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Lassa fever (LF) is a zoonotic disease that is widespread in West Africa and

involves animal-to-human and human-to-human transmission. Animal-to-

human transmission occurs upon exposure to rodent excreta and secretions,

i.e. urine and saliva, and human-to-human transmission occurs via the

bodily fluids of an infected person. To elucidate the seasonal drivers of LF

epidemics, we employed a mathematical model to analyse the datasets of

human infection, rodent population dynamics and climatological variations

and capture the underlying transmission dynamics. The surveillance-based

incidence data of human cases in Nigeria were explored, and moreover, a

mathematical model was used for describing the transmission dynamics of

LF in rodent populations. While quantifying the case fatality risk and the

rate of exposure of humans to animals, we explicitly estimated the corre-

sponding contact rate of humans with infected rodents, accounting for the

seasonal population dynamics of rodents. Our findings reveal that seasonal

migratory dynamics of rodents play a key role in regulating the cyclical pat-

tern of LF epidemics. The estimated timing of high exposure of humans to

animals coincides with the time shortly after the start of the dry season

and can be associated with the breeding season of rodents in Nigeria.

This article is part of the theme issue ‘Modelling infectious disease out-

breaks in humans, animals and plants: approaches and important themes’.

This issue is linked with the subsequent theme issue ‘Modelling infectious

disease outbreaks in humans, animals and plants: epidemic forecasting

and control’.
1. Introduction
Growing human population, urbanization and global warming increase the

chance of human interaction with wildlife, resulting in elevated risk of zoonotic

diseases. Despite numerous publications assessing the risk factors for viral spil-

lovers, published studies have tended to miss out quantitative estimation of

their frequency and characteristics and causal links among different host

species. In this study, we provide quantitative analysis of external forcing of

infection, as applied to Lassa haemorrhagic fever (LF), a widespread disease

in West Africa. The proposed modelling framework can be further extended

to other diseases with common characteristics and viewed as key in light of

anticipated emergence of a novel infectious disease in the future—the ‘Disease

X’ as it was recently coined by the World Health Organization.

LF is an acute haemorrhagic viral infection, caused by an enveloped, single-

stranded RNA virus of the Arenaviridae family with a clear zoonotic origin

[1–3]. The number of reported cases reaches about a thousand per year includ-

ing a few hundreds of deaths, and one-third of cases experience severe

post-infection complications (e.g. lifetime deafness). For these reasons, LF infec-

tion is recognized as a serious public health concern that necessitates future

research on its pathogenicity and possible prevention.

LF virus was first discovered in 1969, but its presence can be traced back for cen-

turies [4]. Current viral hotspots are focused on West African countries, namely,

Nigeria, Guinea, Benin, Sierra Leone and Liberia. The animal reservoir of the
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virus is Mastomys natalensis, also known as multimammate

mouse, which is a rodent species that is widespread in the

region. Although the main transmission route remains zoonotic,

i.e. animal-to-human, contracting the virus through exposure to

contaminated excreta or secretions from rodents [5], another fre-

quently reported route is human-to-human transmission, via

contact exposure to the virus from the blood or bodily fluids

of an infected person. The latter contributes to approximately

19% of all reported cases and is usually observed during noso-

comial outbreaks [6]. Hence, the overall transmission pattern

is primarily driven by environmental exposure to LF [3] rather

than sustained human-to-human transmission chains, being

different from Ebola virus disease [7]. Given the importance of

the human–animal interface, we anticipate that environmental

factors may be crucial driving forces contributing to the frequent

recurrence of LF outbreaks.

Observed LF incidence exhibits a strong seasonal com-

ponent: the number of reported cases is likely to rise in the

first two to three months of the year, exceeding the baseline

over the rest of the year several-fold. This phenomenon can

be captured by implementing a time-varied probability

of exposure in our model. Two distinct time periods

characterize a low and high risk of exposure to the virus.

Importantly, the model fit allows the probable time

boundaries of each period to be determined.

