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Abstract 
The corpus callosum (CC) is the largest set of white matter fibers connecting the two 
hemispheres of the brain. In humans, it is essential for coordinating sensorimotor responses, 
performing associative/executive functions, and representing information in multiple dimensions. 
Understanding which genetic variants underpin corpus callosum morphometry, and their shared 
influence on cortical structure and susceptibility to neuropsychiatric disorders, can provide 
molecular insights into the CC’s role in mediating cortical development and its contribution to 
neuropsychiatric disease. To characterize the morphometry of the midsagittal corpus callosum, 
we developed a publicly available artificial intelligence based tool to extract, parcellate, and 
calculate its total and regional area and thickness. Using the UK Biobank (UKB) and the 
Adolescent Brain Cognitive Development study (ABCD), we extracted measures of midsagittal 
corpus callosum morphometry and performed a genome-wide association study (GWAS) meta-
analysis of European participants (combined N = 46,685). We then examined evidence for 
generalization to the non-European participants of the UKB and ABCD cohorts (combined N = 
7,040). Post-GWAS analyses implicate prenatal intracellular organization and cell growth 
patterns, and high heritability in regions of open chromatin, suggesting transcriptional activity 
regulation in early development. Results suggest programmed cell death mediated by the 
immune system drives the thinning of the posterior body and isthmus. Global and local genetic 
overlap, along with causal genetic liability, between the corpus callosum, cerebral cortex, and 
neuropsychiatric disorders such as attention-deficit/hyperactivity and bipolar disorders were 
identified. These results provide insight into variability of corpus callosum development, its 
genetic influence on the cerebral cortex, and biological mechanisms related to neuropsychiatric 
dysfunction.  
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Introduction 
 

The corpus callosum (CC) is the largest white matter tract in the human brain, facilitating 
higher order functions of the cerebral cortex by allowing the two hemispheres of the brain to 
communicate1,2. This connection is essential for coordinating sensorimotor responses, 
performing associative and executive functions, and representing information in multiple 
dimensions3,4. Most CC fibers connect corresponding left and right cortical regions of the brain, 
with the organization, development of axonal elongation, and myelination of callosal fibers being 
correlated with the rostro-caudal (front-to-back) distribution of functional areas5,6. Regional 
alterations in CC shape are easily assessed with neuroimaging studies, which have found local 
callosal abnormalities in complex neurodevelopmental and neuropsychiatric disorders6–11, such 
as lower anterior volumes in autism12 and lower posterior thickness in bipolar disorder13. Twin 
studies show up to 66% heritability for CC area14,15, and previous single-cohort studies of 
genetic influences on CC volume and its relationship to neuropsychiatric disorders have found 
heritability estimates between 22-39%16,17. Yet, the interplay between genetic variants 
influencing CC morphometry, the cerebral cortex, and associated neuropsychiatric disorders is 
not well understood. 
 

3D magnetic resonance imaging (MRI) provides a non-invasive approach to quantify 
individual variations in brain regions and connections6, including the morphology of the CC, and 
how they are associated with brain-based traits and diseases. The midsagittal section of an 
anatomical brain MRI scan is able to capture the entire rostro-caudal formation of the CC, which 
is almost always in the field of view of 2D clinical and 3D research MRI scans alike. This 2D 
midsagittal representation can be segmented to offer a lower dimensional projection of the 
anatomical intricacies of the CC, allowing for structural measures of CC area and thickness to 
be computed18,19. We developed and validated a fully automated artificial intelligence based CC 
feature extraction tool, Segment, Measure, and AutoQC the midsagittal CC (SMACC), which we 
make publicly available at https://github.com/USC-LoBeS/smacc20.  
 

