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Multiple Sclerosis (MS) affects 2.8 million persons worldwide. One of the most persistent,
pervasive, and debilitating symptoms of MS is cognitive fatigue. While this has been
known for over a century, cognitive fatigue has been difficult to study because patients’
subjective (self-reported) cognitive fatigue has consistently failed to correlate with more
objective measures, such as reaction time (RT) and accuracy. Here, we investigated
whether more nuanced metrics of performance, specifically the metrics of Signal
Detection Theory (SDT), would show a relationship to cognitive fatigue even if RT and
accuracy did not. We also measured brain activation to see whether SDT metrics were
related to activation in brain areas that have been shown to be sensitive to cognitive
fatigue. Fifty participants (30 MS, 20 controls) took part in this study and cognitive
fatigue was induced using four blocks of a demanding working memory paradigm.
Participants reported their fatigue before and after each block, and their performance
was used to calculate SDT metrics (Perceptual Certainty and Criterion) and RT and
accuracy. The results showed that the SDT metric of Criterion (i.e., response bias) was
positively correlated with subjective cognitive fatigue. Moreover, the activation in brain
areas previously shown to be related to cognitive fatigue, such as the striatum, was also
related to Criterion. These results suggest that the metrics of SDT may represent a novel
tool with which to study cognitive fatigue in MS and other neurological populations.
These results hold promise for characterizing cognitive fatigue in MS and developing
effective interventions in the future.
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INTRODUCTION

Multiple sclerosis (MS) is a degenerative autoimmune disease that impacts approximately 2.8
million people worldwide and one-million people in the United States (Wallin et al., 2019; Walton
et al., 2020). Fatigue, including cognitive fatigue, is one of the most common and debilitating
symptoms reported by persons with MS (pwMS; Freal et al., 1984; Fisk et al., 1994), impacting
employment, quality of life, psychological state, and daily functioning (Nagaraj et al., 2013; Coyne
et al., 2015; Tabrizi and Radfar, 2015; Gullo et al., 2019; Rooney et al., 2019). While there is no
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universally accepted definition of cognitive fatigue, Chaudhuri
and Behan (2000) define cognitive fatigue, or “central fatigue,”
as an “enhanced perception of effort and limited endurance
of sustained physical and mental activities. . .[it is a] difficulty
in initiation of or sustaining voluntary activities” (pp. 978).
Cognitive fatigue can be classified as “state” fatigue (i.e., fatigue
ratings in the moment, often measured during or soon after a
cognitive demanding task) or “trait” fatigue (i.e., retrospective
fatigue ratings, often as reported on self-report inventories)
and further broken down into primary and secondary fatigue
(Johnson, 2008; Kos et al., 2008).

Quantifying cognitive fatigue is a challenge. To-date, most
studies examining cognitive fatigue in pwMS have relied on
subjective, self-report inventories, which have several limitations
(e.g., sensitive to recall and response bias, poor sensitivity to
change over time, not specific to cognitive fatigue). In addition,
fatigue scores derived from self-report inventories do not often
correlate with performance-based measures thought to provide a
more objective metric of cognitive fatigue, such as reaction time
and accuracy (Torres-Harding and Jason, 2005; Claros-Salinas
et al., 2013; Kluger et al., 2013). This incongruence has created
barriers to characterizing cognitive fatigue, identifying its neural
signatures, and developing clinical interventions for pwMS.

Signal Detection Theory (SDT) holds promise as an objective
measure of cognitive fatigue that may also align with the
subjective experiences of pwMS. SDT proposes that one’s ability
to detect a stimulus is not only based on the intensity of
the stimulus itself but also the psychological or physiological
state of the person observing the stimulus. Fatigue has been
linked to decrements in variables derived from SDT, namely
Perceptual Certainty (d’) and Criterion (beta) (Green and Swets,
1966; Lynn and Barrett, 2014; Wylie et al., 2020). Perceptual
Certainty refers to the ability to discriminate targets from non-
targets, while Criterion is related to the amount of evidence
needed to determine whether a stimulus is a target or not. An
individual will set their Criterion based on the payoff matrix:
in situations where there is a large incentive to respond to
target stimuli and little cost for false alarms, subjects will adopt
a liberal Criterion and respond to anything that might be a
target stimulus. Conversely, when false alarms are discouraged
and correct responses are only modestly encouraged, subjects
will adopt a more conservative Criterion and respond only
when they are confident a stimulus is a target (Green and
Swets, 1966). In 2002, Matthews and Desmond found an inverse
relationship between Perceptual Certainty and fatigue during
a simulated “difficult” driving task (relative to an easier task),
such that Perceptual Certainty decreased as fatigue increased
(in a non-neurological sample). A similar pattern was observed
during a more recent study from our group in which cognitive
fatigue was induced by repetitive performance of a working
memory task while simultaneous functional magnetic resonance
imaging (fMRI) data were collected in a group of volunteers
without neurological or psychiatric histories (Wylie et al., 2020).
Cognitive “state” fatigue was evaluated throughout the task and
mean values were calculated from blocks in which at least some
fatigue was reported. As expected, self-reported cognitive fatigue
did not correlate with basic performance variables, such as

reaction time or accuracy, but it did correlate with Perceptual
Certainty and Criterion. These results not only support the use of
SDT metrics to examine cognitive fatigue, but they are an integral
first step to understanding the underlying link between subjective
state and objective fatigue using a novel theoretical approach.

Several connections between subjective state and objective
cognitive fatigue have been proposed over the last few decades,
with changes in the payoff matrix between effort and reward
serving as a viable explanation. The idea that fatigue is
linked to changes in the payoff matrix stems from studies
showing that performance and cognitive fatigue can be improved
through increased reward/motivation. Lorist et al. (2009), for
example, induced cognitive fatigue during a demanding two-
hour long task. Results showed an inverse relationship between
fatigue ratings and performance, such that as fatigue increased,
performance decreased (i.e., more errors, slower reaction time).
When participants were offered a monetary reward to improve
their performance after two-hours, however, their performance
improved substantially, suggesting they were motivated to
overcome their fatigue in light of increased reward. Evidence of
fatigue stemming from changes in the payoff matrix have also
been demonstrated by several other groups (see Dobryakova
et al., 2013; Dobryakova et al., 2015; Wylie et al., 2017b; Müller
and Apps, 2019). Interestingly, the introduction of greater reward
does not just influence performance, but it reduces reported
fatigue as well (Matthews and Desmond, 2002; Boksem et al.,
2006; Lorist et al., 2009). SDT predicts that changes in the payoff
matrix are related to changes in Criterion.

Identifying neural signatures of the relationship between
objective and state fatigue is also crucial. Chaudhuri and
Behan (2000) were among the first to propose that cognitive
fatigue stems from malfunctions of non-motor processes of the
basal ganglia. Subsequent neuroimaging research followed suit,
showing functional and structural evidence of the association
between cognitive fatigue and abnormalities involving an
underlying cortico-striato-thalamo-cortical loop (Chalah et al.,
2015; Ayache and Chalah, 2017), namely the largest structure of
the basal ganglia called the striatum (Chaudhuri and Behan, 2004;
DeLuca et al., 2008; Dobryakova et al., 2013, 2017; Nakagawa
et al., 2016), with more recent studies linking the basal ganglia to
SDT metrics (Wylie et al., 2020). More specifically, the caudate,
which is in the dorsal striatum and involved in both motor (i.e.,
planning and executing voluntary movement) and non-motor
processes (i.e., learning and memory, reward, motivation, and
emotion; Driscoll et al., 2020), appears to be an integral player
in cognitive fatigue across neurological populations. Stroke-
induced caudate lesions, for example, have been shown to be
independently associated with poststroke fatigue (Tang et al.,
2013). In addition, Wylie et al. (2017a) compared a group of
persons with moderate to severe traumatic brain injury (TBI) to
controls and found that the TBI group not only reported more
fatigue, but they evidenced a positive correlation between fatigue
and activation in the caudate tail when partaking in a “difficult”
working memory task (compared to a control task). Subsequent
confirmatory analyses on a separate dataset showed the same
pattern for persons with TBI during a processing speed task. The
importance of the caudate has also been evidenced in work with
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pwMS. Andreasen et al. (2010) found fatigued pwMS to have
greater atrophy in areas related to attentional control, including
the head of the caudate. Further, Akbar et al. (2020) demonstrated
that greater increases in functional connectivity between the
caudate and left parietal region following progressive resistance
exercise training in pwMS correlated with greater decreases in
cognitive fatigue. Thus, the striatum, particularly the caudate, has
emerged as a potential neural substrate of both subjective and
objective cognitive fatigue, though their relationships with SDT
metrics in pwMS remains largely unknown.

