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Abstract

Background: A major cue for the position of a high-frequency sound source in azimuth is the difference in sound
pressure levels in the two ears, Interaural Level Differences (ILDs), as a sound is presented from different positions
around the head. This study aims to use data classification techniques to build a descriptive model of
electro-physiologically determined neuronal sensitivity functions for ILDs. The ILDs were recorded from neurons in
the central nucleus of the Inferior Colliculus (ICc), an obligatory midbrain auditory relay nucleus. The majority of
ICc neurons (~ 85%) show sensitivity to ILDs but with a variety of different forms that are often difficult to
unambiguously separate into different information-bearing types. Thus, this division is often based on
laboratory-specific and relatively subjective criteria. Given the subjectivity and non-uniformity of ILD classification
methods in use, we examined if objective data classification techniques for this purpose. Our key objectives were
to determine if we could find an analytical method (A) to validate the presence of four typical ILD sensitivity
functions as is commonly assumed in the field, and (B) whether this method produced classifications that mapped
on to the physiologically observed results.

Methods: The three-step data classification procedure forms the basic methodology of this manuscript. In this
three-step procedure, several data normalization techniques were first tested to select a suitable normalization
technique to our data. This was then followed by PCA to reduce data dimensionality without losing the core
characteristics of the data. Finally Cluster Analysis technique was applied to determine the number of clustered
data with the aid of the CCC and Inconsistency Coefficient values.

Results: The outcome of a three-step analytical data classification process was the identification of seven distinctive
forms of ILD functions. These seven ILD function classes were found to map to the four “known” ideal ILD sensitivity
function types, namely: Sigmoidal-EI, Sigmoidal-IE, Peaked, and Insensitive, ILD functions, and variations within these
classes. This indicates that these seven templates can be utilized in future modelling studies.

Conclusions: We developed a taxonomy of ILD sensitivity functions using a methodological data classification
approach. The number and types of generic ILD function patterns found with this method mapped well on to our
electrophysiologically determined ILD sensitivity functions. While a larger data set of the latter functions may bring a
more robust outcome, this good mapping is encouraging in providing a principled method for classifying such data
sets, and could be well extended to other such neuronal sensitivity functions, such as contrast tuning in vision.
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Background
The ability to identify the location of a sound source is a
core auditory ability for many daily purposes [1]. Our abil-
ity to accurately localize sounds depends on coding, by
neurons in the Central Nervous System, of various cues to
the location of the sounds. For on-going high frequency
sounds, the major cue for azimuthal location of the sound
source is the difference in intensity/level (formerly Inte-
raural Intensity Differences, now Interaural Level Differ-
ences; IIDs/ILDs) [2]. ILDs are the difference in sound
levels at the two ears as a sound source moves about an
animal and are created by head and body shadowing effects
which affect high frequency sounds more than low fre-
quency sounds [3]. There is a vast literature on the import-
ance of ILDs and how neurons at various brain levels
respond to ILDs that cover a wide azimuthal range across
frontal space, from opposite one ear across to opposite the
other. In mammals this cue is first functionally coded by
neurons in the auditory brainstem, and then relayed to the
Inferior Colliculus (IC), but it is clear that in some species
at least (including the rat studied here), ILD sensitivity is
also created de novo in many IC neurons [4].
Different IC neurons appear to use different combina-

tions of interactions between excitatory and inhibitory
inputs to code ILDs (a set of neuronal operations that
also appears to be used in auditory cortex), [5] produ-
cing a diversity of forms of ILD sensitivity in neurons in
the one auditory structure; this diversity argues against
using a single network model to describe all the different
forms of ILD sensitivity.

Introduction to data normalization
Data normalization is a scaling process for numbers in
a data array and is used where a great heterogeneity in
the numbers renders difficult any standard statistical
analysis. The data is often normalized before any appli-
cation process and therefore data normalization is usu-
ally termed as data pre-processing. Many different data
normalization techniques have been developed in di-
verse scientific fields, e.g. in statistical analysis for ap-
plications such as in diagnostic circuits in electronics
[6], temporal coding in vision [7], predictive control
systems in seismic activities [8], modeling Auditory
Nerve stochastic properties [9], modeling labor market
activity [10], pattern recognition [11], and most exten-
sively in microarray data analysis in genetics, [12-20].
The need for data normalization is determined by the

user and depends on the application. Thus the purpose
of data normalization depends on the proposed applica-
tion, and includes use of linear scaling to compress a
large dynamic range [6], scaling of values to correct for
variation in laser intensity [18], handling obscure variation
[12] or removing systematic errors in data [11,15,17,20], or
efficiently removing redundancy in a non-linear model as
an optimal transformation for temporal processing [7]. Al-
though the benefits of data normalization depend on data
type, data size and normalization method (which can vary
between different fields), generally the advantages of data
normalization are (a) to give a more meaningful range of
scaled numbers for use, (b) to rearrange the data array in a
more regular distribution, (c) to enhance the correctness of
the subsequent calculations, and (d) to increase the signifi-
cance or importance of the most descriptive numbers in a
non-normally distributed data set.

Introduction to data dimension reduction technique
Principal component analysis (PCA) is a statistical tool
to reduce the dimensions of a large data set for the pur-
pose of data classification when a data set can be de-
scribed in a number of different ways, or described by a
number of different variables (such as slope steepness,
cut-off position, peak location, maximum firing rate
etc.), and is therefore said to possess many dimensions.
Such data becomes difficult to classify because it is often
not known which of these dimensions are the most im-
portant or, indeed, if only one of them is the most im-
portant. In such a case, some means has to be devised in
order to reduce the dimensions in the data set to a sin-
gle dimension across all the data. This single dimension
can then be used to differentiate between sub-groups
within the overall data set. PCA is a powerful statistical
tool that does precisely this.
The PCA is used as an independent statistical method

for data classification to handle both metric and multi-
variable types of data [21]. In the PCA, the data variables
are largely dependent on one another; in fact, if data
were not correlated then principal components would
not be suitable for data dimension reduction. Barlett’s
Sphericity Test can be used to verify the appropriate
conditions for the data [22], but the details of this test
are beyond the scope of this manuscript.

