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ABSTRACT

Coronary computed tomography angiography (CCTA) is a well-validated and noninvasive 
imaging modality for the assessment of coronary artery disease (CAD) in patients with stable 
ischemic heart disease and acute coronary syndromes (ACSs). CCTA not only delineates 
the anatomy of the heart and coronary arteries in detail, but also allows for intra- and 
extraluminal imaging of coronary arteries. Emerging technologies have promoted new CCTA 
applications, resulting in a comprehensive assessment of coronary plaques and their clinical 
significance. The application of computational fluid dynamics to CCTA resulted in a robust 
tool for noninvasive assessment of coronary blood flow hemodynamics and determination 
of hemodynamically significant stenosis. Detailed evaluation of plaque morphology and 
identification of high-risk plaque features by CCTA have been confirmed as predictors of future 
outcomes, identifying patients at risk for ACSs. With quantitative coronary plaque assessment, 
the progression of the CAD or the response to therapy could be monitored by CCTA. The aim 
of this article is to review the future directions of emerging applications in CCTA, such as 
computed tomography (CT)-fractional flow reserve, imaging of vulnerable plaque features, 
and quantitative plaque imaging. We will also briefly discuss novel methods appearing in the 
coronary imaging scenario, such as machine learning, radiomics, and spectral CT.

Keywords: Coronary computed tomography angiography; Coronary plaque;  
Fractional flow reserve; Plaque characterization; Plaque volume

INTRODUCTION

After many years of diligent scientific testing and validation, coronary computed tomography 
angiography (CCTA) has become an established method for assessing coronary artery 
disease (CAD) in patients with suspected stable ischemic heart disease1-6) and acute coronary 
syndrome (ACS).7-9) Though the great legacy of earlier validation studies relies on the 
comparison of CCTA against reference standards, such as invasive coronary angiography 
(ICA), more recently, the inherent characteristics of CCTA, including 3-dimensional (3D) 
anatomic data and both intraluminal and extraluminal imaging, naturally allowed the 
emergence of newer applications in noninvasive cardiac imaging. Computational fluid 
dynamics (CFD) applied to CCTA have proven value in the noninvasive determination of 
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coronary blood flow hemodynamics,10) while plaque imaging has uncovered a multitude of 
imaging biomarkers capable of defining the disease stage and predicting future outcomes. 
Therefore, cardiac imaging research has shifted throughout the years from a luminography 
perspective towards a more comprehensive utilization of CCTA data. This trend has been also 
recently boosted by the emergence of advanced computational methods, including machine 
learning and artificial intelligence.11)

In this paper, we will review the growing role of CCTA in the noninvasive assessment of 
myocardial ischemia using computed tomography (CT)-derived fractional flow reserve 
(CT-FFR). We will also review the current directions in noninvasive coronary atherosclerotic 
plaque imaging, focusing on the research leading to the establishment of features associated 
with plaque vulnerability currently used in clinical practice, as well as discussing future 
perspectives in quantitative coronary atherosclerotic plaque assessment. Lastly, we will 
present examples of emerging technology and alternative imaging biomarkers that may drive 
future research in CCTA.

FRACTIONAL FLOW RESERVE ASSESSED BY COMPUTED 
TOMOGRAPHY
Fractional flow reserve (FFR) is an invasive parameter that can be obtained during coronary 
angiography (invasive coronary angiography-derived fractional flow reserve [ICA-FFR]) for 
assessing the hemodynamic significance of stenotic lesions, which is calculated as the ratio 
between blood flow after a stenotic lesion and the maximum normal blood flow during 
myocardial hyperemia.12) Robust data from the FFR versus Angiography for Multivessel 
Evaluation (FAME) study showed that ICA-FFR may be a better parameter for guiding 
coronary revascularization than standard angiographic interpretation. The FAME study 
was a randomized trial involving 20 medical centers in Europe and the United States, which 
compared the composite endpoint including death, nonfatal myocardial infarction, and 
repeat vascularization of patients selected for percutaneous implantation (percutaneous 
coronary intervention [PCI]) of drug-eluting stents, with 2 intervention arms adjudicated 
either by angiography alone or by demonstration of FFR-proven ischemia (i.e., ICA-FFR 
≤0.80).13) In this study, the event rates were determined to be 18% vs. 13% (p=0.02) for the 
angiography vs. FFR-guided PCI strategy in the first year of follow-up,14) respectively, and 13% 
vs. 8% (p=0.02) by the end of the second year.15) A sub-analysis of the data also found that 
35% of the lesions graded with 50% to 70% of stenosis by visual angiographic assessment 
were actually found to be hemodynamically significant on ICA-FFR, while 20% of those 
graded with 71% to 90% of stenosis were deemed non-hemodynamically significant on ICA-
FFR.16) In an economic analysis of the FAME study data, not only did the FFR-guided strategy 
for PCI lead to an increase in quality-adjusted life-years, but also to a significant decrease in 
healthcare costs.17)