The current study examined a group of pwMS and controls
(i.e., no neurological history) to achieve the following aims:
(1) investigate whether SDT metrics (i.e., Perceptual Certainty,
Criterion) are better measures of cognitive fatigue than basic
performance metrics (i.e., reaction time, accuracy); (2) determine
the relationship between subjective state and objective (SDT
metrics) cognitive fatigue; and (3) identify structural and
functional neural substrates that are sensitive to cognitive state
fatigue and SDT metrics. Given previous work, we hypothesize
that SDT metrics, namely Criterion, will be associated with
subjective state cognitive fatigue due to changes in the payoff
matrix, while basic performance metrics will not. In addition, we
expect that the basal ganglia, namely the caudate, will play an
integral role in this relationship.

MATERIALS AND METHODS

Participants
This study included 50 participants, 30 of whom had clinically
definite MS according to McDonald criteria (Polman et al.,
2005) and 20 controls with no neurological history who were
matched on age and education (see Table 1). The groups were
not matched on sex (see Table 1), so sex was therefore included
in all group-level analyses as a covariate. All study procedures
were conducted in English and approved by Kessler Foundation’s
Institutional Review Board.

Neuroimaging Acquisition
Neuroimaging data collection began on a 3-Tesla Siemens
Allegra scanner (30 MS participants; 18 control participants)
and was completed on a 3-Tesla Siemens Skyra scanner (2
control participants). For this reason, a regressor for scanner was
included in all group-level analyses, as has been done in previous
research utilizing more than one scanner (Stonnington et al.,
2008; Biswal et al., 2010; Wylie et al., 2019). A T2∗-weighted
Echo Planar sequence was used to collect functional images
during four blocks, with 140 brain volume acquisitions per block
(Allegra: echo time = 30 ms; repetition time = 2000 ms; field of
view = 22 cm; flip angle = 80◦; slice thickness = 4 mm, 32 slices,
matrix = 64 × 64, in-plane resolution = 3.438 × 3.438 mm2;
Skyra: echo time = 30 ms; repetition time = 2000 ms; field of
view = 22 cm; flip angle = 90◦; slice thickness = 4 mm, 32 slices,
matrix = 92 × 92, in-plane resolution = 2.391 × 2.391 mm2).
A high-resolution magnetization prepared rapid gradient echo
(MPRAGE) image was also acquired (Allegra: TE = 4.38 ms;
TR = 2000 ms, FOV = 220 mm; flip angle = 8◦; slice

thickness = 1 mm, NEX = 1, matrix = 256 × 256, in-
plane resolution = 0.859 × 0.859 mm2; Skyra: TE = 3.43 ms;
TR = 2100 ms, FOV = 256 mm; flip angle = 9◦; slice
thickness = 1 mm, NEX = 1, matrix = 256 × 256, in-plane
resolution = 1 × 1 mm2) and was used to register the functional
data into standard MNI space for group analysis and for the
volumetric analyses.

Behavioral Paradigm and Data
Behavioral data acquisition and stimulus presentation was
administered using the E-Prime software (Schneider et al.,
2002). During the fMRI scan, participants were presented
with the 2-back condition of the n-back working memory
task. Though vigilance/sustained attention tasks are often used
in investigations of cognitive fatigue, we chose a demanding
working memory task (i.e., n-back) to increase the cognitive
load and induce greater cognitive fatigue in our participants. In
addition, we wanted to capture any decrements in performance
which are more likely to occur when greater cognitive effort
(i.e., working memory) is required (Parasuraman, 1979; Baddeley
et al., 1999). For our working memory task, four blocks of the
2-back task were collected, with 65 trials per block. During the
2-back task, letters were presented on the screen, one at a time,
and participants were asked to respond every time a presented
letter was the same as the letter presented two trials before (e.g.,
R N Q N. . .). Letters were presented in white (Arial 72-point
font) on a black background. Of the 26 letters in the English

TABLE 1 | Demographic table.

MS (n = 30) Control (n = 20) Statistic p-value

Age (years) 47.4 (10.6) 46.9 (10.9) t(57.6) = −0.20 p > 0.8

Education (years) 16.0 (2.2) 15.5 (2.4) t(57.7) = –0.83 p > 0.4

Sex (women/men) 27/3 15/5 χ2 (1) = 9.60 p < 0.01

Duration of illness
(months)

135.1 (72.0) n/a

Disease course

Relapsing-
remitting

24 n/a

Primary-
progressive

1 n/a

Secondary-
progressive

3 n/a

Progressive-
relapsing

2 n/a

In-scanner motion

Rotation
(degrees)

0.01 0.02 F (1,39.5) = 0.12 p = 0.73

Translation (mm) 0.80 0.82 F (1,38.3) = 0.02 p = 0.88

VAS-F × Rating

Baseline 30.2 13.5

Post-block1 31.6 9.9

Post-block2 36.8 7.9

Post-block3 38.6 11.7

Post-block4 42.8 15.1

For the groups, the means are given with the standard deviation in parentheses.
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alphabet, the following were used with equal frequency: A B C
D F H J K M N P Q R S T V Z. The other letters were excluded to
enhance the discriminability of the letters used. The letter stimuli
remained on the screen for 1.5 s, followed by a 500 ms inter-
trial interval (ITI), and the time between successive trials was
jittered to allow for the data to be deconvolved as an event related
design. The jittering was optimized using the Optseq2 program1

and was achieved by inserting between zero and six null events
between successive trials. The duration of each null event was a
multiple of the length of the trial (2 s), drawn from a distribution
following a power function. Most ITIs were 500 ms (zero null
events), followed by 2 s (one null event) and so on. The average
ITI was 1587.87 ms (± 1769.7). All participants practiced the task
prior to the scanning session.

To ensure comparable stimulation across participants, the
stimuli always remained on the screen for 1.5 s (that is, the
stimuli were not removed when participants responded), and
each run lasted the same amount of time (260 s). The average
amount of time between successive blocks was 2 min. 04 s,
(S.D. = 2 min. 17 s).

The following behavioral data were analyzed: overall accuracy,
which was the number of trials in which the correct response was
made divided by the total number of trials, the reaction times
(RTs) of the correct trials, and signal detection metrics. Signal
detection analysis was used to separate discrimination certainty
from response bias – factors that can independently affect
accuracy (Macmillan and Creelman, 2004; Anderson et al., 2011).
The ability to correctly identify target stimuli was measured using
the discriminability index (d’), calculated as (zFA – zHR], where
z is the inverse of the standard normal cumulative distribution,
FA is the false-alarm rate (the proportion of responses made
to stimuli that were not targets), and HR is the hit rate
(the proportion of correct identifications of target stimuli). In
the context of this experiment, where all stimuli were readily
discernable, d’ is best thought of as Perceptual Certainty rather
than as sensitivity to stimulation. Response bias was measured
using Criterion, calculated as −1/2[zHR + zFA] with higher
values (fewer false alarms and fewer hits) indicating reduced
response bias, or more conservative responding. Lower Criterion
values (more hits and more false alarms) indicated increased
response bias and more liberal responding.

Visual Analogue Scale-F
To evaluate the level of on-task or “state” fatigue, participants
were presented with a visual analogue scale (VAS) before and
after each block of the 2-back task. Participants were asked: “How
mentally fatigued are you right now?” and were asked to indicate
their level of fatigue on a scale from 0 to 100, with 0 being not
at all fatigued and 100 being extremely fatigued. To mask the
purpose of the study, five additional VASs were administered as
well, in randomized order. These assessed happiness, sadness,
pain, tension, and anger.

Because VAS-F scores were obtained before and after each
block, the amount of fatigue during each block was estimated by
using the mean of the scores before and after the relevant block;

1https://surfer.nmr.mgh.harvard.edu/optseq/

this value was used in the correlational analyses. Furthermore,
because the VAS-F scores were skewed, they were transformed
using the Box-Cox method to ensure that assumptions of
normality were not violated (Box and Cox, 1964). The Box-Cox
method is a power transformation in which a range of power
transformations are considered and the one that best transforms
the data into a normal distribution is selected.

ANALYSES

Prior to analysis, each variable was assessed for normality both by
visual inspection and using the Agostino test (D’Agostino, 1970).
In those cases when the data were found to be skewed, they were
transformed using a Box-Cox transformation.

Visual Analogue Scale-F
For the analysis of the VAS-F scores, a Linear Mixed Effects
analysis [LME; using the R statistical package (version 3.4.3)]
was used. Group (MS vs. control) was a between-participants
factor, the within-participants factor was Rating (ratings 1–5),
and Sex was included as a covariate (fixed effect); participants was
included as a random factor.