Introduction to cluster analysis
Data classification is a way of segregating similar types of
data groups into homogenous clusters. Each of these com-
pact data groups contains a number of data-elements with
comparable characteristics. In data classification studies,
two methods are generally used to distinguish the classi-
fied data, namely: Supervised (discriminant analysis) and
Unsupervised (data clustering) classification [23].
Data characterization can be planned as a two-step pro-

cedure consisting of the combination of PCA for reduction
of data dimensions followed by Cluster Analysis for group-
ing similar types of data objects. This technique has been
widely used in several different types of applications in a
diverse range of scientific fields including in crime analysis
[24], in finding the relationship between retention parame-
ters and physiochemical parameters of barbiturates [25], in
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chemo-metric methods in characterizing steel alloy sam-
ples [26], in drug design [27], in isolating single unit activ-
ities for data acquisition [28], and in microarray based gene
identification [29,30]. This combined technique has been
reviewed by [31] for several clustering algorithms, and they
have emphasized the importance of applying PCA prior to
Cluster Analysis for high dimensional data.

Results
In this section, we used a three-step analytical data clas-
sification process to produce the results, and these steps
are: (1) data normalization, (2) data dimension reduction
and (3) cluster analysis, as all shown in Figure 1.

Data normalization: results
In general terms, normalization is simply signal intensity
divided by a reference value, and serves to reduce system-
atic errors in data variables [32]. Data normalization also
maximizes variance [22], which is especially important be-
fore applying the data dimension reduction technique for
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data is unknown, we chose to test seven different tech-
niques against our library of nine ideal ILD function var-
iants. These seven data-normalization techniques have
been widely used in many different applications but also
in similar types (multivariate) of data. These are namely
data normalization by mean correction, by a maximum
value, by each vector’s maximum value, by each vector’s
standard deviation, data standardization, Logarithmic
normalization and, unit total probability mass (UTPM)
as detailed in [33].
We applied these seven normalization techniques to the
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tabulated in the Table 1 along with the quantitative conclu-
sion of the analysis using each normalization technique. It
is evident that the best method for normalization was the
UTPM data normalization technique. The data normalized
by the UTPM function perfectly preserves the shapes of
raw-data while it scales the number of spike counts down
by ~%90. Hence there are not many differences observed
between this normalized data (Figure 2B) and the raw data
(Figure 2A). This normalization technique was therefore
applied before exploring the ILD data with PCA and Clus-
ter Analysis.

PCA result
PCA for ILD data
The normalization test bench analyses detailed above
showed that the UTPM data normalization technique
appeared to be the most suitable normalization tech-
nique to reduce the variance in our electrophysiological
data. Nevertheless in the PCA analyses, we conducted
PCA on all seven normalization techniques to determine
the number of principal components needed to account
for the variance in data normalized with each of these
normalization techniques (Figure 3), as this is an issue
that is critical for data classification below. The results
are summarized in Figure 3 which presents, for each
normalization data type the number of significant princi-
pal components together with the variance explained by
those principal components, as shown by the percentage
data and the Scree-plot in the figure.
Figure 3 PCA confirms that the UTPM data norma-

lization is among the normalization techniques that can
be represented by “sufficiently” few principal compo-
nents (Figures 3A, C, E, G versus Figure 3B, D, F, H). It
was not the normalization technique that needed the lowest
number of principal components: for the normalization tech-
nique using division by each vector’s standard deviation, the
Table 1 The nine prototypical ILD functions

Seven data normalization methods
The nine protot

(A) (B) (C)

(1) Vn (i, j) = Xn(i, j) − μn -46/49 -67/68 -69/48

(2) Vn (i, j) = Xn(i, j)/max{max{Xn(i, j)}} 0.01/1 0.01/1 0.01/1

(3) Vn (i, j) = Xn(i, j)/max{Xn(i, j)} 0.01/1 0.01/1 0.01/1

(4) Vn (i, j) = Xn(i, j)/σn 0.04/2 0.02/2 0.04/2

(5) Vn (i, j) = log2(Xn(i, j)) − log2(μn) -4.6/1 -6/1.7 -5.3/1

(6) Vn (i, j) = Xn i;jð Þ
∑nXn ⋅μn 0.1/7 0.1/7 0.08/7

(7) Vn (i, j) = Xn i;jð Þ−μn
σn

-1.1/1 -1.1/1 -1.8/1

Where, the number of raw and number of columns for the matrix form of normaliz
number of columns and “n” number of ILD patterns. These nine prototypical ILD fu
varying position of cut-off, (C) Sigmoidals w/varying steepness of the slope, (D) Pea
Peaked w/ varying steepness of the slope and position of cut off, (G) Peaked w/ un
and (I) Intensive w/ varying number of spike counts. The seven data normalization
maximum value, (4) Standard deviation, (5) Logarithmic, (6) Unit total probability m
methods (with the equations) were applied to nine (from “A” to “I”) prototypical ILD
(four vectors)/ maximum of maxima (four vectors) values were all shown in spike co
first principal component (PC1) was sufficient to explain
96.77% of the variance (Figure 3E). For three other
normalization techniques (which included the UTPM data
normalization technique), the first three principal compo-
nents (PC1, PC2, and PC3) were needed to account for a
significant amount of the variance and explained 84.44%,
10.14% and 3.03% of the variance respectively (Figures 3A,
C and G). The remaining four normalization techniques
(Figure 3B, D, H and F) required more than three principal
components to represent the variance in the data.
Although the technique of data normalization by each

vector’s standard deviation was the most parsimonious in
the sense that the PCA can be represented by a single prin-
cipal component, this normalization technique was not
used for our data. Our normalization test-bench had
shown (see Table 1) that this normalization technique
when applied to our ILD data did not markedly affect the
variance in the neuronal spike counts across the ILD func-
tions. Note that this also illustrates the importance of
conducting the normalization work-test-bench exercise.