Published estimates of the case fatality risk (CFR) from LF

of 1–2% have been proposed for previously healthy popu-

lations without underlying comorbidities [8]. However, this

rate varies considerably depending on the context, being for

example 2–5% for hospital-treated cases and increased to

20–60% for laboratory-confirmed cases or during nosocomial

outbreaks [2,9,10]. Because higher estimates of the CFR are

likely due to underreporting and ascertainment bias, we are

able to account for this observational matter and estimate

an underreporting factor. Similarly to our recent work [11],

we assume that fatal cases are certainly reported in the sur-

veillance system throughout the whole year, while less

severe, non-lethal cases are likely to be missed. Such variation

may especially be the case during low-risk periods, when LF

infections are not frequently reported.

The establishment and maintenance of a surveillance

system inevitably face many difficulties in the case of LF

reporting. A clinical diagnosis of LF infection is often challen-

ging owing to the similarities with other common diseases

seen in the region, i.e. malaria or typhoid fever [12,13]. On

average, four out of five cases are asymptomatic [8]. Further-

more, post-mortem examinations to confirm LF infection as

the cause of death are recognized as taboos in some areas

of Nigeria [1]. All of these aforementioned factors contribute

to the limited accuracy and completeness of the passively

reported surveillance data.

Here, we offer a unified epidemiological model that con-

sists of two parts [14]. The first part describes the process of

generating the incidence data in humans. We derived the

risk of exposure to the virus throughout the year. The

second part employs the so-called susceptible–infected–

recovered (SIR) model, which captures the transmission

dynamics of the virus in rodents. Based on existing obser-

vations of rodent populations both in the field and in

laboratory settings [15–17] (see the discussion on the diffi-

culties of collecting data in Nigeria in [18]), we have

captured the seasonality in the numbers of infected rodents.

Using the first and second parts of the model, we also
estimated the relative contact frequency of humans with

infected animals throughout the year.

Our study encompasses the analysis of surveillance data

on LF incidence in humans along with the transmission

dynamics in the rodent reservoir. Using this modelling

framework, we aimed to estimate the impact of environ-

mental factors on the annual fluctuations in the risk of LF

infection in humans. Similar methodological applications

can be performed for other zoonotic diseases that involve

well-identified wildlife animal hosts.
2. Results
First, we estimated two distributions from existing datasets in

humans, i.e. the incubation period and the time from illness

onset to death. We used a published dataset from a nosoco-

mial outbreak in Jos, Nigeria, in 1970 [19], to determine the

best-fit gamma distributions to be a mean of 12.8 days (95%

credible interval (CrI): 10.7–15.0) and a standard deviation

of 4.6 days (CrI: 2.8–6.6) for the incubation period, and a

mean of 13.8 days (CrI: 10.8–17.0) and a standard deviation

of 7.6 days (CrI: 5.0–10.6) for the time from illness onset to

death (electronic supplementary material, appendix A and

figure S1).

By incorporating these estimates into our analysis of the

incidence data (Material and methods section), weekly

exposure rates of humans to LF were estimated. We used a

model that rests on the renewal process of the viral exposure

in humans, accounting for the time delay due to the incu-

bation period and the time from illness onset to death. The

formulation resulted in two Poisson- and binomially distrib-

uted likelihood functions for describing the LF incidence and

mortality, respectively (electronic supplementary material,

appendix B). We identified two distinct periods of a year

which were separately analysed owing to considerably differ-

ent levels of observed transmission activity: (i) a low-risk

period with a weekly exposure rate of 6.4 (CrI: 0–32.5; maxi-

mum-likelihood estimate (MLE): 9.6) lasting from week 9 (26

February to 4 March in 2018, CrI: 5–13) to week 50 (10

December to 16 December in 2018; CrI: 47–52), and (ii) the

rest of the year, characterized by a higher risk of contracting

the virus, with the average weekly exposure rate reaching

24.7 (CrI: 0–111.7; MLE: 38.1), which exceeded the low-risk

period by approximately four times. The CFR was estimated

at 4.9% (CrI: 0–54.4; MLE: 8.9%). If we assume the unbiased

value of the CFR at 2%, the reporting coverage can be esti-

mated to be as low as 40%. The overlaid incidence data and

variations in the parameter estimates are shown in figure 1.