RT and Accuracy
Reaction time and accuracy were analyzed with an LME that
included the factor of Group (MS vs. control); the VAS-F scores
were included as a quantitative variable and Sex (female vs. male)
and Run (runs 1–4) were included as fixed effects; participant was
included as a random factor.

Signal Detection Theory Measures
(Perceptual Certainty and Criterion)
For each of the SDT measures [certainty (d’) and response bias
(Criterion)], an LME was used with the factor of Group (MS
vs. control), VAS-F (as a were quantitative variable); Sex (female
vs. male) and Run (runs 1–4) were included as fixed effects;
participant was included as a random factor.

Neuroimaging
Results included in this manuscript come from preprocessing
performed using fMRIPrep 1.4.1 (Esteban et al., 2019;
RRID:SCR_016216), which is based on Nipype 1.2.0 (Gorgolewski
et al., 2011; RRID:SCR_002502).

For anatomical preprocessing, the T1-weighted (T1w)
image from each participant was corrected for intensity
non-uniformity (INU) with N4BiasFieldCorrection (Tustison
et al., 2010) distributed with ANTs 2.2.0 (Avants et al., 2008;
RRID:SCR_004757), and used as T1w-reference throughout the
workflow. The T1w-reference was then skull-stripped with a
Nipype implementation of the antsBrainExtraction.sh workflow
(from ANTs), using OASIS30ANTs as target template. Brain
tissue segmentation of cerebrospinal fluid (CSF), white-matter
(WM) and gray-matter (GM) was performed on the brain-
extracted T1w using FAST (FSL 5.0.9, RRID:SCR_002823;
Jenkinson et al., 2012). Volume-based spatial normalization to
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one standard space (MNI152NLin2009cAsym) was performed
through non-linear registration with antsRegistration (ANTs
2.2.0), using brain-extracted versions of both T1w reference
and the T1w template. The following template was selected
for spatial normalization: ICBM 152 Non-linear Asymmetrical
template version 2009c (Fonov et al., 2011; RRID:SCR_008796;
TemplateFlow ID: MNI152NLin2009cAsym).

For functional data preprocessing each of the eight BOLD
runs found per participant (across all tasks and sessions), the
following preprocessing was performed. First, a reference volume
and its skull-stripped version were generated using a custom
methodology of fMRIPrep. The BOLD reference was then co-
registered to the T1w reference using flirt (FSL 5.0.9; Jenkinson
et al., 2002) with the boundary-based registration (Greve and
Fischl, 2009) cost-function. Co-registration was configured with
nine degrees of freedom to account for distortions remaining in
the BOLD reference. Head-motion parameters with respect to the
BOLD reference (transformation matrices, and six corresponding
rotation and translation parameters) are estimated before any
spatiotemporal filtering using mcflirt (FSL 5.0.9; Jenkinson et al.,
2002). BOLD runs were slice-time corrected using 3dTshift
from AFNI 20160207 (Cox and Hyde, 1997; RRID:SCR_005927).
The BOLD time-series (including slice-timing correction when
applied) were resampled onto their original, native space by
applying a single, composite transform to correct for head-
motion and susceptibility distortions. These resampled BOLD
time-series will be referred to as preprocessed BOLD in original
space, or just preprocessed BOLD. The BOLD time-series were
resampled into standard space, generating a preprocessed BOLD
run in (“MNI152NLin2009cAsym”) space. First, a reference
volume and its skull-stripped version were generated using
a custom methodology of fMRIPrep. Several confounding
time-series were calculated based on the preprocessed BOLD:
framewise displacement (FD), DVARS and three region-wise
global signals. FD and DVARS are calculated for each functional
run, both using their implementations in Nipype (following the
definitions by Power et al., 2014). The three global signals are
extracted within the CSF, the WM, and the whole-brain masks.
Additionally, a set of physiological regressors were extracted
to allow for component-based noise correction (CompCor;
Behzadi et al., 2007). Principal components are estimated after
high-pass filtering the preprocessed BOLD time-series (using a
discrete cosine filter with 128 s cut-off) for the two CompCor
variants: temporal (tCompCor) and anatomical (aCompCor).
tCompCor components are then calculated from the top 5%
variable voxels within a mask covering the subcortical regions.
This subcortical mask is obtained by heavily eroding the
brain mask, which ensures it does not include cortical GM
regions. For aCompCor, components are calculated within
the intersection of the aforementioned mask and the union
of CSF and WM masks calculated in T1w space, after their
projection to the native space of each functional run (using
the inverse BOLD-to-T1w transformation). Components are
also calculated separately within the WM and CSF masks.
For each CompCor decomposition, the k components with
the largest singular values are retained, such that the retained
components’ time series are sufficient to explain 50 percent

of variance across the nuisance mask (CSF, WM, combined,
or temporal). The remaining components are dropped from
consideration. The head-motion estimates calculated in the
correction step were also placed within the corresponding
confounds file. The confound time series derived from head
motion estimates and global signals were expanded with the
inclusion of temporal derivatives and quadratic terms for each
(Satterthwaite et al., 2013). Frames that exceeded a threshold
of 0.5 mm FD or 1.5 standardized DVARS were annotated as
motion outliers. All resamplings can be performed with a single
interpolation step by composing all the pertinent transformations
(i.e., head-motion transform matrices, susceptibility distortion
correction when available, and co-registrations to anatomical
and output spaces). Gridded (volumetric) resamplings were
performed using antsApplyTransforms (ANTs), configured with
Lanczos interpolation to minimize the smoothing effects of other
kernels (Lanczos, 1964). Non-gridded (surface) resamplings were
performed using mri_vol2surf (FreeSurfer).

The resulting data were then deconvolved. In the
deconvolution, signal drift was modeled with a set of basis
functions; the motion parameters were used as regressors of no
interest; and TRs with motion exceeding 0.5 mm were excluded
from analysis. The regressors of interest were the correct trials
of each block. Each block was deconvolved separately, and
the coefficient of fit of the correct trials were entered into the
group-level analysis.

Because correlations were found between d’ and VAS-F,
Criterion and VAS-F, and between d’ and Criterion three group-
level analyses were conducted: one for VAS-F, one for d’ and
one for Criterion. In all cases, an LME was used (3dLME from
the AFNI suite of processing tools) with the factors of Task (0-
back vs. 2-back), and Run (runs 1–4 of each task), and with
participant included as a random factor. For the analysis of VAS-
F, the VAS-F scores were included as a quantitative variable (using
the same transformed and averaged values as were used for the
SDT analyses). For the analysis of d’, the d’ scores were included as
a quantitative variable. For the analysis of Criterion, the Criterion
scores were included as a quantitative variable. To see whether
brain areas that were sensitive to fatigue were also sensitive to
d’ and to Criterion, two additional analyses were conducted:
one assessed the overlap of regions sensitive to VAS-F and d’,
and the other assessed the overlap between regions sensitive to
VAS-F and Criterion.

The results of these analyses were corrected for multiple
comparisons by using an individual voxel probability threshold
of p < 0.005 and a cluster threshold of 14 voxels (voxel
dimension = 3.4× 3.4× 4 mm). Monte Carlo simulations, using
3dClustSim (version AFNI_17.2.16, compile date: Sept 19, 2017)
showed this combination to result in a corrected alpha level of
p < 0.05.

RESULTS

Analysis of Movement
Because it has been shown that movement artifact can be larger
in clinical samples relative to controls (Wylie et al., 2014), we
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FIGURE 1 | The interaction of Group × Rating is shown. The MS group is plotted in blue and the HC group is plotted in red. Error bars represent standard errors of
the mean.

extracted the parameters of maximum movement from each run
(the translation and rotation) for analysis. The analysis was an
LME with the factors of Group (MS vs. control) and Run (run 1–
4), with Sex included as a covariate. As Table 1 shows, there was
no significant difference in movement between the groups.

Analysis of Visual Analogue Scale-F
For the analysis of the VAS-F scores, the main effect of Group
was significant [F(1,38) = 12.97, p < 0.001] which was due
to individuals with MS reporting higher VAS-F scores than
controls (32.5 vs. 9.1, respectively). The main effect of Rating
was also significant [F(4,156) = 4.39, p < 0.01]. This was due to
participants reporting increasingly more fatigue across the four
runs of each task. The interaction between Group and Rating
was also significant [F(4,156) = 3.44, p < 0.01]. This resulted
from the VAS-F scores increasing at a faster rate in the MS
group than in the control group (see Table 1 and Figure 1).For
all subsequent analyses, we analyzed only data from blocks/runs
on which participants reported fatigue scores greater than zero
(Wylie et al., 2020). As Table 2 shows, both groups reported
experiencing fatigue during well over half of the experimental
runs and pwMS reported fatigue on more runs (87%) than did
controls (61%) [χ2(1) = 14.83, p < 0.001].