Result: Finding the right number of principal components
Selection of the correct number of principal components is
important for reducing data dimensionality in PCA. The
selection of the number of principal components is not an
arbitrary task, despite the fact that it is general practice to
select the very first few principal components, often only
the first two. The first principal component (PC1) is the
projection of the given points and it has the maximum
variance among all possible linear coordinates. The second
Principal Component (PC2) has maximum variance along
an axis orthogonal to the first principal component [34]. In
usual practice with two-dimensional PCA, the first two
principal components allow efficient visual representation
of data and there are certainly some specific examples
where a small number of principal components appear
ypical ILD functions (min: 0.0 and max: 100, with ±6 %)

(D) (E) (F) (G) (H) (I)

-37/59 -23/73 -43/71 -64/60 -42/46 -5.7/8

0.01/1 0.01/1 0.01/1 0.01/1 0.01/1 0.01/1

0.01/1 0.01/1 0.01/1 0.01/1 0.02/1 0.24/1

0.06/2 0.04/3 0.03/3 0.02/2 0.1/23 0.6/51

-4/1.3 -4.3/2 -4.6/2 -4.8/1 -4.4/1 -1/0.7

0.09/7 0.08/7 0.09/7 0.09/7 0.23/7 0.1/7.

-1/1.7 -0.7/2 -1.3/2 -1.5/1 -1.8/1 -1.4/1

ed “Vn” and raw data “Xn” are both comprise same “i” number of raw, “j”
nctions are: (A) Sigmoidals w/varying # of spike counts, (B) Sigmoidals w/
ked w/ varying # of spike counts, (E) Peaked w/ varying position of cut-off, (F)
ilateral transition to Sigmoidal, (H) Peaked w/ bilateral transition to Intensive,
methods are: (1) Mean correction, (2) Overall maximum value, (3) Each vector
ass, and (7) Data standardization. In addition, seven data normalization
functions. The result was presented in this table with the minimum of minima
unts.



Figure 2 The raw and normalized data compared. The raw as unprocessed data consists of 208 vectors, and each vector (panels) has got
varying number of spike counts between zero and 188 for 13 ILD levels from −30 dB to +30 dB with the increment of 5 dB (A), and (Additional
file 1). The normalized data by the UTPM function perfectly preserves the shapes of raw-data while scales the number of spike counts down by %
92.38 (B), Table 1. Therefore, there is not much differences observed between normalized data in (B) and raw data in (A).
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appropriate to visualize cluttered data distribution. These
include the linear combination of gene expression levels on
the first three principal components represented in a three-
dimensional plot [32], or rotating three-dimensional Princi-
pal Components representation for the analysis of tumor
karyotypes in [35] or in three-dimensional object recog-
nition application [36], or first two principal components
utilized in the neural activity data analysis for the data
classification [28]. Thus the PCA technique offers the
least information loss when the first few principal
components can account for the greatest variance in the
data [37].
It must also be noted that if a large number of principal

components is needed to represent a data set, then data-
normalization is not efficiently applied [38]. This was also
observed for our data with several of the normalization
techniques we tested (see Figures 3B, D, F and H).
Despite all these advantages of arbitrarily restricting

PCA outcomes to the first few principal components, a
more efficient and principled approach is to apply some
decision process to the selection of the appropriate
number of principal components. This can be applied to
our data to decide the number of principal components
to be used [22]. Similar “decision-process” test proce-
dures for determining the number of principal compo-
nents to be used have been discussed in other contexts
by [21,39] and we list here one set of decision rules that
can be applied:

(i) The Scree-plot gives Eigenvalues versus number of
principal components. The point of change (the
elbow of the curvature) in the figures (Figure 3),
which distinguishes the number of principal
components, is the highest percentage to be
retained.

(ii)Kaiser’s rule retains all components with
Eigenvalues greater than one [40], and is a
way of measuring the common variance of
variables.

(iii)Horn’s procedure is similar to Kaiser’s Rule; it
gives fewer principal components than would
Kaiser’s Rule.



Figure 3 The Scree-plot used for determining the number of principal components. The Scree-plot (the lines above the bar plots) and variance
explained by the percentage bar plots, are both used for the number of principal component selection towards PCA for seven normalization techniques.
Raw (A) and seven different normalized data (B-H) all applied for PCA. In a result, the variances information of each set of principal components (PC1, PC2,
PC3… and PC13) is extracted from the PCA to show the significance. Either higher variance values of principal components, or prior to bending point
“elbow” in the Scree-plot, they both indicate necessary number of principal component usage for the reduced data dimension representation.

Table 2 Thirteen principal components result

PC1: 84.447% PC2: 10.149% PC3: 3.033% ➩ ∑ = 97.63 %

PC4: 0.846% PC5: 0.681% PC6: 0.249% ➩ ∑ = 1.776 %

PC7: 0.188% PC8: 0.122% PC9: 0.087% ➩ ∑ = 0.397 %

PC10: 0.060% PC11: 0.055% PC12: 0.036% ➩ ∑ = 0.151 %

PC13: 0.033% ➩ ∑ = 0.033 %

These are the total variances explained by the percentage for each principal
component of the UTPM-normalized data. Total of 13 principal components (PC1,
PC2, PC3, PC4, … PC13) is produced as an outcome of the PCA for our each
data-column representation. However, reduced data dimension is the way of
selecting the highest variances of principal components among them, higher the
value, which determines the most likely principal component, needs to be taken.
In this instance, first three principal components (total of 97.63%) are good
enough to represent the entire data selected due to the highest variances among
others (total of 2.357% = 1.776%+ 0.397%+ 0.151%+ 0.033%).
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(iv) Explained variance is a way of looking for the
variance explained by the first few principal
components. This may be a sufficient way to decide
whether more principal components are required.