For comparison, an analogous model with a single (constant)

exposure rate yielded a less plausible fit to the data (Akaike

information criterion (AIC) values: 3679.2 for a single- and

2877.2 for a two-period model).

Subsequently, we assessed whether a seasonal increase in

the number of infected rodents can solely explain the increase

in the incidence of LF infections in humans in the high-risk

period. Using the dynamic transmission model for LF infec-

tion in rodents (Material and methods section; electronic

supplementary material, figure S2), the number of infected

animals was predicted to reach its maximal level in the

middle of May, while the minimal level was observed in

December (electronic supplementary material, figure S3).

The LF incidence in humans which is thought to correlate
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Figure 1. Temporal distribution of Lassa fever incidence in Nigeria, 2016 – 2018. (a) Fitted exposure rate as a function of the calendar week in a given year.
(b) Posterior distribution for the time boundaries of high-/low-risk exposure periods. (c,d ) Model fit to the observed data of new cases and fatal cases. Inset
in (d ) shows the expected case fatality risk (CFR). Solid black line indicates the median estimate, whereas light and dark shaded areas in (a,c,d) indicate
95 and 50% credible intervals for posterior estimates, respectively. (Online version in colour.)
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with the LF level of infection in rodents controversially peaks

in the first two to three months of the year. During that

period, the number of infected rodents was smaller than for

the rest of the year. We therefore propose that a factor other

than seasonal fluctuations in the number of infected rodents

may play a role in driving LF seasonal epidemics.

To search for such a factor, we analysed the correlative

power of the LF incidence rates and climatological variables,

such as rainfall, temperature, relative humidity, specific

humidity and precipitable water. We found that only the

rainfall seasonal pattern was significantly correlated with

the seasonal incidence of LF in humans ( p , 0.01, figure 2).

This was also confirmed by the start and end times of the

high/low exposure periods, which approximately coincide

with the start and the end of the rainy season (cf. figure 1b;

electronic supplementary material, figure S4). Therefore, an

event associated with rainfall patterns contributes to the inci-

dence of LF in humans, e.g. this could be the change in

seasons and seasonal migration or a change in the behaviour

of the rodents.

Last, we calculated the relative frequency of contact of

humans with infected rodents using the ratio of the estimated

weekly exposure rate to the density of infected rodents pre-

dicted by our transmission model (figure 3). After assigning

the average frequency of contact in the low-risk exposure

period as 1, we determined that the relative risk of human

exposure was 5.3 times higher on average during the high-

risk exposure period. The maximal value of 6.7 was identified

in the first week of the year.
3. Discussion
This study analysed the surveillance-based incidence data of

LF in Nigeria from 2016 to 2018 and identified two different

(high- and low-)risk periods. The high-risk period spanned

the last month of the year to the second to third month

of the year. The relative risk of acquiring LF infection

during the high-risk period was five times greater than

during the rest of the year. In our search for a possible expla-

nation, we identified that the rainfall pattern was negatively

and highly correlated with LF incidence. The rainfall does

not affect the transmissibility of the virus directly, but it is

noteworthy that rodents migrate to within close proximity

to human settlements to breed and hibernate during the

dry season. This in turn leads to an increase in the contact

rate of humans with rodents, and as a consequence, a

higher probability of acquiring LF infection.

Fichet-Calvet & Rogers [22] previously showed that the

rainfall pattern was the main single abiotic factor contribut-

ing to LF. The migration of rodents was notified as a main

factor in another report [23]. Our findings confirm the impor-

tance of the combined effect of these two factors on the

seasonality of LF epidemics and offer a quantitative esti-

mation of their strength, which has never to our knowledge

been done in the past. When the rainy season ends in Novem-

ber, the breeding season for rodents starts about two months

later. At that time, newly born offspring and scarcity of food

on the ground force mature rodents to approach human-

occupied areas. Consequently, this may lead to a rise in the
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contact frequency between humans and infected rodents.