Using data from the UK Biobank21 (UKB) and Adolescent Brain Cognitive Development22 
(ABCD) studies, here we present results from a genome-wide association study (GWAS) meta-
analysis of total area and mean thickness of the CC derived using SMACC. We also present the 
results for five differentiated areas based on distinguishable projections to (1) prefrontal, 
premotor and supplementary motor, (2) motor, (3) somatosensory, (4) posterior parietal and 
superior temporal, and (5) inferior temporal and occipital cortical brain regions23,24. These 
regions are believed to represent structural-functional coherence6. We performed a GWAS 
meta-analysis using two population-based cohorts, one of adolescents and another of older 
adults, to examine genetic influences on CC area and thickness25,26. The primary analyses were 
in individuals of European ancestry and the same analyses were then repeated using the data 
from non-European participants to assess consistency in the magnitude and direction of effect 
sizes. Downstream post-GWAS analyses investigated the enrichment of genetic association 
signals in tissue types, cell types, brain regions, and biological pathways. We examined the 
genetic overlap at the global and local level, using LD Score regression (LDSC)27 and Local 
Analysis of Variant Association (LAVA)28, respectively, and the causal genetic relationships 
between CC phenotypes, cortical morphometry, and related neuropsychiatric conditions. 
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Results 

Characterization of corpus callosum shape associated loci 
We conducted a GWAS of area and mean thickness of the whole corpus callosum, and 

five regions of the Witelson parcellation scheme (Fig. 1)23,24, using data from participants of 
European ancestry from the UKB (N = 41,979) and ABCD cohorts (N = 4,706). A meta-analysis 
of GWAS summary statistics of all CC derived metrics in UKB and ABCD was performed using 
METAL and the random-metal extension29,30, based on the DerSimonian-Laird random-effects 
model (Methods). To examine the generalizability of single nucleotide polymorphism (SNP) 
effects across ancestries, these same analyses were run using data from non-European 
participants (total N = 7,040). 
 

The GWAS meta-analysis identified 48 independent significant SNPs for total area and 
18 independent SNPs for total mean thickness. Independent significant SNPs were determined 
in FUMA using the default threshold of r2 = 0.6, and genomic loci were determined at r2 = 0.1. 
This identified 28 genomic loci for total cross-sectional area, and 11 genomic loci for total mean 
thickness. All significant loci for total area and mean thickness showed concordance in the 
direction of effect between the two cohorts. There were 5 loci, all in intronic regions, each 
positionally mapped to genes31 that overlapped between area and mean thickness. These 
included IQCJ-SHIP1 (multimolecular complexes of initial axon segments and nodes of Ranvier, 
and calcium mediated responses)32, FIP1L1 (RNA binding and protein kinase activity)33, HBEGF 
(growth factor activity and epidermal growth factor receptor binding)34, CDKN2B-AS1 (involved 
in the NF-κB signaling pathway with diverse roles in the nervous system)35,36, and FAM107B 
(cytoskeletal reorganization in neural cells and cell migration/expansion)37. The genomic locus 
mapped to IQCJ-SHIP1 had a positive effect for total area (rs11717303, effect allele: C, effect 
allele frequency (EAF): 0.689, β = 4.28, s.e. = 0.51, p = 4.54 x 10-17). The same locus showed a 
negative effect for a different SNP on total thickness (rs12632564, effect allele: T, EAF: 0.305, β 
= -0.042, s.e. = 0.006, p = 2.59 x 10-12). The strongest locus for total area (rs7561572, effect 
allele: A, EAF: 0.532, β = -4.13, s.e. = 0.46, p = 1.98 x 10-18) was positionally mapped to the 
STRN gene. The strongest locus for mean thickness (rs4150211, effect allele: A, EAF: 0.265, β 
= -0.05, s.e. = 0.006, p = 8.20 x 10-18) was mapped to the HBEGF gene. 
 
 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2024. ; https://doi.org/10.1101/2024.07.22.603147doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.22.603147
http://creativecommons.org/licenses/by-nd/4.0/


4 of 39

Figure 1: Regions of the midsagittal corpus callosum and associated genomic loci. An ideogram representing
loci that influence total corpus callosum area, its mean thickness, and area and thickness of individual parcellations
determined by the Witelson parcellation scheme in a rostral-caudal gradient (1-5). All loci are significant at the
Bonferroni corrected, experiment-wide threshold of p < 6.13 x 10-9. 
 