We used both the Scree-plot and the total-variance to se-
lect the number of principal components for our data. The
PCA result for data treated with our preferred normalization
method, the UTPM method, is given as a percentage of
principal components’ variances using Equation 2, and is
represented visually in Figure 3G and values tabulated in
Table 2. The data show that for ILD data normalized by this
method, the first three principal components appear to ac-
count for the greatest amount of variance.
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Using PCA to represent the data in a reduced
dimensionality form
These first three principal components accounted for
97.629% of the total variances (Table 2). The other prin-
cipal components (from PC4 through PC13) were suffi-
ciently low that they could be discarded. Thus the first
three principal components can be treated as the new,
reduced dimension, form of the ILD data.
The effects of pairwise combination of the first three

principal components in two-dimensional projections,
namely PC1 vs. PC2, PC1 vs. PC3 and PC2 vs. PC3, are
shown in Figures 4B-D. In our three two-dimensional
principal component projections, the coefficients are
spread widely, (Figures 4B-D), being:

(i) −6 ≤ PC1 (first principal component) ≤ +39
(ii) −12 ≤ PC2 (second principal component) ≤ +12
(iii) −6 ≤ PC3 (third principal component) ≤ +7

The values of the first three principal components
were projected onto the three axes of a three-
Figure 4 First three principal components are depicted in 3D. The sele
(Figure 3G), and expressed for 208 normalized data (circles) in three-dimen
two-dimensional: First and second principal components (B), first and third
(D). All zero origins are marked “⊗” for a reference point with the line axes
dimensional plot in Figure 4A. However, despite ac-
counting for a large part of the variance in the ILD data,
the reduced dimension data representation with three
principal components was still not sufficient to distin-
guish the number of classified data. To address this
issue, we turned to the third step of our process, Cluster
Analysis, to classify the data.

Cluster analysis result
For Cluster Analysis, the application of Cophenetic Correl-
ation Coefficient (CCC) brought us two suitable algorithms
(Cosine pairwise-distance and Ward linkage) as mentioned
in Table 3. The suitability of the Ward linkage algorithm
for our data is supported by the idea that clusters of multi-
variate observations are expected to be in an approximately
elliptical form [41] and Figure 4 shows that our data distri-
bution is indeed distributed in an elliptical form.
Using these two algorithms for the Cluster Analysis led

us to investigate the Inconsistency Coefficient, Figure 5.
From the Inconsistency Coefficient, we found out the
ction of first three principal components is decided by the Scree-plot
sional plot, (A). These transformed values are viewed by pairs in
principal components (C), and second and third components in
.



Table 3 The assessment of the cluster dissimilarities

Cophenetic correlation Linkage algorithms

Coefficients (CCC) Single Average Complete Ward

Pairwise - distance algorithms

Euclidian 0.69391 0.77691 0.6625 0.57017

Seuclidian 0.75833 0.80679 0.64322 0.48974

Minkowski 0.69391 0.77691 0.6625 0.57017

Mahalanobis 0.75833 0.80679 0.64322 0.48974

Cityblock 0.72678 0.79032 0.57675 0.54419

Cosine 0.34928 0.81656 0.73456 0.83168

CCC measures the cluster dissimilarities. The most suitable algorithms produce
the coefficient which is closer to one “1”. In this case, Ward linkage and
Cosine pairwise-distance algorithms generate a coefficient (0.83168) that is the
closest to one ‘1’ among other coefficients.
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natural segregation between the clusters is realized by a
certain depth value.
Cluster Analysis yielded seven clusters of data, each

containing a number of objects as shown in the dendro-
gram in Figure 6. We then averaged the objects in each
Figure 5 The selection of inconsistency coefficient. The Inconsistency C
Dendrogram) for number of linkage distributions. This distribution become
Coefficient of seven. This value suggests the cut-off point for the Dendrogr
cluster so as to represent the common data characteristics
of each cluster with a mean ILD function for that clus-
ter. Figure 7 shows the generic form of the ILD function
found in each of these seven clusters; the type of ILD
function in each cluster was derived by averaging the
ILD functions (the “objects”) making up each cluster.
The four-prototypical ILD functions generally reported
in the literature (see Figure 8) can easily be perceived
among the seven types of ILD functions shown here.
The three “new” ILD function types found here are
“transition” ILD function and represent the novel find-
ing of significance in this study.
These seven ILD data clusters are also shown in the PCA

transformed-data arrayed in three-dimensional space. We
applied Voronoi analysis (a way of presenting clustered data
points by connecting them) to the data arrayed in 3-d PCA
space (i.e., using only the first three principal components
accounting for maximum variances) to generate clusters
separated by clear borders, as shown in Figure 9. The loca-
tion of these seven clustered Voronoi diagrams in the rep-
resentation of our data by PCA linear transformation show
oefficient varies by the number of clusters (as a depth value in
s in more compact form around the maximum value of Inconsistency
am or the number of cluster selection.



Figure 6 Seven clustered data represented by the Dendrogram. This Dendrogram is extracted from Figure 12 with the cut-off point of
seven. The homogenous distribution of seven clustered data emphasized by their number of objects (bold parenthesized) for each cluster, i.e.
Cluster-4 contains 25 similar ILD functions, which are also close relative of Cluster-6, which consists of 11 similar ILD functions.
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a very satisfying outcome: that the ILD functions recorded
electrophysiologically can be arrayed in a continuum from
sigmoidal ILD functions to peak ILD functions to, finally,
insensitive (flat) ILD functions. This can be seen in the
organization of Figure 9 from Cluster-1 to Cluster-7 in a
clock-wise rotation format. As evident, the average value of
Cluster-3 data is the sigmoidal ILD function, Cluster-5 data
is the peak ILD function and Cluster-7 data is the insensi-
tive (flat) type of ILD function. The averages of the other
clustered data functions show nice transitions between
those ILD functions for Cluster-3, Cluster-5 and Cluster-7.

Discussion
Data normalization conclusion and discussion
We developed prototypical ILD functions to test several
normalization techniques. This type of test bench was used
for the first time in this field to investigate appropriate
normalization techniques. This testing showed that the best
method for normalization of ILD functions was the UTPM
normalization method.
Generally, in data pre-processing, the normalization

procedure is selected to be specific for the application
under study, even if it is necessary to improvise by slight
adaptation of existing normalization techniques (e.g.,
multiplication of the mean value of data for our UTPM
type of normalization technique for each ILD function). It
is true that we did not test all possible normalization
methods, e.g., other data normalization methods which
are variants of existing ones, such as dividing by a sum of
all signals or by the standard error signals after correcting
mean values [19]. We also recognize that slight variations
of some of the methods used here could give a
normalization procedure that would result in a non-linear
feature for the data [17]. Finally, in statistics it is a com-
mon practice to devise new normalization technique, as
has been used to design new normalization technique for
microarray data analysis [13], or sometimes different
datasets are applied to find the normalization technique
that most reduces variations by a comparison with the ori-
ginal data set [12].
We also note that in addition to visually comparing the

raw data against the result of applying a selected norma-
lization technique to the data, other methods are also
available. Selection of the correct normalization technique
can be quantified by examining the quality of the nor-
malization technique and this can be estimated by; (a) cal-
culating the sum of squares of differences between the
model and normalization histogram, (b) using Pearson