CCTA is an established method capable of providing tridimensional (3D) anatomical 
visualization of the coronary arteries. Multiple prospective multicenter trials using 64-row 
multidetector scanner showed that CCTA has high sensitivity and specificity ranging from 
85% to 99% and 64% to 90%, respectively, for detecting coronary stenosis of 50% or more 
determined by conventional angiography in cohorts of patients with suspected CAD.18-20) 
However, it was shown that quantitative luminal assessment by CCTA and ICA have only weak 
correlation with ICA-FFR (r=−0.32 and r=−0.30), respectively.21) More recently, CFD methods 
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have been introduced in noninvasive coronary imaging, with the goal of determining 
the hemodynamic significance of stenotic lesions.22) In summary, the precursor method 
introducing CFD for coronary hemodynamics analysis consists of 3 steps: 1) 3D modeling 
of the coronary tree anatomy based on standard CCTA data, 2) defining the boundary 
conditions for cardiac output, aortic pressure, and myocardial microvascular resistance, 
and 3) solving the Navier-Stokes equations for estimation of blood flow conditions within 
the 3D model.23-25) In an initial study (Diagnosis of Ischemia-Causing Stenoses Obtained Via 
Noninvasive Fractional Flow Reserve [DISCOVER-FLOW]), FFR was estimated from CFD 
modeling in 158 vessels from 103 patients concurrently undergoing CCTA (CT-FFR) and 
ICA-FFR at 4 centers (Figures 1 and 2). In this investigation, CT-FFR predicted a per-vessel 
ICA-FFR ≤0.80 with an accuracy of 84.3%, sensitivity of 87.9%, and specificity of 82.2%; 
in contrast, standard CCTA interpretation (i.e., stenosis ≥50% by visual analysis) had an 
accuracy of 58.5%, sensitivity of 91.4%, and specificity of 39.6%. The area under the receiver-
operator characteristics curve (AUC) for detecting ICA-FFR ≤0.80 was significantly higher in 
CT-FFR when compared with standard CCTA interpretation (0.90 vs. 0.75, p=0.001).10)

In a subsequent larger study (Determination of Fractional Flow Reserve by Anatomic 
Computed Tomographic Angiography [DeFACTO]), including 252 stable patients with 
suspected or known CAD from 17 centers in 5 countries, the investigators confirmed the 
incremental diagnostic performance of CT-FFR over CCTA alone for detecting obstructive 
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Figure 1. Stenosis without ischemia. (A) Coronary computed tomography angiography with stenosis graded 
>50% (arrow) in the obtuse marginal branch of the left circumflex artery. Multiple calcified plaques with stenosis 
between 40% and 69% are noted proximally and distally to the lesion. (B) Severe stenosis is confirmed on ICA 
(arrow). (C) FFRCT shows a value of 0.85. (D) A reference value of 0.84 was confirmed on ICA-fractional flow 
reserve. Reused with permission from J Am Coll Cardiol 2011;58:1989-97.10) 
FFR = fractional flow reserve; FFRCT = fractional flow reserve derived from coronary computed tomographic 
angiography data; ICA = invasive coronary angiography.
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CAD as determined by ICA-FFR (AUC of 0.81 vs. 0.68, respectively, p<0.001).26) In another 
multicenter study (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps 
[NXT]), including 254 patients with suspected stable CAD, CT-FFR showed specificity of 79% 
to diagnose significant ischemia on a per-patient basis, which was significantly superior to 
CCTA (34%, p<0.001) and statistically similar to standard quantitative analysis of ICA (83%, 
p=0.29).27) This study also revealed good correlation between CT-FFR and invasive ICA-FFR 
(Pearson's R=0.82; p<0.001), with slight underestimation of ICA-FFR by CT (difference of 
0.03±0.07, mean±standard deviation).27) Determination of CT-FFR using the aforementioned 
technique requires intensive post processing using parallel supercomputing capabilities 
from a remote core lab service,10)26)27) which has become approved for clinical use in several 
countries. More recently, on-site approaches for CT-FFR analysis using modified algorithms 
have also emerged.28-32)

