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ABSTRACT Here, we report the genome of “Candidatus Carsonella ruddii” strain BC, a
nutritional endosymbiont of the tomato psyllid Bactericera cockerelli. The 173,802-bp ge-
nome contains 198 protein-coding genes, with a G�C content of 14.8%.

Insects in the family Psyllidae are vectors for a number of plant pathogens, making
them agriculturally and economically important (1–3). Because they feed on nutrient

poor phloem sap, psyllids depend on their obligate bacterial endosymbiont “Candida-
tus Carsonella ruddii” as a source of essential amino acids (4). Each species of psyllid
harbors a specific strain of “Ca. Carsonella ruddii,” which is maternally transmitted. The
genomes of “Ca. Carsonella ruddii” strains are highly reduced (158 kb to 174 kb) (4–6),
making them biologically interesting organisms. Here, we present the sequenced
genome of “Ca. Carsonella ruddii” BC, which is associated with the tomato psyllid
Bactericera cockerelli.

Bacteriocytes, specialized insect cells that harbor “Ca. Carsonella,” from 10 tomato
psyllids were dissected and pooled, and DNA was extracted. The extracted DNA was
prepared using the Nextera DNA library preparation kit (Illumina, San Diego, CA) and
sequenced within a 1/4 of a lane on an Illumina HiSeq 2500 (Illumina) using TruSeq SBS
sequencing chemistry (Illumina). Fastq files were generated with the software Casava
1.8.2 (Illumina). The initial assembly and quality trimming were performed using a
customized A5ud pipeline, which was modified from the A5 genome assembly pipeline
(7). Further assembly was done using GapFiller (8) and SEQuel version 1.0.2 (9). Due to
the high content of insect DNA in the sequencing reads, the contigs and scaffolds were
filtered by G�C content and contig lengths. In order to complete the genome assem-
bly, filtered reads and contigs were reassembled into gapped regions using Mimicking
Intelligent Read Assembly (MIRA) version 4.0.2 (10). The remaining gaps were closed
using Sanger sequencing of PCR products. The assembled genome was annotated
using both the Rapid Annotation using Subsystem Technology (RAST) (11) and the
Bacterial Annotation System (BASys) servers (12).

The complete circular genome of “Ca. Carsonella ruddii” BC is 173,802 bp long, with
198 protein-coding genes and a G�C content of 14.8%. Genes involved in essential
amino acid biosynthesis that are present and absent in all other “Ca. Carsonella” strains
sequenced to date have the same pattern of presence and absence in “Ca. Carsonella
ruddii” BC (4, 5, 13). One exception, however, is that pheA, a gene conserved in all
other sequenced “Ca. Carsonella” genomes to date and that is involved in phenyl-
alanine biosynthesis, is missing from “Ca. Carsonella ruddii” BC’s genome. Poten-
tially, a homolog of pheA that is microbe in origin has been horizontally transferred
to Bactericera cockerelli’s genome to complement “Ca. Carsonella ruddii” BC’s
essential amino acid pathways, analogous to mealybug, whitefly, and psyllid obli-
gate symbiont symbioses (13–15). In sum, our genome sequence supports the role
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of “Ca. Carsonella ruddii” BC for the biosynthesis of essential amino acids for its
insect host, Bactericera cockerelli.

Accession number(s). The complete genome sequence of “Ca. Carsonella ruddii”
BC and its annotation are deposited at GenBank, NCBI, under accession number
CP019943.
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