gene (located
within <100 kb-pairs of SCN54 on chromosome 3) as a
modulator of cardiac conduction was a very novel finding.
Note that SCN10A variant presented to be independent of
SCNSA variant. SCN10A encodes the sodium channel
Navl.8, expressed primarily in the peripheral sensory
nervous system and to a lesser extent in the heart. It has
been hypothesized that amino acid—altering SNPs in
SCNI10A4 might be responsible for the observed effect on
cardiac conduction [52e, 53¢]. The exact mechanism
however is still unknown. The A-allele at SNP rs6795970,
which is associated with slower conduction in the general
population, appeared protective against risk of VF in the
setting of acute MI in the AGNES study [52°].

These genome-wide association studies have also
uncovered SNPs in or near genes encoding transcription
factors involved in cardiac development, including NKX2-5
which encodes the cardiac-specific homeobox transcription
factor Nkx2.5. Mutations in this gene were previously
linked to atrial septal defect with conduction defects,
tetralogy of Fallot, and high-degree atrioventricular block
[55]. Another locus identified as impacting on conduction
is in the region of the TBX3 and TBX5 genes, which encode
T-box—containing transcription factors important for cardiac
conduction system formation in the developing heart [56,
57]. Mutations in 7BX5 cause Holt-Oram syndrome, which
includes atrial and ventricular septal defects, conduction
disease, and occasionally atrial fibrillation [58], whereas
mutations in 7BX3 cause ulnar-mammary syndrome, with
limb, mammary, tooth, genital, and cardiac abnormalities
[59]. Furthermore, as for genomewide association studies
for QT interval, genomewide association studies for heart
rate and conduction indices have also uncovered genes
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previously unlinked to cardiac electrical function (e.g., the
association of ARHGAP24, which encodes a Rho-GTPase-
activating protein, with PR, and the association of MYH®,
encoding the alpha heavy chain subunit of cardiac myosin.,
with heart rate and PR), thereby potentially illuminating
novel pathways.

The wealth of information being generated by genome-
wide association studies is likely to trigger researchers
around the world into following new avenues for research
into novel pathways that could be involved in cardiac
electrical function. However, one should realize that much
work still needs to be done before we fully understand the
exact molecular mechanisms whereby the identified genetic
loci contribute to inter-individual variability in the related
trait and ultimately to whether they also impact on risk of
arrhythmia. Perhaps the most crucial of these issues relates
to the fact that although these studies have uncovered
regions on chromosomes that are linked to the traits of
interest, some of which harbor highly plausible candidate
genes, in basically all instances mentioned above, unequiv-
ocal evidence for genes mediating the observed effects is
lacking, let alone knowledge of which functional genetic
variants underlie these effects.

Another fact that needs mentioning is that the variants
identified as modulators of ECG parameters, as expected in
complex genetic traits, are associated with very small effect
sizes. For instance, effect sizes for alleles impacting on QTc
range from 1 to 3 ms per allele [46+, 47+]. Even in
aggregate, the identified genetic variants still explain only a
very small percentage of the variance in these traits. In a
meta-analysis by Pfeufer et al. [47¢] including 16,678
individuals, association signals from 10 loci found to be
associated with QTc-interval (at genome-wide statistical
significance) in aggregate explained only 3.3% of the
variance in QTc. In another meta-analysis performed by
Newton-Cheh et al. [46¢], comprising 13,685 individuals,
in aggregate, 5.4% to 6.5% of the variation in QT interval
was explained by 14 independent variants at 10 loci. Larger
and larger association studies, including more study
subjects, will be required to provide unequivocal evidence
for novel genetic associations and complementary strategies
to uncover the genetic underpinnings of these complex
traits are obviously necessary. For instance, it is generally
hypothesized that other genetic variants, such as rare
variants not detected in genome-wide association studies
that likely have stronger influences on these ECG indices,
may be present.

Conclusions

The identification of the genetic defects underlying the
monogenic arrhythmia syndromes is important because it
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provides insight into important aspects of these disease
entities, including prognosis and optimal treatment options
for the specific molecular genetic subtypes and allows for
presymptomatic identification and treatment of patients at
risk.

Recent genome-wide association studies have generated
remarkable insight into chromosomal regions and genes
that impact on cardiac electrical activity. Such strategies
have now started to be applied to the identification of genes
impacting on arrthythmia risk in the general population.
These studies are likely to provide insight into pathways
determining risk of arrhythmia in the general population.
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