Computed tomography-derived fractional flow reserve versus myocardial 
perfusion
In a prospective head-to-head comparison in 208 patients undergoing CCTA, single photon 
emission computed tomography (SPECT), and [15O]H2O positron emission tomography (PET) 
(Prospective Comparison of Cardiac PET/CT, SPECT/CT Perfusion Imaging and CT Coronary 
Angiography With Invasive Coronary Angiography; PACIFIC study), CT-FFR analysis could 
be successfully performed in 83% of the vessels (505/612); when only considering these 
vessels, CT-FFR showed a significantly larger AUC (0.92) for identifying ICA-FFR ≤0.80 when 
compared with SPECT (AUC 0.70; p<0.01) and PET (AUC 0.87; p<0.01); however, in the 
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Figure 2. Stenosis with ischemia. (A) Lesion graded with >50% stenosis in the proximal LAD on multiplanar 
reformat of coronary computed tomography angiography (arrow). (B) Invasive coronary angiography showing the 
stenosis (arrow) with the corresponding reductions in coronary FFR in the first diagonal branch (FFR=0.78) and 
distal LAD (FFR=0.58). (C) FFRCT of the first diagonal branch (0.79) and distal LAD (0.57) were determined to be 
0.78 and 0.58 by computational fluid dynamics. Reused with permission from J Am Coll Cardiol 2011;58:1989-97.10) 
FFR = fractional flow reserve; FFRCT = fractional flow reserve derived from coronary computed tomographic 
angiography data; LAD = left anterior descending artery.
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intention-to-diagnose analysis, PET outperformed CT-FFR on a per-patient basis (AUC 0.90 
vs. 0.79; p=0.005, respectively), but not on a per-vessel basis (AUC 0.86 vs. 0.83; p=0.157, 
respectively). In another prospective head-to-head comparison in 147 symptomatic patients 
referred for ICA-FFR (PERfusion Versus Fractional Flow Reserve CT Derived In Suspected 
CoroNary; PERFECTION study), “resting” CCTA with CT-FFR and “stress” computed 
tomography perfusion (CTP) were directly compared. Both CT-FFR and CTP outperformed 
CCTA alone on a per-vessel (accuracies of 92% and 94% vs. 82%, both p<0.001, respectively) 
and on a per-patient basis (accuracies of 87% and 92% vs. 73%, p= 0.001 and p<0.001, 
respectively), while there were no statistically significant differences between CT-FFR and 
CTP. Another more recent study including a smaller sample of 85 patients referred for ICA-
FFR scanned in a whole-heart coverage CT scanner revealed that the combination of CCTA, 
CT-FFR, and CTP may outperform either one of the individual methods (AUC 0.92; p<0.05), 
while maintaining reasonable radiation dose (average effective dose of approximately 8 mSv 
for the combination of CCTA and CTP).33) A smaller study including 37 patients undergoing 
perfusion cardiac magnetic resonance perfusion (CMR-P) and CT-FFR also showed 
correlation between ICA-FFR and a CMR-P for areas of myocardium distal to stenoses 
between 40% and 70% (r=−0.63; p<0.001), which was comparable to the correlation found 
between ICA-FFR and CT-FFR (r=0.675; p<0.001).