RT and Accuracy
For the RT data, the main effect of Group was significant
[F(1,34.0) = 3.96, p = 0.05], which was due to pwMS responding

TABLE 2 | Number and percentages of runs on which participants reported no
fatigue relative to runs where they reported at least some fatigue, as a function of
group (Control vs. MS).

No Fatigue Fatigue

Control 29 (39%) 46 (61%)

MS 15 (13%) 98 (87%)

with longer latencies than the controls (857.8 ms vs. 771.3 ms,
respectively). No other effects or interactions were significant.

No significant differences were observed across groups
regarding response accuracy, although women showed a trend
toward higher accuracy than men [89.9 vs. 83.7%, respectively,
F(1,32.3) = 3.93, p = 0.06]. No other effects or interactions
were significant.

Signal Detection Theory Measures
Criterion
The main effect of Group was significant [F(1,31.6) = 6.16,
p < 0.05] and resulted from the MS group responding with a
more conservative response bias (0.60) than the control group
(0.43). The only other effect to approach conventional levels
of significance was VAS-F [F(1,58.6) = 3.59, p = 0.06], and
reflected a positive relationship between VAS-F and response
Criterion (coefficient = 0.002). This means that for a unit

TABLE 3 | Group × Subjective “State” Fatigue (VAS-F) interactions.

Fatigue (VAS-F) effects

Location X Y Z Voxels F-stat

Group× VAS-F

Superior orbital gyrus/Caudate nucleus −3.2 46.8 −22 125 25.16

Inferior frontal gyrus −23.8 19.3 −18 21 16.74

Middle cingulate cortex −6.6 −42.6 38 17 14.15

Inferior temporal gyrus 58.7 −63.2 −22 35 14.97

Precuneus −10.1 −56.4 66 19 24.89

Middle occipital gyrus 38.1 −80.4 10 15 11.49

Lingual gyrus −6.6 −46.1 2 14 13.48

Cerebellum (Crus 1) 27.8 −90.7 −30 47 18.08

The brain areas associated with the interaction of Group and VAS-F. X, Y, Z the
location of the voxel with peak intensity in each cluster; Voxels refers to the number
of voxels in the region of overlap. F-stat refers to the F statistic from the voxel with
the highest F statistic in the cluster.
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increase in the VAS-F score, participants’ response bias became
more conservative by 0.002. No other effects or interactions
were significant.

Perceptual Certainty
The only effect to approach conventional levels of significance
was that of Sex [F(1,38.2) = 3.59, p = 0.07]. This resulted from
women showing higher Perceptual Certainty (2.40) than men
(1.85). No other effects or interactions were significant.

Structural Neuroimaging Results
We performed three volumetric analyses: we calculated partial
correlations between striatal volume and (1) VAS-F, (2) Criterion,
and (3) Perceptual Certainty, taking Group membership (control
vs. MS) into account. In all cases, the volumetric data was
correlated with the fatigue and SDT measures, which were
averaged across Task and Run (using only those runs where
fatigue was reported). To correct for multiple comparisons,
we used the Bonferroni approach, in which family-wise errors
are corrected by requiring that the p-values are less than
0.05/3 (0.017). The only correlation to approach significance
was between striatal volume and Criterion (r = −0.34,
p = 0.026): as striatal volume decreased, participants’ Criterion
increased, becoming more conservative. Neither the correlation
between striatal volume and VAS-F nor the correlation
between striatal volume and Perceptual Certainty approached
significance.

Functional Neuroimaging Results
Visual Analogue Scale-F Data
We first investigated the brain activation data associated with
cognitive fatigue (VAS-F). There were several areas where brain
activation interacted with Group and VAS-F (see Table 3
and Figure 2): vmPFC, the caudate nucleus of the basal
ganglia, inferior frontal gyrus, the precuneus, visual areas
and cerebellar areas. Figure 2 shows this Group x VAS-
F interaction in the caudate nucleus, where the relationship
between brain activation and the VAS-F is negative for the
control group (coefficient =−0.08) and positive for the MS group
(coefficient = 0.04). The same pattern (between brain activation
and VAS-F) was seen in the other areas showing a Group x VAS-F
interaction in Table 3.

Criterion Data
For the Criterion data, there was an interaction between Group
and Criterion in several areas, including orbital and middle
frontal gyri, the putamen, mid-cingulate cortex, middle temporal
gyrus, superior/inferior parietal lobule, the cuneus, and cerebellar
regions (see Table 4). Figure 2 shows this interaction in the
putamen, and the interaction is qualitatively the same as that
seen in the caudate nucleus in the VAS-F data: there was an
inverse relationship between Criterion and brain activation for
the control group (coefficient =−0.07) and a positive relationship
for the MS group (coefficient = 0.03).

In previous work, we showed that activation in the superior
parietal lobule (SPL) covaried with Criterion: increasing
activation was associated with decreasing (more liberal)

Criterion. The results here show that the relationship between
brain activation in the SPL and Criterion was different in the
two groups (see Figure 3). Replicating our previous finding,
the control group showed a negative relationship between brain
activation and Criterion (coefficient = −0.33). The MS group,
however, showed a positive relationship (coefficient = 0.13).

Perceptual Certainty (d’)
For the Perceptual Certainty data, Group interacted with
Perceptual Certainty in the insula, the caudate nucleus,
the superior temporal gyrus and the posterior cingulate
cortex and several areas around the central sulcus (see
Table 5).In previous work, we showed that activation in
response-related areas covaried with Perceptual Certainty, with
increasing activation associated with increasing Perceptual
Certainty. The results here showed the same association in
the precentral gyrus (increasing activation associated with
increasing Perceptual Certainty), but only for the control
group (coefficient = 0.05; see Figure 3). For the MS group,
there was an inverse relationship (coefficient = −0.02),
such that increasing activation was associated with less
Perceptual Certainty.

Effects of MS Disease Course
Study results were based on the entire MS sample, including
individuals with relapsing and progressive forms of MS (i.e.,
relapsing-remitting MS, secondary progressive MS, primary
progressive MS, and progressive relapsing MS). However, given
the potential differences in fatigue and brain functioning in
relapsing versus progressive MS subtypes, data analyses were also
conducted focusing on the relapsing-remitting MS participants
only and yielded substantially the same results, indicating the
results were not solely driven by the individuals with more
progressive disease courses. The sample size of the progressive
MS group (N = 6) was too small to conduct separate analyses.

TABLE 4 | Group × Criterion (response bias) interactions.

Criterion effects

Location X Y Z Voxels F-stat

Group x Criterion

Middle orbital gyrus 55.3 53.7 −10 16 16.98

Middle frontal gyrus −51.3 57.1 10 17 12.37

Putamen −27.2 2.1 10 31 18.98

Middle cingulate cortex 10.6 −28.9 26 30 15.64

Middle temporal gyrus −61.6 −59.8 14 16 14.04

Superior/Inferior parietal lobule 41.5 −63.2 58 16 15.79

Cuneus −6.6 −83.9 14 39 20.67

Cerebellum(Crus 1) −37.6 −52.9 −30 16 12.49

Cerebellum(Crus 2) −20.4 −83.9 −38 17 12.39

The brain areas associated with the interaction of Group and Criterion. X Y Z = the
location of the voxel with peak intensity in each cluster; Voxels refers to the number
of voxels in the region of overlap. F-stat refers to the F statistic from the voxel with
the highest F statistic in the cluster.
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FIGURE 2 | The Group × VAS-F interaction (top row) and the Group x Criterion interaction (bottom row). The panel on the left shows the location of the interaction;
the panel on the right shows graphs of the interaction. For the Group × VAS-F interaction, the location plotted is (X, Y, Z = –3, 47, –22); for the Group × Criterion
interaction, the location is (X, Y, Z = –27, 2, 10). The scatterplots show the relationship between Percent signal change (ordinate) and VAS-F (abscissa, top) and
Criterion (abscissa, bottom). The blue line shows the best fitting linear trend and the blue shaded area shows the 95% confidence interval.

DISCUSSION

The current study examined SDT metrics – Perceptual Certainty
and Criterion – in relation to cognitive fatigue in MS
and controls with the primary aim of establishing objective
measures of fatigue that align with subjective “state” fatigue
ratings. In addition, we determined functional neural correlates
of subjective state and objective cognitive fatigue. In line
with our first aim, we demonstrated that the SDT metric
Criterion (i.e., response bias), was better aligned with state
fatigue (VAS-F) than basic performance metrics, such as
reaction time and accuracy. When examining the relationship
between SDT metrics and subjective “state” fatigue (Aim 2),
we found that the MS group became more conservative
in their response pattern as their subjective “state” fatigue
increased compared to the control group. That is, as fatigue
increased, the MS group required more evidence about whether
something was a correct or incorrect target before responding
during the n-back task blocks. Lastly, we found activation

within several brain areas to be associated with subjective
state fatigue (VAS-F) and SDT metrics in both the MS
and control groups (Aim 3), though the direction of these
relationships differed by group, such that state fatigue (VAS-F)
and Criterion (i.e., response bias) showed a positive correlation
with brain activation, while Perceptual Certainty showed an
inverse correlation with brain activation in the MS group.
The opposite was true for the control group (i.e., inverse
correlations between state fatigue and response bias and brain
activation, positive correlation between Perceptual Certainty and
brain activation).