Loci for area overlapped between parcellations in a rostral-caudal gradient (1-5), such that:
rs1122688 on the SHTN1 (or KIAA1598) gene (involved in positive regulation of neuron
migration) overlapped between the genu (1) and anterior body (2); rs1268163 near the FOXO3
gene (involved in IL-9 signaling and FOXO-mediated transcription) overlapped between the
posterior body (3) and isthmus (4); and rs11717303 on the IQCJ-SCHIP1 gene overlapped
between the isthmus (4) and splenium (5). This gradient pattern was not observed for mean
thickness. The strongest regional association was observed with splenium area (rs10901814,
effect allele: C, EAF: 0.584, β = -1.69, s.e. = 0.16 p = 2.02 x 10-24) and thickness (rs11245344,
effect allele: T, EAF: 0.570, β = -0.11, s.e. = 0.11, p = 6.28 x 10-22), both on the FAM53B gene.
FAM53B is involved in positive regulation of the canonical Wnt signaling pathway. We observed
a concordance in direction and similar magnitude effect sizes in the analyses within the data
from the non-European participants. Detailed annotations and regional association plots of all
genomic loci, independent significant SNPs and genes are in Supplementary Tables S1-S4
and Extended Data 1. 

SNP heritability and genetic correlation between cohorts 
Moderate to high genetic correlations were seen across CC phenotypes between cohorts, with
rg ranging from 0.54 (s.e. = 0.27) and 0.92 (s.e. = 0.63) for area metrics, and 0.30 (s.e. = 0.16)
and 0.99 (s.e. = 0.69) for thickness metrics. We used the GREML approach implemented in
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GCTA38,39 to estimate SNP heritability (h2
SNP) for each cohort. Within the UKB, heritability values 

ranged for different CC phenotypes from 0.42 - 0.71, with similar results seen in the ABCD 
cohort (Supplementary Tables S5-S8). Total area (UKB h2

SNP = 0.71, s.e. = 0.01; ABCD h2
SNP = 

0.74, s.e. = 0.03) and mean thickness (UKB h2
SNP = 0.60, s.e. = 0.02; ABCD h2

SNP = 0.77, s.e. = 
0.03) showed the highest h2

SNP across both cohorts. LDSC27 h2
SNP estimates from the meta-

analysis ranged between 0.10 (s.e. = 0.01) and 0.18 (s.e. = 0.05) for area, and 0.12 (s.e. = 
0.01) and 0.16 (s.e. = 0.02) for thickness, with the area of the genu showing the highest, and 
area of the splenium showing the lowest h2

SNP estimates. As shown in Supplementary Tables 
S5-S8, all LDSC RG estimates between meta-analyzed CC phenotypes were significant. 