Figure 7 Seven types of ILD functions observed. Typical four ideal ILD functions (Figure 8) can easily be perceived among these seven type of
ILD functions here; what makes the another three “transitional” cluster findings is significantly important in this study. Type of ILD functions are
derived from each clustered data by averaging their objects. All maximum numbers of mean spike counts is scaled up to 45 for a comparison
reason. For example, The Cluster-4 shows peak type ILD functions by averaging its (25) objects where the Cluster-6 also shows arisen-peak ILD
functions by averaging its (11) objects. These numbers of objects are also shown in Figure 9.
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correlation coefficients between the values before and
after normalization of data [42]. Such a quantification
method for normalization selection is worth investigation,
but is beyond the scope of this study.
Despite these constraints, we believe that we have

identified an appropriate normalization technique that can
be successfully applied to electrophysiologically-recorded
neuronal sensitivity functions for ILD, the major binaural
cue for azimuthal location of high-frequency sounds.

PCA discussion
There are several data dimension reduction techniques
but to our knowledge, none of them have been applied to
the study of ILD sensitivity functions. It is therefore not
possible to evaluate the other types of data reduction tech-
niques against the PCA we applied for data reduction of
our ILD functions. Instead of comparing other data reduc-
tion techniques to PCA usage for the ILD data, we will
therefore briefly explain the other types of data reductions
techniques and their suitability for use for analysis of ILD
sensitivity data.
The PCA is a good linear data analysis tool despite

some limitations for data classification studies. There
have been some strategies applied to overcome the
shortcomings of PCA by implementing higher-order
statistics, such as in nonlinear PCA. These include tech-
niques such as Independent Component Analysis [43,44],
an extension of PCA; Vector Quantization PCA [45] or a
Kernel PCA, a non-linear generalization of PCA cited in
[46]. There are even a few new dimensionality reduction
procedures such as Linear Discriminate Analysis [47], or a
combination of PCA and Discriminate Analysis as an



Figure 8 The four ILD functions. Typical four ideal ILD functions (A), namely they are, Sigmoidal (EI), Sigmoidal (IE), Peak, and Insensitive. These
four ILD type representations are slightly perturbed to give more realistic aspect (B). Four ILD patterns are described in numbers of spike counts
“#sp.c.” (spikes/ stimulus) which varied between maxima of ‘m’ units (m ∈ ℵ) and minima of ‘0’ zero unit, within -30dB to +30dB interaural
level differences.
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efficient dimension reduction technique [34] or more spe-
cific applications such as in a PCA mixture model
discussed in [48].
In summary, although PCA is limited for use for

nonlinear data applications, it is actually helpful to discrim-
inate the linear variations of data from the nonlinear ones.

Cluster analysis discussion
Cluster Analysis is a broad area in the field of data clas-
sification and many clustering algorithms have been de-
veloped for many classification applications in diverse
scientific areas. These algorithms have some advantages
and disadvantages. The following paragraphs will discuss
a few Cluster Analysis algorithms and the data to which
these have been applied for categorization. This scheme
will not tell us which algorithm would be better than the
other but may help divulge which algorithm is more ap-
plicable to a specific problem since clustering algorithms
are application orientated statistical tools.

What is important in cluster analysis?
Cluster Analysis is achieved by a specific algorithm
designed for a specific application [23]. There have been
over 100 clustering algorithms available for Cluster Ana-
lysis [49]. Unfortunately, there is no generic Cluster
Analysis algorithm that can be used to give the best so-
lution for all types of data [50]. It is also not practical to
design a clustering algorithm for each new application.
Thus it is best to choose an algorithm that has been
used for a similar type of application and is also a less
time-consuming approach, and is a process that is widely
accepted in the field of study of Cluster Analysis. In the



Figure 9 The Voronoi diagram for seven clustered data. Each cluster (from Cluster-1 to Cluster-7) holds number of objects (bracketed, ‘n’) and
Seven ILD functions ensemble by the averaged for each clustered-data, these are; ILD-1= mean(Cluster-1), ILD-2= mean(Cluster-2) … ILD-7= mean
(Cluster-7), from Figure 7. These seven ILD functions are positioned around the Voronoi diagram of clustered data to show the relationship between
clustered data and its representation of the ILD function. Seven clustered-data and contained ‘n’ number of objects (‘n’/208) are viewed; Cluster-1
(61/208), Cluster-2 (19/208), Cluster-3 (36/208), Cluster-4 (25/208), Cluster-5 (21/208), Cluster-6 (11/208), Cluster-7 (35/208).
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end, three things define the importance of Cluster Analysis:
(a) Speed, (b) reliability and (c) consistency [49].

Conclusions
In this study we found that the UTPM normalization
method was the best data normalization method applic-
able for ILD sensitivity functions. PCA was used to reduce
the dimension of the large number of multivariable data
that made up the 208 ILD functions we recorded from the
midbrain auditory nucleus, the ICc, of the rat. The trans-
formations used variances of highly correlated variables,
and it was found that the first three principal components
(i.e., variances) were good enough to represent our nor-
malized data. The variances are explained in terms of
percentage accounted for, as well as indicated in the
Scree-plot and both showed that more than 84% of the
transformed data are accounted for by the first three
principal components (Total variance explained > 97%). In
the process our transformed data were converted from a
13x208 matrix into a form of 3x208 matrix.
Hierarchical Cluster Analysis with the agglomerative

technique was used to determine the number of clusters
of homogenous data objects in our data. For this analysis,
we combined visual and automated Cluster Analysis of
the full lot of ILD functions we investigated. We then ap-
plied common dendrogram and data cluster techniques
that were available at MATLAB version 6.5, Statistic
Toolbox version 4.1.
Several pairwise-distance and linkage algorithms

were applied to our 3x208 transformed data. The best
combination of these was determined as the one gen-
erating the highest CCC and this was the Cosine
pairwise-distance algorithm combined with the Ward
linkage algorithm. This pair of algorithms was used to
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plot dendrograms to visually present the distribution of
the clusters of homogenous data.
To determine the cut-off for the number of clusters

the Inconsistency Coefficient from the linkage algo-
rithm application was applied to determine a depth
value of three, and resulting in a maximum of seven
cluster types. Averages were determined from all ILD
functions in each of the seven clustered data (from vis-
ual and automated analysis) to identify the prototypical
ILD function in that cluster. Then, statistical data ana-
lysis methods were used to differentiate between the
ILD functions. The result showed seven different proto-
typical ILD functions, obtained from the three broad
categories of ILD functions, namely peak, sigmoidal
(two types “EI” and “IE” of them) and insensitive ILD
functions, as in Figure 8. More than 80% of the electro-
physiological data were of the peak and sigmoidal type
of ILD functions. These analyses were completely con-
gruent with the Cluster Analysis and the seven ILD
function types from statistical analyses corresponded
very well with the seven ILD function types determined
by Cluster Analysis.
In addition:

(i) Cluster Analysis was used to determine the number
of data groups after PCA.

(ii) Cluster Analysis is a way of segregating data into
meaningful subgroups or clusters.

(iii) Clustered data can be obtained in two ways,
supervised and unsupervised data clustering.

(iv) There are several clustering algorithms assist for
several different types of data clustering methods
(K-Means, Hierarchical, Latent Class Analysis, Latent
Profile Analysis, and Factor Mixture Model).
Hierarchical and Agglomerative types of Cluster
Analysis are the most common techniques that
applied, where the number of sub-groups and their
contents (number of data to be formed) are unknown.

(v) The hierarchical agglomerative technique is
commonly used and is the most suited to our data.
This method involves four steps [51]:

a) Sequentially merge the most similar cases in the

N×N similarity matrix, where "N" is the number
of objects.

b) This visual representation of the sequence of
merged clusters can be illustrated in a tree type
structure called a "dendrogram".

c) “N-1” steps are required as numbered of
clustered nodes.

d) All cases are merged into one group.
(vi) Once the number of clusters and their number of

objects are defined, then the result can either be
illustrated or tabulated to finalize the data
classification solution.
Methods
Data normalization method
Generating prototypical ILD functions
Our own database and an extensive literature review
showed that there are four prototypical ILD functions in
[different] neurons at all levels of the brain beyond
the brainstem [52-55]. These four prototypical functions
(Figure 8) consist of two Sigmoid response functions
where neuronal responses vary in a sigmoid function with
variations in ILDs but with the plateau of responses in one
ILD range (favouring one ear) or the other (favouring the
other ear), a Peaked response function where neuronal re-
sponses are peaked at some ILD that would arise from
frontal space, and Insensitive response function where
neuronal responses vary little with ILDs. Each of these
four broad response categories encompasses functions
that can vary in metrics defining the features of that
ILD function type, e.g. position of peak or the slope
along ILD axis, the steepness of the slope along ILD
axis – all of which are features that have been vari-
ously discussed to be defining information-bearing el-
ements for deriving azimuthal location of a sound
source [56].
In the simulated ILD sensitivity functions, neuronal re-

sponses were represented on a scale from ‘0’ to ‘100’
(“m”, maximum response count). This normalized scale
allowed us to simulate ILD functions in absolute values.
These minimum ‘0’ and maximum ‘100’ values (spikes/
stimulus) are also selected for all normalization test
bench to give a good comparison in the result.
To produce more realistic looking ILD functions we

applied a small and statistically-insignificant perturb-
ation to deform the shape of the nine ILD functions,
[33]. All points in the data groups (viz., numbers of
spike counts) were arbitrarily perturbed within ± 6% of
the original values. The ± 6% perturbation range was
determined from initial visual inspection of different
test ranges which showed that perturbation by < 6%
made the ILD functions still look too ideal and perturb-
ation by > 6% made it too easy to confuse different ILD
patterns. For example, a 7% increase in one part (and
7% decrease in another part) of the insensitive ILD
function (v#1s of Figure 10A and I) made it look like a
Sigmoidal ILD function.
Data perturbation was carried out in three steps:

(i) First generate 13 random numbers varying
between −0.06 and +0.06 for every unit (i.e. ±6
for the maximum of 100 spike counts, viz., 6%
variation),

(ii) then add the 13 random numbers arbitrarily to
each ILD pattern (each ILD pattern contains 13
numbers and each number presents the number of
spike counts), and



Figure 10 The simulation of nine possible ILD functions. Nine possible ILD functions are generated from four typical ILD sensitive function
variations (Figure 8B) These are; Sigmoidals with varying number of spike count (# sp.c.) spikes/ stimulus (A), position of the cut-off (B), the
steepness of the slope (C), and four Peaked with varying number of spikes/stimulus (D), the cut-off (E), the cut-off & slope (F), and Peaked with
unilateral transition to Sigmoidal (G), and Peaked with bilateral transition to Insensitive (H), and four Insensitive with varying the number of spike
count spikes/ stimulus (I).
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(iii) finally, monitor the previous steps to verify
that perturbed data validly fit in the range from
minimum to maximum (e.g., log normalization
may produce errors for some values if divided
by zero).The ±6% perturbation was applied to
the nine ILD functions to produce the final test
bench.

Data dimension reduction method: PCA
The PCA algorithm is based on three-step procedure.
The objective of this algorithm is to find the principal
components with the highest variances, Equation 1.

STEP 1: Finding a covariance matrix from the ILD
patterns of an input matrix,
STEP 2: Using covariance matrix to find eigenvectors, and
STEP 3: Using eigenvectors to find principal components.
This three-step procedure is formalized in Equation 1,
[22,46,57-59].