One important finding of the current study was our
demonstration that the SDT metric Criterion (i.e., response
bias), a proposed objective measure of cognitive fatigue, was
related to subjective state fatigue in MS. These results build
upon our previous work that showed the same relationship
in a group of controls (Wylie et al., 2020), thereby laying the
foundation for a viable metric of objective cognitive fatigue.
The finding of a Criterion-subjective fatigue relationship
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FIGURE 3 | The Group × Criterion interaction (top row) and the Group × d’ interaction (bottom row). The panel on the left shows the location of the interaction; the
panel on the left shows graphs of the interaction. For the Group × Criterion interaction, the location plotted is (X, Y, Z = 42, –63, 58); for the Group × d’ interaction,
the location is (X, Y, Z = –50, –19, 38). The scatterplots show the relationship between Percent signal change (ordinate) and Criterion (abscissa, top) and Perceptual
Certainty (abscissa, bottom). The blue line shows the best fitting linear trend and the blue shaded area shows the 95% confidence interval.

in MS is further strengthened by the redemonstration of
previous study findings (Craig and Cooper, 1992; Stoner, 1996;
Torres-Harding and Jason, 2005) showing that performance
measures such as reaction time and accuracy are poorly
correlated with subjective fatigue ratings. What traditional
performance measures fail to capture is the tradeoff between
effort and reward (i.e., the payoff matrix) which has been shown
to be highly relevant for cognitive fatigue (Dobryakova et al.,
2013, 2015; Wylie et al. 2017b, 2020) and is captured by SDT
metrics, especially Criterion. We show that at high levels of
fatigue the MS group’s approach to performance changes (i.e.,
the MS group adopts a more conservative response bias) due
to effort increasing while reward remains unchanged, and
it is our hypothesis that this high effort low reward tradeoff
is experienced as fatigue. Thus, fatigue should be reduced if
subjects are given a reward for performing a fatiguing task –
a prediction that we have verified in both MS (Dobryakova
et al., 2018) and in individuals who have sustained a TBI
(Dobryakova et al., 2020). Future work will explore how the

introduction of additional reward after the induction of fatigue
moderates the relationship between subjective state fatigue
and SDT metrics.

Another notable result was the connection between SDT
variables and brain activation which establishes a link between
the brain and objective measures of fatigue in MS. Previous
work has implicated the basal ganglia, particularly the caudate,
in subjective cognitive fatigue (Chaudhuri and Behan, 2004;
Dobryakova et al., 2013, 2017; Nakagawa et al., 2016) and to a
lesser degree more objective measures of cognitive fatigue (in
controls; Wylie et al., 2020). Here, we demonstrated relationships
between subjective state fatigue (i.e., VAS-F) and response bias
(i.e., Criterion) and activation in the basal ganglia, as well as
several other regions throughout the brain, which is consistent
with previous research identifying a functional “fatigue network”
(Wylie et al., 2020). The network identified by Wylie et al.
(2020) included the striatum of the basal ganglia, dorsolateral
prefrontal cortex, dorsal anterior cingulate cortex, ventromedial
prefrontal cortex, anterior insula, and additional frontal regions.
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TABLE 5 | Group × Perceptual certainty interactions.

Perceptual Certainty (d’) effects

Location X Y Z Voxels F-stat

Group × d’

Caudate nucleus −16.9 −15.1 22 15 17.51

Insula −34.1 −22.0 18 14 14.20

Pre-/Postcentral gyrus −47.9 −18.5 38 23 13.66

Pre-/Postcentral gyrus 48.4 −25.4 66 37 25.01

Postcentral gyrus −65.1 −11.7 42 47 18.70

SupraMarginal gyrus 69.0 −18.5 46 27 18.26

Superior temporal gyrus −44.4 −15.1 −6 16 13.51

Posterior cingulate cortex 0.3 −46.1 6 15 18.90

The brain areas associated with the interaction of Group and Perceptual Certainty
(d’). X Y Z = the location of the voxel with peak intensity in each cluster; Voxels
refers to the number of voxels in the region of overlap. F-stat refers to the F statistic
from the voxel with the highest F statistic in the cluster.

A separate study identified similar areas in fatigue processing,
adding that several of these areas are also implicated in reward
processing (Chen et al., 2020). Thus, given the overlap in
activation in similar brain areas in the current study, it is
plausible that SDT variables, namely Criterion, capture fatigue
and reward processing networks. This has implications for
our understanding of cognitive fatigue and how to properly
quantify it. Regarding activation, contrary to the controls, the MS
group showed positive relationships (i.e., as Criterion increased,
brain activation increased). This positive relationship may be
driven by the increased effort required by more neurologically
compromised brains (i.e., “hyperconnectivity”) to complete tasks,
especially in the context of a fixed reward, thereby keeping
this network engaged for longer periods of time and resulting
in the perception of fatigue. This hyperconnectivity has also
been demonstrated in other studies across diverse neurological
populations (Hillary et al., 2015; Jie et al., 2016; Pravatà et al.,
2016; Rosskopf et al., 2018). Lastly, results from structural
MRI showed an inverse relationship between the striatum and
response bias (i.e., Criterion), such that less striatal volume was
associated with more conservative response bias. Though these
results were only significant at a trend level, they are promising,
because they replicate previous anatomical patterns of striatal
atrophy in relation to fatigue in MS and other neurological
populations and controls (Calabrese et al., 2010; Damasceno
et al., 2016; Nakagawa et al., 2016; Kluger et al., 2019; Palotai
et al., 2020; Wylie et al., 2020; Schnellbächer et al., 2021). Our
results thus further underline the importance of the striatum in
the experience of cognitive fatigue.

Basic performance measures (i.e., reaction time, accuracy) and
questionnaires aimed at quantifying cognitive fatigue have fallen
short, hindering our ability to accurately appraise fatigue and
develop interventions. Thus, the current study begins to fill a gap
in the scientific literature by linking patients’ experience of fatigue
with objective measures in a way that has not been done before
and illuminating the connection between pathophysiology and
novel measures of cognitive fatigue by way of SDT. These results

hold promise for characterizing cognitive fatigue in MS and other
neurological populations in the future.

LIMITATIONS AND FUTURE DIRECTIONS

While our results largely supported our proposed hypotheses,
there are still notable limitations. First, participants were not
offered rewards over time in this study, which limited our
ability to test whether Criterion (i.e., response bias) changes in
relation to varying levels of reward. Integrating the distribution
of rewards in future studies will be crucial for testing whether the
payoff matrix is playing a role in cognitive fatigue. Our sample
size was also relatively small, and we did not have access to
crucial sociocultural demographic variables (e.g., race/ethnicity)
that may have impacted the perception of fatigue. It has been
well-established that sociocultural factors influence cognitive
performance and perceptions of disease-associated symptoms,
so recruiting more diverse populations and integrating cultural
factors in the future will be crucial for understanding cognitive
fatigue and how our findings generalize to a more representative
MS population. The lack of assessment of additional clinical
factors that might lead to cognitive fatigue, such as affective
symptoms, sleep quality, or current use of disease modifying
treatments, was also lacking in our investigation. Future studies
would benefit from using multilevel modeling to investigate how
multiple variables contribute to cognitive fatigue. Our sample was
largely made up of participants with RRMS which has a different
underlying mechanism than progressive courses of MS. Thus,
it will be important to replicate these findings in a sample of
individuals with progressive MS subtypes. Lastly, our analyses of
brain metrics were restricted to activation of brain areas on an
individual scale, rather than through network analyses. The brain
is not modular, so the examination of brain networks is crucial
for augmenting our understanding of the neurophysiological
processes that contribute to and moderate fatigue. Thus, future
works could benefit from examining the relationship between
SDT variables and structural and functional brain networks,
particularly those thought to be associated with fatigue and
reward processes. Incorporating physiological measures such as
event-related or evoked potentials would also help to further
unravel the underlying mechanisms of cognitive fatigue in MS.