Gene-mapping and gene-set enrichment analyses 
Gene-based association analysis in MAGMA40 identified 30 genes for the total area, and 34 
genes for total mean thickness of the CC, with 5 genes overlapping between area and thickness 
(IQCJ-SCHIP1, IQCJ, BPTF, PADI2, CHIC2). The strongest association seen with area was 
AC007382.1 and the strongest association with mean thickness was HBEGF (Fig. 2A). There 
were between 15 and 31 genes for area, and between 7 and 25 genes for thickness identified 
within regions of the CC. Notably, IQCJ, IQCJ-SCHIP1, and STRN overlapped for all 
parcellations of CC area. AC007382.1 overlapped for four out of five parcellations, and STRN 
and PARP10 overlapped for three out of five parcellations of CC thickness (Fig. 2B, 
Supplementary Tables S1-S4). Enrichment of SNP heritability in 53 functional categories for 
each trait was determined via LDSC41. The majority of enrichment and the strongest effects 
across parcellations of the CC were observed in categories related to gene 
regulation/transcription in chromatin (Fig. 3A-B). 
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Figure 2: GWAS meta-analysis of midsagittal corpus callosum area and thickness (A) Miami plot for SNPs (top)
and genes (bottom) based on MAGMA gene analysis for total area and total mean thickness. (B) Miami plot for SNPs
(top) and genes (bottom) based on MAGMA gene analysis for area of thickness of the CC split by the Witelson
parcellation scheme23. Significant SNPs and genes are color coded by corpus callosum traits. 
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Gene-set enrichment analyses were also completed in MAGMA (Fig. 3C). Strongest effects of 
significant gene sets included those involved in postsynaptic specialization for total CC area, 
including GO:009901 (postsynaptic specialization, intracellular component) and GO:009902 
(postsynaptic density, intracellular component). A theme of signal transduction related pathways 
was observed for splenium area including R-HSA-6785631 (ERBB2 regulates cell motility) and 
R-HSA-8857538 (PTK6 promotes HIF1A stabilization). Enrichment of the “CARM1 and 
regulation of the estrogen receptor” was found for the posterior body thickness and is implicated 
transcriptional regulation via histone modifications. Enrichment of GO:1904714 (regulation of 
chaperone-mediated autophagy) was found for the isthmus area, which is implicated in 
lysosomal-mediated protein degradation. All significant results across all CC phenotypes are in 
Supplementary Table 18. 
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Figure 3: Partitioned heritability, functional annotation and enrichment of gene-sets of CC morphology
associated genetic variants (A) Significant enrichment of SNP heritability across 53 functional categories computed
by LD Score regression for area (left) and mean thickness (right). Error bars indicate 9% confidence intervals. (B)
Proportion of GWAS SNPs in each functional category from ANNOVAR across each CC phenotype. (C) Significant
gene-sets across CC phenotypes computed via MAGMA gene-set analysis at the Bonferroni corrected threshold of
3.23 x 10-6. GOBP: Gene-ontology biological processes, GOCC: Gene-Ontology Cellular Components. 
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Tissue-specific and cell-type specific expression of corpus callosum 
associated genes 
Gene-property enrichment analyses were completed in MAGMA with 54 tissue types from GTEx 
v8 and BrainSpan42,43, which includes 29 samples from individuals representing 29 different 
ages, as well as 11 general developmental stages. An enrichment of genes associated with 
isthmus thickness were expressed in the cerebellum (p(Bon) = 0.017). Area and thickness across 
parcellations of the CC showed an enrichment of expression of genes in the brain from early 
prenatal to late mid-prenatal developmental stages. An enrichment of expression of genes 
associated with area and thickness of the anterior body of the CC was observed in brain tissue 
prenatally 9 to 24 weeks post conception. Enrichment of expression of genes associated with 
area of the genu was observed in brain tissue 19 weeks post conception. Enrichment of 
expression of genes associated with total mean thickness of the CC was observed in brain 
tissue 19 weeks post conception. All results are shown in Supplementary Tables S19-S21. 
These results, along with the gene-sets involved in histone modifications, were supported by 
LDSC-SEG analyses using chromatin-based annotations from narrow peaks44, which showed a 
significant enrichment in the heritability by variants located in genes specifically expressed in 
DNase in the female fetal brain for total CC thickness (p(Bon) = 0.0105). Chromatin annotations 
showed a consistent and significant enrichment of splenium area and thickness associated 
variants in histone marks of the fetal brain and neurospheres (Supplementary Table S25). 
 
Using microarray data from 292 immune cell types, area of the posterior body showed a 
significant enrichment in the heritability by variants located in genes specifically expressed in 
multiple types of myeloid cells (p(Bon) < 0.05), and area of the isthmus showed enrichment in 
innate lymphocytes (p(Bon) = 0.047). This further validates the aforementioned significant locus 
on gene FOXO3, which overlapped between the posterior body and isthmus (Supplementary 
Table S26). 
 
Cell-type specific analyses were performed in FUMA using data from 13 single-cell RNA 
sequencing datasets from the human brain. This tests the relationship between cell-specific 
gene expression profiles and phenotype-gene associations45. Of the 12 phenotypes tested, only 
total CC thickness showed significant results after going through the 3-step process using 
conditional analyses to avoid bias from batch effects from multiple scRNA-seq datasets. The 
most significant association was seen with oligodendrocytes located in the middle temporal 
gyrus (MTG, p(Bon) = 0.001) from the Allen Human Brain Atlas (AHBA). Oligodendrocytes (p(Bon) 
= 0.03) and non-neuronal cells (p(Bon) = 0.03) located in the lateral geniculate nucleus (LGN) 
from the AHBA also showed significant associations but were collinear (Supplementary Table 
S22). 
 