This high-exposure frequency persists until the rainy season

starts again the following year, at which point the rodents

migrate back to the ground and we observe the subsequent

decline in human cases of LF. These findings highlight the

importance of seasonal ecology of animal hosts in explaining

the seasonality of LF epidemics. Similar findings have been

reported for many other diseases, not only for those of an

epizootic nature, e.g. [24,25], but also for insect-vectored

plant diseases [26]. This points to rather general applicability

of our approach that may frame the spillovers of other patho-

gens with two epizootic transmission routes. An important

achievement of the present study was that we were able to

offer quantitative estimates of the impact of the two risk fac-

tors, rainfall pattern and migration of rodents, on the

exposure probability of humans to LF infection.

This highlights the importance for preventive measures

that aim to contain seasonal epidemics of LF to be specifically

designed: (i) to control rodent populations and reduce the

encounter frequency of rodents and humans, and (ii) to

raise awareness among local residents. This can be envi-

sioned as an eradication campaign, especially in rural areas

with agronomic activities, and in public markets in urban

areas, where rodents are frequently seen. Preventive

measures may also include improved hygiene practices,

hiding food from rodents during the night time, or designing

educational campaigns that raise awareness of LF pathogen-

icity. The implementation of such programmes would be

expected to lead to a decline in LF cases in the near future.

However, we were unable to measure the impact of

awareness of the scale of epidemics using the available

data. Even though occasional peaks in the number of

recorded deaths may be indicative of periods of low aware-

ness, our analysis of seasonal trends only showed that

awareness probably does not involve a strict seasonal com-

ponent. Nevertheless, the effect of awareness on the

reporting of LF incidence may be indirectly evident from

the geographical distribution of LF cases over the last 6

years (electronic supplementary material, figure S5). The geo-

graphical area with newly reported LF cases has expanded in

the last few years, presumably because of better recognition

of the epidemics and improved capability of the surveillance

system.

Several technical limitations of our study must be noted.

First, we did not consider a spatial component in our analysis
which may involve geographical heterogeneity in reporting

rates. Second, we used only the counts of suspected cases

that included both laboratory-confirmed cases and cases that

tested negative. However, the available dataset indicates

that the majority of suspected cases involved specimens that

tested negative. This becomes especially evident in low-risk

exposure periods, and taking this into consideration in our

analysis would further amplify the difference between high-

risk and low-risk periods. Third, we did not account for

temporal changes in the surveillance system and improve-

ments in laboratory facilities for the detection of LF, both of

which have been greatly improved in recent years. Fourth,

we did not distinguish possible variations in population den-

sities of rodents in habiting human houses and farm fields or,

similarly, urban and rural areas.

In summary, we identified and quantified the effect of

two factors that drive the seasonality of LF epidemics in

Nigeria. Combining the fit of the mechanistic model to the

observed counts of LF disease in humans with the predictive

model of the transmission dynamics of LF in rodents, we

quantified the annual change in relative contact frequency

between humans and infected rodents. A high seasonal

amplitude was identified, and our model indicated the first

nine weeks of the season as the high-risk period for

LF transmission.
4. Material and methods
(a) Data collection
Data were routinely collected from the weekly epidemiological

report of the Nigerian Centre for Disease Control (NCDC) for

the period from 2016/week 4 to 2018/week 30. The extracted

counts included newly suspected weekly cases for both posi-

tively and negatively testing specimens, as well as the number

of fatal cases reported per week. For both cases and deaths, the

corresponding week of the report represents the week in which

the illness onset and death events occurred, respectively (i.e.

fatal cases were not reported as a function of the week of illness

onset). We did not use the available data for previous time

periods (2012–2016) owing to irregular reporting and removal
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of reports from an official website of the NCDC. However, we

provide all of the accumulated data as electronic supplementary

material.

To access weekly data on climatological variables (i.e. pre-

cipitation, temperature, relative and specific humidity,

precipitable water), we used publicly available gridded NCEP/

NCAR Reanalysis data [27,28]. The chosen reference point was

set to coordinates 6.758 N 6.258 E, located in Edo state, Nigeria.