CONCLUSION

Our results demonstrate the relationship between subjective
“state” fatigue and response bias (i.e., Criterion). In addition, not
only do we show that subjective state fatigue is related to brain
activation in areas associated with a previously demonstrated
functional “fatigue network,” but brain activation in these
same regions is also related to response bias (i.e., Criterion).
Therefore, accounting for more nuanced and complex aspects
of performance (as captured by SDT Criterion) brings us much
closer to understanding the pathophysiology of cognitive fatigue
compared to traditional performance measures. These results
hold promise for characterizing cognitive fatigue in MS and
developing effective interventions in the future.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 10 March 2022 | Volume 16 | Article 828566

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-828566 March 10, 2022 Time: 15:1 # 11

Román et al. SDT and Fatigue in MS

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Kessler Foundation Institutional Review Board. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

CR and GW wrote the main manuscript. JD, BY, and HG
reviewed and edited the manuscript. All authors contributed to
the article and approved the submitted version.

FUNDING

We would like to acknowledge grant support from The
New Jersey Commission for Brain Injury Research (10.005.BIR1
to GW), The National MS Society (RG 4232A1 to HG), and
Kessler Foundation.

REFERENCES
Akbar, N., Sandroff, B. M., Wylie, G. R., Strober, L. B., Smith, A., Goverover, Y.,

et al. (2020). Progressive resistance exercise training and changes in resting-
state functional connectivity of the caudate in persons with multiple sclerosis
and severe fatigue: a proof-of-concept study. Neuropsychol. Rehabil. 30, 54–66.
doi: 10.1080/09602011.2018.1449758

Anderson, I. M., Shippen, C., Juhasz, G., Chase, D., Thomas, E., Downey, D., et al.
(2011). State-dependent alteration in face emotion recognition in depression.
Br. J. Psychiatry 198, 302–308. doi: 10.1192/bjp.bp.110.078139

Andreasen, A. K., Jakobsen, J., Soerensen, L., Andersen, H., Petersen, T., Bjarkam,
C. R., et al. (2010). Regional brain atrophy in primary fatigued patients with
multiple sclerosis. Neuroimage 50, 608–615. doi: 10.1016/j.neuroimage.2009.12.
118

Avants, B. B., Epstein, C. L., Grossman, M., and Gee, J. C. (2008). Symmetric
diffeomorphic image registration with cross-correlation: evaluating automated
labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41.
doi: 10.1016/j.media.2007.06.004

Ayache, S. S., and Chalah, M. A. (2017). Fatigue in multiple sclerosis–insights into
evaluation and management. Neurophysiol. Clin. 47, 139–171. doi: 10.1016/j.
neucli.2017.02.004

Baddeley, A., Cocchini, G., Della Sala, S., Logie, R. H., and Spinnler, H. (1999).
Working memory and vigilance: evidence from normal aging and Alzheimer’s
disease. Brain Cogn. 41, 87–108. doi: 10.1006/brcg.1999.1097

Behzadi, Y., Restom, K., Liau, J., and Liu, T. T. (2007). A component based
noise correction method (CompCor) for BOLD and perfusion based fMRI.
Neuroimage 37, 90–101. doi: 10.1016/j.neuroimage.2007.04.042

Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., et al. (2010).
Toward discovery science of human brain function. Proc. Natl. Acad. Sci. 107,
4734–4739. doi: 10.1073/pnas.0911855107

Boksem, M. A., Meijman, T. F., and Lorist, M. M. (2006). Mental fatigue,
motivation and action monitoring. Biol. Psychol. 72, 123–132. doi: 10.1016/j.
biopsycho.2005.08.007

Box, G. E., and Cox, D. R. (1964). An analysis of transformations. J. R. Stat. Soc. B
26, 211–243.

Calabrese, M., Rinaldi, F., Grossi, P., Mattisi, I., Bernardi, V., Favaretto, A., et al.
(2010). Basal ganglia and frontal/parietal cortical atrophy is associated with
fatigue in relapsing—remitting multiple sclerosis. Mult. Scler. J. 16, 1220–1228.
doi: 10.1177/1352458510376405

Chalah, M. A., Riachi, N., Ahdab, R., Créange, A., Lefaucheur, J. P., and Ayache,
S. S. (2015). Fatigue in multiple sclerosis: neural correlates and the role of non-
invasive brain stimulation. Front. Cell. Neurosci. 9:460. doi: 10.3389/fncel.2015.
00460

Chaudhuri, A., and Behan, P. O. (2000). Fatigue and basal ganglia. J. Neurol. Sci.
179, 34–42.

Chaudhuri, A., and Behan, P. O. (2004). Fatigue in neurological disorders. Lancet
363, 978–988. doi: 10.1016/s0140-6736(04)15794-2

Chen, M. H., Wylie, G. R., Sandroff, B. M., Dacosta-Aguayo, R., DeLuca, J., and
Genova, H. M. (2020). Neural mechanisms underlying state mental fatigue in

multiple sclerosis: a pilot study. J. Neurol. 267, 2372–2382. doi: 10.1007/s00415-
020-09853-w

Claros-Salinas, D., Dittmer, N., Neumann, M., Sehle, A., Spiteri, S., Willmes, K.,
et al. (2013). Induction of cognitive fatigue in MS patients through cognitive
and physical load. Neuropsychol. Rehabil. 23, 182–201. doi: 10.1080/09602011.
2012.726925

Cox, R. W., and Hyde, J. S. (1997). Software tools for analysis and visualization
of fMRI data. NMR Biomed. 10, 171–178. doi: 10.1002/(sici)1099-1492(199706/
08)10:4/5&lt;171::aid-nbm453&gt;3.0.co;2-l

Coyne, K. S., Boscoe, A. N., Currie, B. M., Landrian, A. S., and Wandstrat, T. L.
(2015). Understanding drivers of employment changes in a multiple sclerosis
population. Int. J. MS Care 17, 245–252. doi: 10.7224/1537-2073.2014-051

Craig, A., and Cooper, R. E. (1992). Symptoms of acute and chronic fatigue. Handb.
Hum. Perform. 3, 289–339. doi: 10.1016/b978-0-12-650353-1.50017-4

D’Agostino, R. B. (1970). Transformation to normality of the null distribution of
G1. Biometrika 57, 679–681. doi: 10.1093/biomet/57.3.679

Damasceno, A., Damasceno, B. P., and Cendes, F. (2016). Atrophy of
reward-related striatal structures in fatigued MS patients is independent of
physical disability. Mult. Scler. J. 22, 822–829. doi: 10.1177/135245851559
9451

DeLuca, J., Genova, H. M., Hillary, F. G., and Wylie, G. (2008). Neural correlates of
cognitive fatigue in multiple sclerosis using functional MRI. J. Neurol. Sci. 270,
28–39. doi: 10.1016/j.jns.2008.01.018

Dobryakova, E., DeLuca, J., Genova, H. M., and Wylie, G. R. (2013).
Neural correlates of cognitive fatigue: cortico-striatal circuitry and effort–
reward imbalance. J. Int. Neuropsychol. Soc. 19, 849–853. doi: 10.1017/
S1355617713000684

Dobryakova, E., Genova, H., Schneider, V., Chiaravalloti, N. D., Spirou, A.,
Wylie, G. R., et al. (2020). Reward presentation reduces on-task fatigue
in traumatic brain injury. Cortex 126, 16–25. doi: 10.1016/j.cortex.2020.0
1.003

Dobryakova, E., Genova, H. M., DeLuca, J., and Wylie, G. R. (2015). The dopamine
imbalance hypothesis of fatigue in multiple sclerosis and other neurological
disorders. Front. Neurol. 6:52. doi: 10.3389/fneur.2015.00052

Dobryakova, E., Hulst, H. E., Spirou, A., Chiaravalloti, N. D., Genova, H. M.,
Wylie, G. R., et al. (2018). Fronto-striatal network activation leads to less
fatigue in multiple sclerosis. Mult. Scler. J. 24, 1174–1182. doi: 10.1177/
1352458517717087

Dobryakova, E., Jessup, R. K., and Tricomi, E. (2017). Modulation of ventral
striatal activity by cognitive effort. Neuroimage 147, 330–338. doi: 10.1016/j.
neuroimage.2016.12.029

Driscoll, M. E., Bollu, P. C., and Tadi, P. (2020). Neuroanatomy, Nucleus Caudate.
StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing.