LAVA-TWAS analyses28,46 (Fig. 4) of expression quantitative trait loci (eQTLs) and splicing 
quantitative trait loci (sQTLs) of protein-coding genes in 16 different brain, cell type, and whole 
blood tissues revealed the strongest eQTL associations of area and thickness with CROCC 
expression in whole blood for the isthmus (ρ = -0.53, p = 1.29 x 10-10). Other notable eQTL 
(Supplementary Table S29) findings included total CC area and isthmus area and thickness 
being positively associated with ATP13A2 expression in fibroblasts (ρ = 0.48, p = 1.58 x 10-7). 
The strongest sQTL association was a positive association observed with KANSL1 cluster 
11710 in fibroblasts for genu area (ρ = 0.83, p = 1.46 x 10-14), which was the tissue type where 
most observed associations occurred across CC phenotypes (Supplementary Table S30). 
Moreover, a negative association was observed in a KANSL1 (cluster 11707) in fibroblasts for 
the genu area (ρ = 0.82, p = 3.11 x 10-7). An sQTL in MFSD13A (cluster 7894) in the anterior 
cingulate showed very strong yet opposite associations for total CC thickness (ρ = 0.42, p = 
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1.12 x 10-13) and total CC area (ρ = -0.44, p = 2.98 x 10-11). Other notable findings across tissue
types included CRHR1 in the cortex, nucleus accumbens, and putamen, as well as UGP2 in
fibroblasts, whole blood, and the putamen. No significant results from LAVA-TWAS gene-set
enrichment analyses were observed after Bonferroni correction (Supplementary Tables S31-
S32).  
 
 

Figure 4: LAVA-TWAS analyses of corpus callosum traits with gene-expression (eQTLs) and splicing
(sQTLs). Results of local genetic correlations between CC traits and eQTLs and sQTLs from GTEx v8 using the
LAVA-TWAS framework. Associations between (A) CC area and eQTLs, (B) CC thickness and eQTLs, (C) CC area
and sQTLs, and (D) CC thickness and sQTLs are shown via -log10p values scaled by the direction of association (y-
axis) and chromosomal location (x-axis). All significant points are colored by tissue type and labeled by CC trait.
Significance thresholds for eQTLs (p < 2.01 x10-6) and sQTLs (p < 5.45 x 10-7) were determined by Bonferroni
correction. 

Genetic overlap of corpus callosum and cerebral cortex architecture 
Broadly, we observed a pattern of negative genetic correlations with area and thickness of the
CC with cortical thickness across regions of the cingulate cortex, but positive genetic
correlations with regions’ cortical thickness across the neocortex (Fig. 5A). Specifically, we
observed a significant negative genetic correlation between total area with cortical thickness of
the rostral anterior cingulate (rg = -0.35, SE = 0.06) and posterior cingulate (rg = -0.28, SE =
0.06). Mean thickness was negatively genetically correlated with cortical thickness of the rostral
anterior cingulate (rg = -0.29, SE = 0.06) and posterior cingulate (rg = -0.23, SE = 0.05). Positive
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genetic correlations were observed with cortical thickness of the lingual gyrus (rg = 0.26, SE = 
0.05) and cuneus (rg = 0.27, SE = 0.06). When parcellating by the Witelson scheme, negative 
genetic correlations were observed for area and mean thickness with cortical thickness of 
regions across the cortex and the cingulate, but positive genetic correlations with regions in the 
occipital lobe. We also observed a significant negative genetic correlation between total area of 
the CC with surface area of the precuneus (rg = -0.20, SE = 0.04). (Supplementary Table S9-
S10). 
 
Genetic correlations can reflect direct causation, pleiotropy, or genetic mediation. To explore 
potential causal relationships between CC phenotypes and morphometry of the cerebral cortex, 
we ran Generalized Summary-data-based Mendelian Randomization (GSMR) analyses47 
directional effect of CC phenotypes on morphometry of the cerebral cortex, but not vice-versa. 
(Fig. 5B, Supplementary Table S14). There was a strong negative unidirectional effect of total 
CC area on the precuneus surface area (bxy = -0.50, SE = 0.13, p = 0.0002), implying a greater 
total area and thickness of the CC results in a lower surface area of the precuneus. There was 
also a negative unidirectional effect of total CC mean thickness and cortical thickness of the 
posterior cingulate (bxy = -0.02, SE = 0.008, p = 0.02), but not vice versa. When using the 
Witelson parcellation scheme, there was a strong negative unidirectional effect on the area of 
the genu on the cortical thickness of the rostral anterior cingulate (bxy = -0.001, SE = 0.0003, p = 
0.003). 
 