Historically, Edo state was characterized by a high prevalence

of LF infection. It was also marked as highly hazardous for LF

transmission owing to an average annual rainfall of 1786 mm

[22]. Additionally, we used monthly data records over a longer

time period (1901–2015) for the same location that were pro-

vided by another source: a publicly available dataset of the

University of East Anglia Climatic Research Unit [29]. While

the former was used for correlative analysis of rainfall patterns

and available incidence data from the last 6 years, the latter

was used only to generate the historical characteristics of rainfall,

as shown in electronic supplementary material, figure S4.
Soc.B
374:20180268
(b) Estimation of the incubation period and the time
from illness onset to death

We fitted the distributions of the incubation period f and the time

from illness onset to death h, which were essential for describing

the epidemiological process, to gamma distributions. The ana-

lysed dataset included the cases and transmission events

during a nosocomial outbreak in the Evangel Hospital in Jos,

Nigeria, in 1970 (fig. 1 in [19]). In total, the number of described

cases was 23 with probable time intervals of exposure, the date of

illness onset and the date of death. To determine the best-fit par-

ameters for both distributions, we applied a Markov chain Monte

Carlo (MCMC) method in a Bayesian framework. The 95% cred-

ible interval (CrI) for each fitted parameter of the two

distributions was determined as the 95% high-density interval

[30].
(c) Epidemiological modelling
First, we accounted for two transmission routes of LF infection,

i.e. the animal-to-human route and the human-to-human trans-

mission route. We specified a total exposure rate in weeks w by

a variable ew. This could be written as the sum of the two

rates: ew ¼ aw þ hw, where aw and hw are weekly exposure rates

via animal-to-human and human-to-human transmission

routes, respectively. An important estimate previously reported

in the literature [6] indicated that ca 19% of all infections are

attributed to the human-to-human transmission route, leading

to the following requirement: hw/(hw þ aw) ¼ r ¼ 0.19. We can

then express the total exposure rate ew solely through the

exposure rate aw such that: ew ¼ aw/(1 2 r). This expression was

used in our framework to avoid a detailed modelling of the

human-to-human transmission route. Owing to limited human-

to-human transmission potential, we focused only on exposure

to the virus through a contaminated environment.

Qualitatively, it has been noted that the incidence of infections

is likely to rise in the first two to three months of each calendar

year. We accounted for this in our model by incorporating seas-

onal variations in the weekly exposure rate awc
as a function of

the calendar week wc (1 � wc � 52). In its simplest form, the

exposure rate awc
was modelled by a two-level step function:

awc
(a+, l1,2) ¼ a�, for l1 � wc � l2,

aþ, otherwise,

�

where l1,2 represents two time boundaries separating a period of

high exposure from a period of low exposure (1 � l1,2 � 52). We

expected that aþ. a2.
Because all records in our dataset counted the weekly num-

bers w beginning from the first record, we assumed a

functional dependence wc ¼ wc(w) in the following formulations.

These assumptions allowed us to define the epidemiological

process in a concise form. Here, two Poisson processes are con-

sidered. First, each newly reported non-fatal case was dealt

with as a result of previous exposure delayed by the length of

the incubation period. This implied a Poisson process with the

expected number of new cases iw at week w to be a result

of the convolution of the exposure rate a and distribution of

the incubation period f, multiplied by the chance of survival

(1 2 q) with q being the risk of death (or CFR):

E(iwju) ¼ (1� q) �
Xw�1

k¼1

aw�k(a+, l1,2)� fk
1� r

,

where u ¼ fa+, q, l1,2g is a set of model parameters.

In a similar manner, we introduced another Poisson process

to describe the reporting of fatal cases. LF deaths result from

exposure to the virus in previous weeks postponed by a probabil-

istically distributed time period between the exposure event and

death. The latter was denoted by g and defined as a convolution

of the incubation period f and the distribution of time from ill-

ness onset to death h. Then the expected number of fatal cases

dw in week w was determined by a convolution of the exposure

rate a and distribution g, multiplied by the risk of death q:

E(dw j u) ¼ q �
Xw�1

k¼1

aw�k(a+, l1,2)� gk

1� r
:

Then, the likelihood function for describing the total number of

reports (i.e. cases plus deaths) was:

Li(u j{iw þ dw}) ¼
Y

w

(E(iw þ dw j u))iwþdw exp (�E(iw þ dw j u))

(iw þ dw)!
,

where fiw þ dwg is a set of all available data records with a given

independently reported incidence that includes both non-fatal

and fatal cases, E(iw þ dw j u) ¼ E(iw j u) þ E(dw j u).