A ¼ 1
N

XN

k¼1

xk − μð ÞT⋅ xk − μð Þ
A⋅υ ¼ λ⋅υ⇒ A − λ⋅Ið Þ⋅υ ¼ 0
y ¼ υT⋅x

ð1Þ

The PCA algorithm, where vector mean: “μ”, number
of sample: “N”, largest Eigenvalues (covariance matrix)
of “A”: “λ”, eigenvectors “υ”, principal components: “y”
and set of centered input vectors: “x”, and the unit
matrix: “I”.
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The most common usage of PCA is utilizing similar
type of data groups that can be observed in a two or
more dimensional space. These dimensional space axes
are named as principal components. The number of
principal components can be expressed as a percentage
of the highest variances in Equation 2.

principal components %ð Þ¼ υ
100X

υ
ð2Þ

where, total variability can be explained by each principal
component in percentage, with the highest variances “υ”.
In practice, ILD sensitivity functions are statistically

multivariate data, which can be exhibited as a single
matrix. The dimension of this matrix form can be reduced
with the aid of PCA. The PCA actually reconstructs the
data on an orthogonal basis such that the columns repre-
sent the principal components of the projected values.
The correlation between the first column and the other
column represents the variance. The values of variances
are greater between the first column and other columns
and the variance values are reduced between the second
column and other columns and then further reduced be-
tween the third column and other column, and so on. It is
therefore an elegant way to represent the multivariable
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Figure 11 Cophenetic Correlation Coefficient (CCC) utilization for den
combination of 24 different (six pairwise-distance and four linkage) algorithms
optimization criteria using CCCs applied for 24 combined algorithms are also
methods and CCC application operated from MATLAB version 6.5.
data with only few variables, which corresponds to just the
first few columns.

Cluster analysis method
Figure 11 shows the CCC for the Cluster Analysis. The
CCCs show that there are similar changes in the six link-
age algorithms and four pair-group pairwise-distance al-
gorithms (see light-blue, dark-blue, purple and pink
colored bars). As a measure of the distortion between
clusters, using CCC offers suitable algorithms for both
linkage and pairwise-distance algorithms. The CCCs are
tabulated in Table 3 where the maximum value indicates
the best selection of the pairwise-distance and linkage al-
gorithms combinations for the dendrogram (below).

Dendrogram
The representation of clustering derived from the Clus-
ter Analysis can be visualized in a tree-shaped graphical
representation termed a dendrogram [51]. The vertical
axes represent the clustered data groups in pairwise-
distances, and horizontal axes represent the predefined
number of clusters.
The cluster organization is depicted in the dendrogram

in Figure 12 where Cosine pairwise-distance and Ward
linkage algorithms are used (other algorithms were also
tested as the worst case analysis but, because the data-
mahalanobis cityblock cosine

ance Algorithms

ine pairwise-distance & ward linkage)

oefficient for suitable algorithms

single linkage
average linkage
complete linkage
ward linkage

drogram. The CCC determines suitable algorithms for dendrogram the
used to find most two suitable algorithms for the dendrogram plot. The
shown in Table 3. The algorithms used for pairwise-distance and linkage



Figure 12 Dendrogram for cluster composition. Using CCC as a dissimilarity cluster measurement to select Cosine pairwise-distance and Ward
linkage algorithms for cluster composition in the Dendrogram. The horizontal axis represents the all observation of subjects with 207 (208–1)
numbers of clustered nodes; vertical axis represents the distance between the observed subjects in a logarithmic scale from 10-5 to 101.
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nodes distribution were not homogenously spaced, these
results are not presented). It shows all 207 possible cluster
connections (calculated from the total number of data, 208
minus one). In this figure, all clusters are shown in a linear
form and the distances between the observations in a loga-
rithmic scale. Clearly the number of clusters and the selec-
tion of threshold depend on the line as a cut-off point.
From the visualization the cut point of seven clusters was
arbitrarily selected. However, it should be noted that the
selection of a cut point between clusters can be automated
by using the Inconsistency Coefficient (Figure 5).
The application of the Inconsistency Coefficient with

different number of levels (depth) of the cluster tree is
shown in Figure 5. This helps to comprehend the clus-
ter tree distribution in the dendrogram, (Figure 12).
The denser the distribution’ more likely that less simi-
lar objects are linked to each other; for example; the
depth of seven (i.e. seven levels of cluster tree) ex-
plains how dissimilar objects are linked to each other,
on the other hand three levels of cluster tree in shows
the objects are began spreading sparsely around the
median value. Note that the median values of Incon-
sistency Coefficients are always the same due to the
fact that the same clustering algorithms (Cosine and
Ward) were used for the linkage and pairwise-distance
distribution and then applied here to these different
numbers of clustering trees.
Materials and method: source of data
In this study, 208 extracellular ILD sensitivity functions
were recorded from the left of ICc (Central nucleus of
the Inferior Colliculus) cells of male rats. Data collection
was carried out in a series of experiments conducted by
the second author prior to this present study. These data
have not been published and formed the data set used
for the present modelling study. Only a brief description
is given of the procedures used for that data collection.

Animal preparation and surgery
Ethics statement
All animal experiments were approved by the Monash
University Department of Animal Ethics Committee
(PHYS/1997/03 and PHYS2000/22) and conducted in ac-
cordance with protocols designed by the National Health
and Medical Research Council of Australia for the ethical
care and welfare of animals under experimentation.

Animal preparation
Adult male Sprague–Dawley and Long-Evans SPF (Spe-
cific Pathogen Free) male rats (weight range, 250 to 450
grams) were obtained from the Monash University Ani-
mal Services for all experiments. Each rat was initially
anesthetized with an intraperitoneal injection of 60mg/
ml pentobarbital sodium (Nembutal; 0.1 millilitres/ 100
grams of body weight). Then Xylaze-Saline solution (0.1
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millilitres of 1:1) was administered intramuscularly as a
muscle relaxant and as an analgesic. Thereafter,
throughout the experiment, hourly doses of 0.1 mil-
lilitres Nembutal and 0.05 millilitres Xylaze-Saline
solutions were injected sub-cutaneously or intra-
peritoneally to keeping the rat in deep anesthesia. Body
temperature was maintained at 37.5±0.5°C by a rectal
probe feedback-controlled electrically heated blanket.
Once deep anaesthesia was established (as evidenced

by the absence of withdrawal reflexes to strong nox-
ious pinching of the forepaw as well as absent palpe-
bral reflexes), the rat was transferred to a sound proof
room and tracheotomized (a cannula surgically inser-
ted into the trachea) to facilitate mechanical ventila-
tion. Artificial ventilation with room air was adjusted
according to the body weight of the rat, with a respira-
tory rate of 80 ~ 90 breaths/minute and a tidal volume
of 3 ~ 4.5 millilitres.
Throughout the experiment, anaesthesia status was

monitored through continuous recording of the electro-
cardiogram (ECG), and electromyogram (EMG) activity
from forearm muscles on an oscilloscope as well as
through a speaker. Depth of anesthesia was also checked
at regular hourly intervals by checking for the presence
of withdrawal reflexes to noxious stimuli by pinching of
the forepaw and the presence of pupillary dilatation.