Local genetic correlations of area phenotypes of the CC and surface area of the cerebral cortex 
with LAVA28 showed many significant negative correlations in genes between the total area and 
posterior body and the precuneus SA along the 2p22.2 cytogenetic band (QPCT, PRKD3, 
SULT6B1, NDUFAF7, EIF2AK2, HEATR5B, GPATCH11, CEBPZ, CEBPZOS, CDC42EP3, 
STRN, VIT) (Fig. 5C-D). Negative genetic correlations between total CC area and caudal 
middle frontal gyrus SA in 5 genes along the 17q24.2 cytogenetic band (HELZ, PSMD12, 
PITPNC1, ARSG, BPTF) were also observed. Positive local genetic correlations along the 
2p22.2 cytogenetic band were observed with anterior body area and the surface area of the 
posterior cingulate (CDC42EP3, PRKD3), as well as total area of the CC and precentral gyrus 
surface area (HEATR5B). 
 
Many negative local genetic correlations were observed with mean thickness of the splenium 
and cortical thickness of the superior parietal gyrus (TEX36, EDRF1, UROS, BCCIP, DHX32) 
and the parahippocampal gyrus (ZNF879) along the 10q26.13-10q26.2 cytogenetic bands, while 
positive genetic correlations were observed with isthmus cingulate cortical thickness along the 
10q26.13-10q26.2 cytogenetic bands (EDRF1, TEX36, UROS, BCCIP, DHX32, CTBP2, 
CPXM2, GPR26, ZRANB1, FAM53B). 
 
Area of the posterior body showed a negative local genetic correlation with pericalcarine gyrus 
cortical thickness (GPATCH11). Area of the isthmus showed positive local genetic correlations 
with the cortical thickness of the superior parietal gyrus (LRRC73), caudal middle frontal gyrus 
(GPATCH2L), and isthmus cingulate (PLPPR3, CFD, R3HDM4, PTBP1, ELANE, MED16, 
PALM) along the 19p13.3 cytogenetic band. 
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Mean thickness of the posterior body showed negative local genetic correlations with the 
surface area of the lingual gyrus (STC2, NKX2-5, 5q35.2) and pericalcarine gyrus (NKX2-5). 
Mean thickness of the isthmus showed negative local genetic correlations with the precuneus 
(EIF2AK2, GPATCH11, 2p22.2) and superior frontal gyrus (TBX19) surface area. Total mean 
thickness of the CC showed a positive genetic correlation with surface area of the insula 
(PDZRN3). The anterior body mean thickness showed positive local genetic correlations with 
surface area of the superior parietal gyrus (RETN, FCER2). Splenium mean thickness showed 
positive genetic correlations with inferior temporal gyrus surface area (ZNF318, CRIP3, 
SLC22A7) along the 6p21.1 cytogenetic band. 
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Figure 5: The genetic overlap of the corpus callosum and cerebral cortex. (A) Global genetic correlations (LDSC
- rG) between CC phenotypes and cerebral cortex phenotypes. The Bonferroni significance threshold was set at p =
6.1 x 10-5. Surface area and cortical thickness of significant cortical regions with each CC phenotype are displayed on
brain plots. (B) Of the significant global genetic correlations, significant Mendelian randomization (GSMR) results are
displayed, representing the effect of CC phenotypes on cortical phenotypes free of non-genetic confounders. (C)
Chord plot displaying the number of significant bivariate local genetic correlations (LAVA) between CC and cortical
phenotypes. Underlined numbers represent the total number of genes shared with that phenotype. (D) Volcano plots
showing degree (-log10 p-values) and direction (rG) of local genetic correlations (LAVA) between cortical and CC
phenotypes. Colors represent cortical regions labeled on the chord plot in section C. Significant genes (Bonferroni
significance threshold was set at p = 2.18 x 10-6) across all phenotypes are labeled. 
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Genetic overlap of corpus callosum and associated neuropsychiatric 
phenotypes 
We observed a significant genetic correlation (Fig. 6A, Supplementary Table S11) between 
total CC area and ADHD (rg = -0.11, SE = 0.03), bipolar disorder (BD, rg = -0.10, SE = 0.03), 
and bipolar I disorder (BD-I, rg = -0.10, SE = 0.03). Total mean thickness was genetically 
correlated with BD (rg = -0.10, SE = 0.03) and BD-I (rg = -0.10, SE = 0.03). When analyzing the 
regional Witelson parcellations, the area of the genu was genetically correlated with ADHD risk 
(rg = -0.13, SE = 0.03), and the mean thickness of the splenium was genetically correlated with 
risk for BD (rg = -0.13, SE = 0.03) and BD-I (rg = -0.12, SE = 0.03). 
 