Computed tomography-derived fractional flow reserve versus clinical outcomes
Some studies have explored how CT-FFR may hold promise to improve clinical outcomes. 
The “Prospective Longitudinal Trial of FFRCT: Outcome and Resource iMpacts” 
(PLATFORM) study was a randomized trial including 584 patients from 11 centers, where the 
investigators tested the outcomes of employing CCTA with CT-FFR compared with standard 
non-invasive testing (i.e., any form of stress testing or CCTA without CT-FFR) in patients with 
new onset chest pain. They found that CT-FFR could reduce the number of diagnostic ICA 
with non-obstructive disease from 73% to 12% (p<0.001) at comparable cumulative radiation 
doses,34) while reducing resource utilization/costs and improving quality of life.35) Using “real-
world” data from the ADVANCE registry, which included 5,083 patients, investigators have 
recently shown that CT-FFR may modify patient management in up to 70% of the cases (95% 
confidence interval [CI], 65–78%) when compared to CCTA alone.36)

PLAQUE VULNERABILITY

One of the intrinsic technical advantages of CCTA over ICA is allowing direct atherosclerotic 
plaque assessment without the need for invasive transcatheter methods such as intravascular 
ultrasound (IVUS) or optical coherence tomography (OCT) (Figure 3). In fact, coronary 
angiography can significantly underestimate atherosclerotic plaque burden, as compensatory 
mechanisms are known to conserve relatively stable luminal areas even when atherosclerotic 
plaques involve up to 40% of the total cross-section area of the vessel, known as the positive 
remodeling (PR) phenomenon (Figure 4).37)

Vulnerable plaques are defined as those at risk for thrombosis secondary to rupture or 
erosion.38) Although the degree of stenosis increases the risk for plaque instability, the majority 
of the culprit lesions found in ACSs are deemed to be nonobstructive prior to rupture.39)

Plaque characterization is an evolving field in cardiac CTA, built upon extensive 
knowledge derived from histopathologic studies.40) Early CCTA studies focusing on plaque 
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characterization identified PR as a high-risk feature. In a cross-sectional study, of 40 lesions 
in 14 patients with ACS and 9 patients with stable angina (SA), Hoffman et al.41) measured the 
ratio between the total transverse area across the site of maximum luminal narrowing and the 
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Figure 3. Direct plaque assessment. (A) Invasive coronary angiography, catheterization of the RCA. Severe 
stenosis of the mid RCA (arrow). (B) Coronary CT angiography, curved multiplanar reconstruction of the RCA. CT 
reveals a predominantly noncalcified component (arrowhead) in the obstructive mid RCA plaque. The additional 
calcified plaques do not cause significantly stenosis. 
CT = computed tomography; RCA = right coronary artery.

Figure 4. Positive remodeling. Coronary computed tomography angiography, curved multiplanar reconstruction of 
the left anterior descending artery showing a predominantly noncalcified plaque in the proximal segment causing 
stenosis between 50% and 69%. Note the increased diameter of the vessel at the level of the stenosis (arrowheads) 
when compared to the segments immediately before and after the stenosis (i.e., remodeling index >1.1).
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mean areas across proximal and distal reference sites (i.e., remodeling index). They observed 
an increase in the remodeling index in culprit plaques in ACS patients when compared with 
stable plaques in ACS and SA patients (respective remodeling indexes of 1.4±0.4 vs. 1.0±0.4 
vs. 1.2±0.3, p=0.04, mean±standard deviation).

In addition to PR, the histopathologic study of coronary arteries has also shown common 
characteristics in ruptured plaques, such as large necrotic cores and a thin fibrous caps.40) 
For instance, in a histopathologic study designed to understand targetable biomarkers 
of vulnerable atherosclerotic plaques for invasive and noninvasive imaging, Narula et 
al.42) analyzed 295 coronary lesions including stable, vulnerable, and disrupted plaques. 
Atherosclerotic fibrous cap thickness was determined to be the best discriminatory feature 
for identifying the vulnerable plaques. On CCTA, the “napkin ring” has been proposed as a 
noninvasive way of assessing for thin-cap fibroatheromas with CCTA.43) This sign consists of a 
low-attenuation plaque core surrounded by a thin hyperattenuating ring (Figure 5). Although 
the histopathologic substrate of the napkin ring sign is still debatable, its genesis is attributed 
to the contrasting CT numbers between the fibrous capsular component of the plaque and its 
necrotic central core.44) In a longitudinal study including 895 patients, the hazard ratio (HR) 
for future ACS was 5.55 (95% CI, 2.1–14.7; p<0.001) in patients with plaques displaying the 
napkin ring sign, which was an independent predictor even when compared with other high-
risk plaque features.45)