Electrophysiological recording
Under deep anesthesia a midline incision was made in
the skin from top of the rat's skull then cleared of any
connective tissues to expose the skull. The pinnae
were removed and the ear canals were transected close
to the tympanic membrane. A small hole was drilled in
the skull at a point over the frontal lobes to allow a
metal bar to be affixed by a screw through the bar and
into the skull hole. The screw-metal bar system was
fortified by a dental acrylic. The position of stabilising
metal bar could easily be oriented to give the rat’s head
any desired angle. A second hole, approximately 3 mm
in diameter, was then drilled over the left occipital
lobe of the rat’s skull to allow for an insertion of the
recording electrode which would be advanced through
the overlying cortex to the ICc. Silicone-oil was ap-
plied to the exposed surface of the cortex to prevent it
drying out.
Parylene coated tungsten tip microelectrodes (A-M

Systems, Inc., WA, USA) with impedance of 2 MΩ
were mounted on a micromanipulator mounted on a
remotely-controlled steeping-motor drive assembly on
a series of translators and goniometers, and the micro-
manipulator was controlled electronically from outside
the sound-proof room. The remotely controlled micro-
electrode was placed to contact the left cortical surface
and then advanced through the cortex to the left IC.
Microelectrode penetrations were made into the cortex
around positions ~1.1 mm anterior and ~1.7 mm lat-
eral of lambda.

Data collection
Action potentials recording
The remotely-controlled microelectrode was slowly
advanced from outside the sound proof room in 5~10
micrometer steps through the cortex to locate a well-
isolated cell in the ICc. Identification of the recording locus
in the ICc was facilitated (a) by the observation of the
expected tonotopic organization as the electrode was ad-
vanced through the putative ICc, and (b) the pattern of
short latency robust responses to tone stimuli at different
frequencies and intensities both binaurally and monaurally.
Action Potentials (APs) were recorded only from well-

isolated single cells in ICc, with a signal-to-noise ratio of
at least 4:1 between the well-isolated APs and other ac-
tivity. The output of the microelectrode was first passed
amplifiers (preamplifier with the gain of 10, and ampli-
fier with the gain of 100) to the band-pass filter (cut-off
frequencies from 100 Hz and 10 kHz) then through the
graphic equaliser for shaping the pulse of the APs, and
the APs were also observed by an oscilloscope. These
APs were digitized by a Schmitt trigger based level de-
tection circuit for a real-time recording. The real-time
data with time-stamp information were both saved to
the files on to a Personal Computer. In all recordings,
the AP waveform was monitored continuously online to
ensure recording fidelity and that there was no contam-
ination by activity from other cells.

Acoustic stimuli and determination of the characteristic
frequency of a cell
Acoustic stimuli were generated by a computer controlled
two channel digital synthesiser systems (TDT System II),
which were cascaded with digital attenuators. Outputs
from the digital attenuators were separately routed to
two input channels of HD535 Sennheiser speaker in
homemade couplers. The speakers were connected to two
sound-delivery tubes, which were placed in the rat’s exter-
nal auditory meatus of both ears.
Once a cell was sufficiently well isolated, the characteris-

tic frequency (CF; frequency of greatest sensitivity) and
the threshold at CF were identified from audio-visual cri-
teria with manual control of the tonal stimuli. This was
confirmed by recording responses across a very wide
frequency-intensity matrix using gated tone bursts, shaped
with a 4 ms (milliseconds) rise-fall time, with variable dur-
ation between 50–200 ms depending on the test cells re-
sponse profile. Cells with only onset components were
tested with 50 ms tone bursts, cells with sustained compo-
nents were tested with 100 or 150 ms tone bursts, and
cells with late components were tested with 200 ms tone
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bursts. (Onset component were classed as responses oc-
curring in the first 50 ms of tone burst, Sustained compo-
nents were responses from 100 ~ 150 ms, and Late
components were responses from 200 ms.)

Determining ILD sensitivity functions
Electrophysiological recordings of ILD sensitivity were
obtained from a total of 208 cells from the ICc, (see
Additional file 1). The stimuli were always CF stimuli
gated as described above, with variable duration be-
tween 50–200 ms depending on the test cells response
profile. The duration of each tone was equal to 50 ms
for cells with only onset components, 100 or 150 ms for
cells with sustained components, or 200 ms for cells
with late components.
ILD sensitivity was tested using the Average Binaural

Intensity-constant method [60-62]. In this method the
average binaural level is maintained constant at some
base level and the sound levels in the two ears are sys-
tematically varied around this base level to mimic the
origin of a sound source from different positions around
the head [63]. In this study ILDs varied from being 30
dB louder in one ear (i.e., Ear 1 = ABI +15 dB, Ear 2 =
ABI-15 dB), through 0 dB ILD (both ears = ABI)
through to being 30 dB louder in the other ear (i.e., Ear
1 = ABI-15 dB, Ear 2 = ABI+15 dB), in 5 dB ILD steps.
These ILDs are designated as ranging from +30dB SPL
to -30dB with 5dB intervals, and are calculated by the
difference between contralateral and ipsilateral levels.
Thus, positive ILDs indicate that the sound was louder
in the contralateral ear and negative ILDs indicate that
the sound was louder in the ipsilateral ear. In each
block, the stimuli were alternated so that a larger
contra-lateral intensity was followed by a larger ipsilat-
eral intensity to prevent the cell from fatiguing.
The ABI constant method has been used in similar

studies in different brain regions [60-62]. An alternative
to ABI constant method, excitatory monaural intensity
(EMI) – constant method, has been discussed in the
context of recordings from primary auditory cortex, and
may have some advantages for interpreting peaked ILD
function data but not for non-monotonic functions [64].

Additional file

Additional file 1: The raw data. The matrix formation of an
unprocessed data is based on the Electrophysiological recordings of ILD
sensitivity were obtained from a total of 208 cells from the ICc.
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