The second likelihood function for describing the number of

deaths was derived from the binomial sampling process:

Ld(uj{iw þ dw, dw}) ¼
Y

w

iw þ dw
dw

� �

� E(dw j u)

E(iw þ dw j u)

� �dw

1� E(dw j u)

E(iw þ dw j u)

� �iw
,

where the terms in the first set of parentheses in the product

denote the binomial coefficient, fdwg; on the left-hand side is a

set of all available data records for weekly counts of deaths.

We first defined the model parameters u by using a Bayesian

approach and performing MCMC iterations. Second, we used the

maximum-likelihood method to obtain point estimates. For

the maximization procedure, we used the total (composite)

likelihood of the form:

LS(u j {iw þ dw, dw}) ¼ Li(u j {iw þ dw}) Ld(u j {iw þ dw, dw}):

The likelihood LS was maximized, respectively, to each

parameter in u by equating its first partial derivatives to zero.

(d) Transmission dynamics of LF infection in rodents
To describe the transmission dynamics of LF infection in rodents,

we used an SIR model (electronic supplementary material, figure

S3 and more details in appendix C). The birth rate of rodents was

defined by a periodic birth pulse function as suggested pre-

viously [31]. We used model parameter estimates previously

derived in another field study on the same rodent species in Tan-

zania [16,32]. To adjust for the differences in climatological

profile between the two countries, we shifted the dynamics
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fitted to the Tanzania data by a time lag equal to the difference

between the starting times of the dry season in the two countries.

Specifically, we defined this time lag by comparing historical

rainfall averages for the time period 1901–2015 (electronic sup-

plementary material, figure S4). We then implemented known

measurements of the LF prevalence in rodents captured in

Nigeria in the dry and rainy seasons separately, and we

accounted for a non-zero probability of vertical transmission of

the virus and its antibodies, as previously observed in rodents

(see [16] for details).

(e) Association of seasonal LF dynamics and
climatological variables

To test for the significance of a causal relationship between the

observed LF incidence and climatological variables, we

employed an empirical dynamic modelling that is based on the

convergent cross-mapping skill [20,21]. This method has pre-

viously been used to demonstrate the causal link between

influenza transmission risk and humidity or temperature. The
LF incidence was tested, searching for the significance of the

association with one of the climatological variables, i.e. time

series versus seasonal surrogates. The threshold of acceptance

was chosen to be 0.01.

Data accessibility. We provide all of the accumulated data as electronic
supplementary material.

Authors’ contributions. Conception of the study: A.R.A. and H.N.; model
formulation: A.R.A., Y.A. and H.N. Data analysis and interpretation:
A.R.A. Drafting the manuscript: A.R.A.; comment on the early ver-
sion of the manuscript: A.R.A., Y.A. and H.N.

Competing interests. We declare that we have no conflict of interest.

Funding. H.N. was financially supported by the JSPS KAKENHI (grant
numbers 16KT0130, 17H04701, 17H05808, 16H06429 and 16K21723),
Japan Agency for Medical Research and Development (JP18fk0108050)
and the Japan Science and Technology Agency (JST) CREST Program
(JPMJCR1413). The funders had no role in study design, data collec-
tion and analysis, preparation of the manuscript or the decision to
publish.

Acknowledgements. We thank Kate Fox, DPhil, from Edanz Group
(www.edanzediting.com/ac) for editing a draft of this manuscript.
B
374:201
References
80268
1. Khan SH et al. 2008 New opportunities for field
research on the pathogenesis and treatment of
Lassa fever. Antiviral Res. 78, 103 – 115. (doi:10.
1016/j.antiviral.2007.11.003)

2. Yun NE, Walker DH. 2012 Pathogenesis of Lassa fever.
Viruses 4, 2031 – 2048. (doi:10.3390/v4102031)

3. Andersen KG et al. 2015 Clinical sequencing
uncovers origins and evolution of Lassa virus. Cell
162, 738 – 750. (doi:10.1016/j.cell.2015.07.020)
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