However, given the small magnitude of linear measurements involved in fibrous cap 
thickness assessment (e.g., 54–84 µm), which are significantly below the nominal spatial 
resolution of the current generation of clinical CT scanners, direct imaging is theoretically 
limited to the realm of high-resolution methods, such as transcatheter OCT.46) In a sub-
analysis of Narula and collaborators' histopathologic study42) excluding fibrous cap thickness, 
macrophage infiltration and necrotic core size were identified as the most important 
biomarkers for plaque rupture. While macrophage infiltration and plaque inflammation 
have become natural targets for 18F-fluorodeoxyglucose ([18F]FDG) PET47-50) and epicardial 
fat imaging,51) necrotic core has been considered a natural target for CCTA assessment. Data 
from CCTA using submillimeter slice thickness compared with IVUS have shown that values 
less than 30 Hounsfield units (HU) could be used to differentiate the coronary plaques with a 
“soft” lipid rich core from those with a fibrous core (Figure 6).52)
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Figure 5. Napkin ring sign and spotty calcifications. Cross-sectional imaging of coronary atherosclerotic plaque showing higher computed tomography attenuation 
numbers within the circumferential outer rim (red dashed line) in both the noncontrast (A) and contrast-enhanced (B) images as compared to the attenuation 
within the central plaque (stars). Correlation with histopathology showed a thin cap fibroatheroma (C, D) with spotty calcification (E), and a necrotic core 
representing the low attenuation plaque core (stars in C). Fibrous plaque tissue corresponded to the hyperattenuating component within the outer rim (red 
dashed line). Reused with permission from JACC Cardiovasc Imaging 2010;3:440-4.44)
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In a subsequent study, Motoyama et al.53) investigated the prevalence several CCTA plaque 
features encountered in patients presenting with ACS and SA. They focused on features 
including PR, defined as a 10% increment in diameter at the plaque region when compared 
to a normal reference segment, and plaque consistency. The latter is subdivided based on 
the presence of calcifications (attenuation >220 HU) and their size (<3 mm in size defined 
as “spotty” vs. “large”). Noncalcified plaques were further subdivided into those with 
core attenuation <30 HU (“low-attenuation” core [LAC]) or between 30 HU and 150 HU. 
They found that PR, LAC, and spotty calcification were significantly more prevalent in 
ACS than SA (87% vs. 12%, p<0.001; 79% vs. 9%, p<0.001; and 63% vs. 21%, p=0.0005, 
respectively). In contrast, large calcifications were found more frequently in SA than ACS 
(55% vs. 22%, p=0.004).53) Other studies have further confirmed the value of these high-risk 
plaque features for determining future ACS. In a longitudinal study including 1,059 patients 
imaged with CCTA, Motoyama et al.54) found that PR or LAC (alone or in combination) 
were independent predictors of future ACS within a 12–50 months follow-up, with a HR of 
22.8 (95% CI, 6.9–75.2; p<0.001) when compared with patients displaying neither one of 
these features on CCTA; these findings were subsequently confirmed by the same group in 
a larger cohort of 3,158 patients followed for 3.9±2.4 years.55) In the CCTA arm of Rule Out 
Myocardial Ischemia/Infarction by Computer Assisted Tomography (ROMICAT) II trial,7) 
high-risk features were also predictors of ACS in patients presenting to the emergency 
department with acute chest pain, independent of presence of obstructive CAD and clinical 
risk assessment.56)