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe,
A., et al. (2019). fMRIPrep: a robust preprocessing pipeline for functional MRI.
Nat. Methods 16, 111–116. doi: 10.1038/s41592-018-0235-4

Fisk, J. D., Pontefract, A., Ritvo, P. G., Archibald, C. J., and Murray, T. J. (1994).
The impact of fatigue on patients with multiple sclerosis. Can. J. Neurol. Sci. 21,
9–14.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 11 March 2022 | Volume 16 | Article 828566

https://doi.org/10.1080/09602011.2018.1449758
https://doi.org/10.1192/bjp.bp.110.078139
https://doi.org/10.1016/j.neuroimage.2009.12.118
https://doi.org/10.1016/j.neuroimage.2009.12.118
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1016/j.neucli.2017.02.004
https://doi.org/10.1016/j.neucli.2017.02.004
https://doi.org/10.1006/brcg.1999.1097
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://doi.org/10.1073/pnas.0911855107
https://doi.org/10.1016/j.biopsycho.2005.08.007
https://doi.org/10.1016/j.biopsycho.2005.08.007
https://doi.org/10.1177/1352458510376405
https://doi.org/10.3389/fncel.2015.00460
https://doi.org/10.3389/fncel.2015.00460
https://doi.org/10.1016/s0140-6736(04)15794-2
https://doi.org/10.1007/s00415-020-09853-w
https://doi.org/10.1007/s00415-020-09853-w
https://doi.org/10.1080/09602011.2012.726925
https://doi.org/10.1080/09602011.2012.726925
https://doi.org/10.1002/(sici)1099-1492(199706/08)10:4/5&lt;171::aid-nbm453&gt;3.0.co;2-l
https://doi.org/10.1002/(sici)1099-1492(199706/08)10:4/5&lt;171::aid-nbm453&gt;3.0.co;2-l
https://doi.org/10.7224/1537-2073.2014-051
https://doi.org/10.1016/b978-0-12-650353-1.50017-4
https://doi.org/10.1093/biomet/57.3.679
https://doi.org/10.1177/1352458515599451
https://doi.org/10.1177/1352458515599451
https://doi.org/10.1016/j.jns.2008.01.018
https://doi.org/10.1017/S1355617713000684
https://doi.org/10.1017/S1355617713000684
https://doi.org/10.1016/j.cortex.2020.01.003
https://doi.org/10.1016/j.cortex.2020.01.003
https://doi.org/10.3389/fneur.2015.00052
https://doi.org/10.1177/1352458517717087
https://doi.org/10.1177/1352458517717087
https://doi.org/10.1016/j.neuroimage.2016.12.029
https://doi.org/10.1016/j.neuroimage.2016.12.029
https://doi.org/10.1038/s41592-018-0235-4
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-828566 March 10, 2022 Time: 15:1 # 12

Román et al. SDT and Fatigue in MS

Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, R. C., Collins, D. L.,
et al. (2011). Unbiased average age-appropriate atlases for pediatric studies.
Neuroimage 54, 313–327. doi: 10.1016/j.neuroimage.2010.07.033

Freal, J. E., Kraft, G. H., and Coryell, J. K. (1984). Symptomatic fatigue in multiple
sclerosis. Arch. Phys. Med. Rehabil. 65, 135–138.

Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom,
M. L., et al. (2011). Nipype: a flexible, lightweight and extensible neuroimaging
data processing framework in python. Front. Neuroinform. 5:13. doi: 10.3389/
fninf.2011.00013

Green, D. M., and Swets, J. A. (1966). Signal Detection Theory and Psychophysics,
Vol. 1. New York, NY: Wiley.

Greve, D. N., and Fischl, B. (2009). Accurate and robust brain image alignment
using boundary-based registration. Neuroimage 48, 63–72. doi: 10.1016/j.
neuroimage.2009.06.060

Gullo, H. L., Fleming, J., Bennett, S., and Shum, D. H. (2019). Cognitive and
physical fatigue are associated with distinct problems in daily functioning, role
fulfilment, and quality of life in multiple sclerosis. Mult. Scler. Relat. Disord. 31,
118–123. doi: 10.1016/j.msard.2019.03.024

Hillary, F. G., Román, C. A., Venkatesan, U., Rajtmajer, S. M., Bajo, R., and
Castellanos, N. D. (2015). Hyperconnectivity is a fundamental response to
neurological disruption. Neuropsychology 29:59. doi: 10.1037/neu0000110

Jenkinson, M., Bannister, P., Brady, M., and Smith, S. (2002). Improved
optimization for the robust and accurate linear registration and motion
correction of brain images. Neuroimage 17, 825–841. doi: 10.1016/s1053-
8119(02)91132-8

Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., and Smith, S. M.
(2012). Fsl. Neuroimage 62, 782–790.

Jie, B., Wee, C. Y., Shen, D., and Zhang, D. (2016). Hyper-connectivity of functional
networks for brain disease diagnosis. Med. Image Anal. 32, 84–100. doi: 10.
1016/j.media.2016.03.003

Johnson, S. L. (2008). The concept of fatigue in multiple sclerosis. J. Neurosci. Nurs.
40, 72–77. doi: 10.1097/01376517-200804000-00005

Kluger, B. M., Krupp, L. B., and Enoka, R. M. (2013). Fatigue and fatigability in
neurologic illnesses: proposal for a unified taxonomy. Neurology 80, 409–416.
doi: 10.1212/WNL.0b013e31827f07be

Kluger, B. M., Zhao, Q., Tanner, J. J., Schwab, N. A., Levy, S. A., Burke, S. E., et al.
(2019). Structural brain correlates of fatigue in older adults with and without
Parkinson’s disease. Neuroimage 22:101730. doi: 10.1016/j.nicl.2019.101730

Kos, D., Kerckhofs, E., Nagels, G., D’hooghe, M. B., and Ilsbroukx, S. (2008). Origin
of fatigue in multiple sclerosis: review of the literature. Neurorehabil. Neural
Repair 22, 91–100. doi: 10.1177/1545968306298934

Lanczos, C. (1964). Evaluation of noisy data. J. Soc. Ind. Appl. Math. Series B Numer.
Anal. 1, 76–85. doi: 10.1002/sca.21246

Lorist, M. M., Bezdan, E., ten Caat, M., Span, M. M., Roerdink, J. B., and Maurits,
N. M. (2009). The influence of mental fatigue and motivation on neural network
dynamics; an EEG coherence study. Brain Res. 1270, 95–106. doi: 10.1016/j.
brainres.2009.03.015

Lynn, S. K., and Barrett, L. F. (2014). “Utilizing” signal detection theory. Psychol.
Sci. 25, 1663–1673.

Macmillan, N. A., and Creelman, C. D. (2004). Detection Theory: A User’s Guide.
Hove: Psychology press.

Matthews, G., and Desmond, P. A. (2002). Task-induced fatigue states and
simulated driving performance. Q. J. Exp. Psychol. A 55, 659–686. doi: 10.1080/
02724980143000505

Müller, T., and Apps, M. A. (2019). Motivational fatigue: a neurocognitive
framework for the impact of effortful exertion on subsequent motivation.
Neuropsychologia 123, 141–151. doi: 10.1016/j.neuropsychologia.2018.0
4.030

Nagaraj, K., Taly, A. B., Gupta, A., Prasad, C., and Christopher, R. (2013).
Prevalence of fatigue in patients with multiple sclerosis and its effect on the
quality of life. J. Neurosci. Rural Pract. 4, 278–282. doi: 10.4103/0976-3147.
118774

Nakagawa, S., Takeuchi, H., Taki, Y., Nouchi, R., Kotozaki, Y., Shinada, T., et al.
(2016). Basal ganglia correlates of fatigue in young adults. Sci. Rep. 6:21386.
doi: 10.1038/srep21386

Palotai, M., Cavallari, M., Koubiyr, I., Morales Pinzon, A., Nazeri, A., Healy, B. C.,
et al. (2020). Microstructural fronto-striatal and temporo-insular alterations
are associated with fatigue in patients with multiple sclerosis independent of

white matter lesion load and depression. Mult. Scler. J. 26, 1708–1718. doi:
10.1177/1352458519869185

Parasuraman, R. (1979). Memory load and event rate control sensitivity
decrements in sustained attention. Science 205, 924–927. doi: 10.1126/science.
472714

Polman, C. H., Reingold, S. C., Edan, G., Filippi, M., Hartung, H. P., Kappos, L.,
et al. (2005). Diagnostic criteria for multiple sclerosis: 2005 revisions to the
“McDonald Criteria”. Ann. Neurol. 58, 840–846. doi: 10.1002/ana.20703

Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., and Petersen,
S. E. (2014). Methods to detect, characterize, and remove motion artifact in
resting state fMRI. Neuroimage 84, 320–341. doi: 10.1016/j.neuroimage.2013.
08.048

Pravatà, E., Zecca, C., Sestieri, C., Caulo, M., Riccitelli, G. C., Rocca, M. A.,
et al. (2016). Hyperconnectivity of the dorsolateral prefrontal cortex following
mental effort in multiple sclerosis patients with cognitive fatigue. Mult. Scler. J.
22, 1665–1675. doi: 10.1177/1352458515625806

Rooney, S., Wood, L., Moffat, F., and Paul, L. (2019). Prevalence of fatigue and its
association with clinical features in progressive and non-progressive forms of
multiple sclerosis. Mult. Scler. Relat. Disord. 28, 276–282. doi: 10.1016/j.msard.
2019.01.011

Rosskopf, J., Gorges, M., Mueller, H. P., Pinkhardt, E. H., Ludolph, A. C.,
and Kassubek, J. (2018). Hyperconnective and hypoconnective cortical and
subcortical functional networks in multiple system atrophy. Park. Relat. Disord.
49, 75–80. doi: 10.1016/j.parkreldis.2018.01.012

Satterthwaite, T. D., Elliott, M. A., Gerraty, R. T., Ruparel, K., Loughead, J.,
Calkins, M. E., et al. (2013). An improved framework for confound regression
and filtering for control of motion artifact in the preprocessing of resting-
state functional connectivity data. Neuroimage 64, 240–256. doi: 10.1016/j.
neuroimage.2012.08.052

Schneider, W., Eschman, A., and Zuccolotto, A. (2002). E−Prime User’s Guide.
Pittsburgh: Psychology Software Tools Inc.