More recent analyses of large longitudinal multicenter trials have also confirmed the role of 
high-risk plaque features in predicting adverse major cardiovascular events. In a sub-analysis 
of the Prospective Multicenter Imaging Study for Evaluation of Chest Pain (PROMISE) trial,5) 
investigators studied if CCTA features of high-risk plaque (“vulnerable”) and significant 
stenosis could predict a composite endpoint including death, myocardial infarction, or SA 
in the 4,415 patients undergoing CCTA. Vulnerable plaques were associated with higher 
event rates (HR, 2.73; 95% CI, 1.89–3.93), even after adjustments for ASCVD risk score and 
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Figure 6. Low-attenuation plaque core. (A) Curved multiplanar reconstruction showing extensive atherosclerosis 
in the RCA, with plaques showing low-attenuation core (arrowheads). (B) Region of interest drawn in the core of 
the proximal RCA plaque shows a mean attenuation value of 8 HU. 
HU = Hounsfield units; RCA = right coronary artery.
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significant stenosis (HR, 1.72; 95% CI, 1.13–2.62).57) In a post hoc analysis of the Scottish 
Computed Tomography of the HEART Trial (SCOT-HEART), the investigators found a HR of 
3.01 (95% CI, 1.61–5.63; p=0.001) for a composite endpoint of coronary heart disease death 
or nonfatal myocardial infarction in patients with at least one adverse plaque feature when 
compared with those without any.58)

As a result of the robust evidence for high-risk plaque features available in the literature, 
guidelines on CCTA reporting available on the Coronary Artery Disease Reporting & Data 
System (CAD-RADS™) have included a descriptor for vulnerability (“V” modifier), which 
is based on the presence of at least 2 of the following findings: PR, low attenuation, spotty 
calcification, or napkin ring.59) In a study determining the inter-observer agreement of 
CAD-RADS™ lexicon including 50 CCTA with 8% prevalence of high-risk plaque features 
(“V”), Fleiss' Kappa for spotty calcification, napkin ring sign, PR, and low attenuation plaque 
were 0.29 (p<0.001), 0.15 (p=0.013), 0.34 (p<0.001), and 0.24 (p<0.001).60) As a future 
perspective, more objective assessment methods could be developed to improve the slight to 
fair inter-observer agreement currently observed.

QUANTITATIVE PLAQUE ASSESSMENT

More recently, efforts have been made to extract quantifiable and reproducible features from 
digital medical imaging, known as quantitative imaging biomarkers.61) These features can 
be used to diagnose disease, determine severity, and monitor progression or response to 
therapy. Coronary calcium scoring using the Agatston method is the precursor quantitative 
imaging biomarker in cardiac CT.62) Nowadays, technological advances have recently allowed 
semi-automatically our automatically imaging analysis, decreasing post processing times 
and improving inter-observer variability.63) These quantitative tools for coronary plaque 
assessment on CCTA that emerged in the last decade64)65) have the potential to leverage the 
clinical utilization of coronary atherosclerotic plaque quantitative imaging biomarkers. 
Quantitative biomarkers in coronary imaging have been explored in different scenarios, such 
as for predicting significant hemodynamic stenosis, future plaque rupture, and monitoring 
disease progression or response. For instance, preliminary feasibility data comparing a 
quantitative CCTA (QCCTA) software with quantitative conventional ICA analysis revealed 
good correlations between CCTA and ICA determined stenosis (per-vessel R=0.83, p<0.01; 
per-patient R=0.86, p<0.01), with mean biases of −3.0±12.3% (per-vessel) and −6.2±12.4% 
(per-patient).64) This study also showed improved accuracy for diagnosing lesions with 
stenosis ≥50% on QCCTA (95%) vs. visual CCTA analysis (87%, p=0.08). In a post hoc 
analysis of the NXT trial,27) the investigators used a semi-quantitative approach to extract 
multiple QCCTA parameters from coronary plaques in patients with SA concurrently assessed 
with CCTA and ICA-FFR.66) The investigators found that the volume of low-attenuation 
noncalcified plaque was a predictor of ICA-FFR-proven ischemia independent from the 
degree of coronary stenosis (Figure 7).