Schnellbächer, G. J., Kettenbach, S., Löffler, L., Dreher, M., Habel, U., and Votinov,
M. (2021). Morphological profiles of fatigue in Sarcoidosis patients. Psychiatry
Res. 315:111325. doi: 10.1016/j.pscychresns.2021.111325

Stoner, J. D. (1996). Aircrew fatigue monitoring during sustained flight operations
from Souda Bay, Crete, Greece. Aviat. Space Environ. Med. 67, 863–866.

Stonnington, C. M., Tan, G., Klöppel, S., Chu, C., Draganski, B., Jack, C. R. Jr., et al.
(2008). Interpreting scan data acquired from multiple scanners: a study with
Alzheimer’s disease. Neuroimage 39, 1180–1185. doi: 10.1016/j.neuroimage.
2007.09.066

Tabrizi, F. M., and Radfar, M. (2015). Fatigue, sleep quality, and disability in
relation to quality of life in multiple sclerosis. Int. J. MS Care 17, 268–274.
doi: 10.7224/1537-2073.2014-046

Tang, W. K., Liang, H. J., Chen, Y. K., Chu, W. C., Abrigo, J., Mok, V. C. T., et al.
(2013). Poststroke fatigue is associated with caudate infarcts. J. Neurol. Sci. 324,
131–135. doi: 10.1016/j.jns.2012.10.022

Torres-Harding, S., and Jason, L. A. (2005). What is fatigue? History and
epidemiology. Fatigue Window Brain 1, 3–17. doi: 10.1520/stp27880s

Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A.,
et al. (2010). N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging
29, 1310–1320. doi: 10.1109/TMI.2010.2046908

Wallin, M. T., Culpepper, W. J., Nichols, E., Bhutta, Z. A., Gebrehiwot, T. T., Hay,
S. I., et al. (2019). Global, regional, and national burden of multiple sclerosis
1990–2016: a systematic analysis for the global burden of disease study 2016.
Lancet Neurol. 18, 269–285. doi: 10.1016/S1474-4422(18)30443-5

Walton, C., King, R., Rechtman, L., Kaye, W., Leray, E., Marrie, R. A., et al.
(2020). Rising prevalence of multiple sclerosis worldwide: insights from
the Atlas of MS. Mult. Scler. J. 26, 1816–1821. doi: 10.1177/135245852097
0841

Wylie, G. R., Genova, H. M., DeLuca, J., and Dobryakova, E. (2017b). The
relationship between outcome prediction and cognitive fatigue: a convergence
of paradigms. Cogn. Affect. Behav. Neurosci. 17, 838–849.

Wylie, G. R., Dobryakova, E., DeLuca, J., Chiaravalloti, N., Essad, K., and Genova,
H. (2017a). Cognitive fatigue in individuals with traumatic brain injury is
associated with caudate activation. Sci. Rep. 7:8973. doi: 10.1038/s41598-017-
08846-6

Wylie, G. R., Genova, H., DeLuca, J., Chiaravalloti, N., and Sumowski, J. F.
(2014). Functional magnetic resonance imaging movers and shakers: does

Frontiers in Behavioral Neuroscience | www.frontiersin.org 12 March 2022 | Volume 16 | Article 828566

https://doi.org/10.1016/j.neuroimage.2010.07.033
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1016/j.msard.2019.03.024
https://doi.org/10.1037/neu0000110
https://doi.org/10.1016/s1053-8119(02)91132-8
https://doi.org/10.1016/s1053-8119(02)91132-8
https://doi.org/10.1016/j.media.2016.03.003
https://doi.org/10.1016/j.media.2016.03.003
https://doi.org/10.1097/01376517-200804000-00005
https://doi.org/10.1212/WNL.0b013e31827f07be
https://doi.org/10.1016/j.nicl.2019.101730
https://doi.org/10.1177/1545968306298934
https://doi.org/10.1002/sca.21246
https://doi.org/10.1016/j.brainres.2009.03.015
https://doi.org/10.1016/j.brainres.2009.03.015
https://doi.org/10.1080/02724980143000505
https://doi.org/10.1080/02724980143000505
https://doi.org/10.1016/j.neuropsychologia.2018.04.030
https://doi.org/10.1016/j.neuropsychologia.2018.04.030
https://doi.org/10.4103/0976-3147.118774
https://doi.org/10.4103/0976-3147.118774
https://doi.org/10.1038/srep21386
https://doi.org/10.1177/1352458519869185
https://doi.org/10.1177/1352458519869185
https://doi.org/10.1126/science.472714
https://doi.org/10.1126/science.472714
https://doi.org/10.1002/ana.20703
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://doi.org/10.1177/1352458515625806
https://doi.org/10.1016/j.msard.2019.01.011
https://doi.org/10.1016/j.msard.2019.01.011
https://doi.org/10.1016/j.parkreldis.2018.01.012
https://doi.org/10.1016/j.neuroimage.2012.08.052
https://doi.org/10.1016/j.neuroimage.2012.08.052
https://doi.org/10.1016/j.pscychresns.2021.111325
https://doi.org/10.1016/j.neuroimage.2007.09.066
https://doi.org/10.1016/j.neuroimage.2007.09.066
https://doi.org/10.7224/1537-2073.2014-046
https://doi.org/10.1016/j.jns.2012.10.022
https://doi.org/10.1520/stp27880s
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1016/S1474-4422(18)30443-5
https://doi.org/10.1177/1352458520970841
https://doi.org/10.1177/1352458520970841
https://doi.org/10.1038/s41598-017-08846-6
https://doi.org/10.1038/s41598-017-08846-6
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-828566 March 10, 2022 Time: 15:1 # 13

Román et al. SDT and Fatigue in MS

subject−movement cause sampling bias? Hum. Brain Mapp. 35, 1–13. doi:
10.1002/hbm.22150

Wylie, G. R., Genova, H., Dobryakova, E., DeLuca, J., Chiaravalloti, N., Falvo,
M., et al. (2019). Fatigue in Gulf War Illness is associated with tonically high
activation in the executive control network. Neuroimage 21:101641. doi: 10.
1016/j.nicl.2018.101641

Wylie, G. R., Yao, B., Sandry, J., and DeLuca, J. (2020). Using signal detection
theory to better understand cognitive fatigue. Front. Psychol. 11:579188. doi:
10.3389/fpsyg.2020.579188

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Román, DeLuca, Yao, Genova and Wylie. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 13 March 2022 | Volume 16 | Article 828566

https://doi.org/10.1002/hbm.22150
https://doi.org/10.1002/hbm.22150
https://doi.org/10.1016/j.nicl.2018.101641
https://doi.org/10.1016/j.nicl.2018.101641
https://doi.org/10.3389/fpsyg.2020.579188
https://doi.org/10.3389/fpsyg.2020.579188
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles

	Signal Detection Theory as a Novel Tool to Understand Cognitive Fatigue in Individuals With Multiple Sclerosis
	Introduction
	Materials and Methods
	Participants
	Neuroimaging Acquisition
	Behavioral Paradigm and Data
	Visual Analogue Scale-F

	Analyses
	Visual Analogue Scale-F
	RT and Accuracy
	Signal Detection Theory Measures (Perceptual Certainty and Criterion)
	Neuroimaging

	Results
	Analysis of Movement
	Analysis of Visual Analogue Scale-F
	RT and Accuracy
	Signal Detection Theory Measures
	Criterion
	Perceptual Certainty

	Structural Neuroimaging Results
	Functional Neuroimaging Results
	Visual Analogue Scale-F Data
	Criterion Data
	Perceptual Certainty (d')

	Effects of MS Disease Course

	Discussion
	Limitations and Future Directions
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