QCCTA was also studied in the context of prediction of future atherosclerotic plaque rupture. 
In a single center longitudinal study including 1,256 with suspected CAD undergoing CCTA, 
the investigators determined if QCCTA plaque features could predict a composite endpoint of 
cardiac death, myocardial infarction, unstable angina, or coronary revascularization after 90 
days of the scan. Events occurred in 3.9% of the patients over a median follow-up interval of 
5.7 years. The investigators found that low-attenuation plaque volume and total noncalcified 
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plaque volume could predict future events after adjustment for extension of CAD, with HRs of 
1.06 (95% CI, 1.01–1.1; p=0.018) and 1.10 (95% CI, 1.01–1.2, p=0.026), respectively; however, 
in the multivariate model, low-attenuation plaque volume was the only parameter showing 
incremental predictive value to coronary Agatston score, segment stenosis score, and 
clinical risk score.67) In another single center case-control study including 2,748 patients, the 
investigators found that multiple QCCTA parameters, including volumetry of different plaque 
components (noncalcified, low-attenuation noncalcified, calcified, total) and quantitative 
stenosis, were significantly associated with cardiac mortality (p<0.025).68) A sub-analysis of 
the ROMICAT II CCTA trial arm7) has also confirmed the ability of QCCTA to identify culprit 
plaques in ACS using optimized CCTA-based threshold values.69)

More recently, QCCTA has shown promise to become an objective tool for disease staging. 
Much information about the role of QCCTA in the assessment of the natural history of CAD 
has been generated from longitudinal trials or registries looking at patients undergoing serial 
CCTAs over long time intervals.70) In the Progression of Atherosclerotic Plaque Determined 
by Computed Tomographic Angiography Imaging (PARADIGM) registry, changes in QCCTA 
biomarkers were used as surrogate indicators for coronary plaque progression. In this study, 
the investigators were able to confirm the role of diabetes mellitus as a significant risk factor 
for atherogenesis, especially of adverse plaque features. In another longitudinal multicenter 
trial including 147 patients sequentially imaged with CCTA, the investigators addressed serial 
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Total vessel

Proximal to FFR sensor

Figure 7. Quantitative plaque analysis. Left anterior descending artery. A region of interest was placed in the 
ascending aorta at the level of the left main coronary artery, and scan-specific thresholds for calcified plaque 
(yellow) and noncalcified plaque (in red) were automatically generated. Reused with permission from J 
Cardiovasc Comput Tomogr 2018;12:344-9.66) 
FFR = fractional flow reserve; LAD = left anterior descending artery.
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changes in coronary plaque burden over a minimum interval of 24 months, with focus on 
determining the effects of intensive therapeutic regimens to lower low-density lipoprotein 
cholesterol (LDL-C).71) Overall, multiple QCCTA parameters, such as plaque volume, mean 
plaque burden, maximal plaque thickness, and amount of dense calcium, have significantly 
increased over the follow-up interval, but interestingly, the sub-analysis of patients with 
LDL-C <70 mg/dL revealed a significantly smaller increase in plaque volume when compared 
with those with LDL-C ≥70 mg/dL.

TECHNOLOGY INNOVATIONS AND EMERGING IMAGING 
BIOMARKERS
So far, we have explored the data behind the mainstream directions of CCTA. However, it is 
worthwhile to briefly mention some of the technological innovations in image acquisition, post 
processing, and other imaging biomarkers that have recently grown in importance, and that 
will likely impact how CCTAs are performed, interpreted, and clinically used in the near future.

Spectral/dual-energy CT has emerged as a new technology over a decade ago, and has 
become a versatile problem solver in different scenarios.72) Some of the clinical applications 
involving spectral/dual-energy CT in cardiovascular imaging include amplification of 
intravascular contrast agent signal/attenuation, allowing for improved contrast to noise ratio 
in angiographic studies,73) reduction of metallic, beam hardening and calcium blooming 
artifacts,74) detection of myocardial perfusion or scarring using iodine density mapping, and 
characterization of atherosclerotic plaque.75) More recently, photon-counting detector (PCD) 
scanners have surged as the newer iteration of spectral CT technology, with the promise to 
not only enhance the multi-energy/multi-material decomposition applications in CT, but also 
to provide high-resolution imaging of the coronaries. A preliminary study using a prototype 
version of a clinical PCD-CT scanner for coronary artery calcium scoring showed that the 
calcium to soft tissue contrast and contrast-to-noise ratios were significantly improved 
in PCD-CT when directly compared conventional CT images (i.e., obtained with energy 
integrating detectors) (p<0.01); in addition to better image quality, PCD-CT also performed 
better at lower energy levels when compared to conventional CT.76) Another study using the 
same prototype demonstrated the clinical feasibility of high-resolution coronary imaging 
(0.25-mm-thick slices) using PCD-CT. The investigators found that stent imaging could be 
significantly improved by using the high-resolution PCD-CT acquisition when compared to 
standard dual-energy technique.77) Future studies are still necessary to test if high-resolution 
imaging with PCD-CT could result in significant improvements in plaque characterization 
and quantification.

The future seems to be also prosperous for post processing techniques that incorporate 
recent developments in machine learning and artificial intelligence. As previously mentioned, 
although CFD-based CT-FFR has been already been established in clinical practice, newer 
evidence has also shown the potential for use of CFD in wall-shear stress imaging,78) which may 
be a predictive element in plaque rupture.79)80) Adverse hemodynamic plaque characteristics 
assessed with CFD appear to increase the capabilities of CCTA to identify culprit plaques 
causing ACS.81) Even simpler methods looking at the coronary arterial geometry and tortuosity 
were also explored as potential biomarkers for understanding coronary atherogenesis.82)

Radiomics is a new field in medical imaging, based on the extraction of hundreds of 
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quantitative engineered features from digital images, more extensively studied in oncologic 
patients, but recently proposed as an investigative tool in cardiac imaging research.83) For 
example, radiomics features have recently shown promise to identify characteristics of 
vulnerability in coronary plaques with superiority in comparison to conventional methods.84)85)

Machine learning encompasses a wide range of computer-based algorithms that make 
predictions based on massive amounts of learning data.11) Differently from classic statistical 
methods, machine learning algorithms are dynamic and iterative, with predictions that are 
expected to improve with incremental learning data. For example, Dey et al.86) investigated 
the diagnostic performance of a machine learning boosted ensemble algorithm built on top 
of QCCTA features from atherosclerotic plaques in 254 patients undergoing CCTA and ICA-
FFR. They found that the obtained machine learning-based risk score performed with the 
largest AUC for detecting FFR-proven ischemia when compared to degree of stenosis, low-
attenuation noncalcified plaque volume, total plaque volume, and clinical assessment (AUC 
of 0.84 vs. 0.76, 0.77, 0.74, 0.63, p<0.006, respectively).

Lastly, we should mention the discovery of secondary imaging biomarkers available on CCTA 
that could serve as risk factors in genesis of atherogenesis. For example, the observation 
of differences in epicardial fat volume and density between patients with and without 
established coronary atherosclerosis have suggested a potential role for epicardial fat in the 
genesis of the disease.87) Epicardial fat volume obtained from calcium scoring CT was shown 
to improve the predictive value for obstructive CAD over traditional coronary Agatston 
scoring and clinical risk factors in a large observational study.88) Perivascular epicardial fat 
densification has been proposed as a surrogate for inflammatory changes, and also showed 
incremental predictive value to standard CCTA interpretation for identifying patients at 
risk for cardiac death (HR, 2.06; 95% CI, 1.50–2.83; p<0.001).51) There is also evidence in 
ACS patients that perivascular epicardial fat stranding could be an ancillary predictor of the 
culprit lesion.89)

CONCLUSION

A large amount of scientific data now supports the clinical use of CCTA in the diagnosis of 
obstructive CAD. Current research has been shifting towards the investigation of the CCTA 
role in guiding patient management, identifying early predictors of ACS, and monitoring 
CAD progression or response to therapy. Newer methods, such as CT-FFR, have been recently 
translated into clinical practice, and hold the promise to provide a more specific way to 
determine which patients should undergo ICA. Concurrently, guidelines on structured 
CCTA reporting (CAD-RADS™) have already incorporated specific lexicon about plaque 
vulnerability. Future studies are still necessary to determine the clinical utility of quantitative 
plaque analysis and other quantitative imaging biomarkers, such as epicardial fat density 
and volume. Emerging technologies and analytical techniques such as photon-counting/
spectral CT, machine learning, and radiomics will likely provide a fruitful platform for future 
developments in coronary imaging.
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