GSMR analyses showed causal bidirectionality of genetic liability of BD (bxy = -0.06, SE = 0.02, 
p = 0.006) and BD-I (bxy = -0.05, SE = 0.02, p = 0.003) on total mean thickness of the CC, and 
mean thickness of the CC on BD (bxy = -0.19, SE = 0.08, p = 0.01) and BD-I (bxy = -0.23, SE = 
0.09, p = 0.02). When using the Witelson parcellation, GSMR analyses showed causal 
directionality of genetic liability of BD-I on mean thickness of the splenium (bxy = -0.09, SE = 
0.04, p = 0.01), but not vice versa (Fig. 6A, Supplementary Table S15). 
 
Local genetic correlations with LAVA28 (Fig. 6B, Supplementary Table S17) showed 34 
positive local genetic correlations between thickness of the posterior body and bipolar II disorder 
(BD-II) along the 20q13.33 cytogenetic band (top 5 genes being KCNQ2, TPD52L2, 
TNFRSF6B, ZGPAT, ARFP1), and one negative local genetic correlation between total CC area 
and IQ (C8orf89). 
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Figure 6: The genetic overlap of the corpus callosum and neuropsychiatric phenotypes. (A) Global genetic
correlations between CC traits and neuropsychiatric phenotypes. The Bonferroni significance threshold was set at p =
0.0019. Of the significant global genetic correlations, significant Mendelian randomization (GSMR) results are
displayed, representing the effect of CC phenotypes on neuropsychiatric phenotypes free of non-genetic
confounders. (B) Volcano plots showing degree (-log10 p-values) and direction (rG) of local genetic correlations
(LAVA) between neuropsychiatric and CC phenotypes. Phenotypes with significant associations are colored (IQ and
bipolar II disorder). Significant genes (Bonferroni significance threshold was set at p = 2.23 x 10-6) across all
neuropsychiatric phenotypes. AD: alzheimer’s disease, ADHD: attention deficit hyperactivity disorder, ASD: autism
spectrum disorder, BD: bipolar disorder, BD-I: bipolar I disorder, BD-II: bipolar II disorder, IQ: intelligence quotient,
OCD: obsessive-compulsive disorder, PTSD: post-traumatic stress disorder, SCZ: schizophrenia. 
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We performed a GWAS meta-analysis of corpus callosum morphometry using our artificial 
intelligence based extraction tool, SMACC, from 46,685 individuals using UKB and ABCD. The 
majority of studies investigating the genetic influence via candidate genes on CC structure and 
development have been conducted using various animal models and post-mortem human 
studies6. Given the difference of the human CC compared to animal models6, this study 
provides genome-wide insight into human variation and genes that influence the human CC in 
vivo. 
 
We show the genetic architecture of the CC is highly polygenic, and specific genetic variants 
influence CC subregions along a rostral-caudal gradient. Five loci that were positionally mapped 
to genes were identified to influence both total area and mean thickness of the CC (IQCJ-
SHIP1, FIP1L1, HBEGF, CDKN2B-AS1, and FAM107B). IQCJ-SHIP1 had the strongest effect 
across total area and mean thickness, implicating mechanisms such as conduction of action 
potentials in myelinated cells via organizing molecular complexes at the nodes of Ranvier and 
axon initial segments, calcium mediated responses, as well as axon outgrowth and guidance48. 
The strongest locus for total area was mapped to the STRN gene. STRN has been heavily 
implicated in the Wnt signaling pathway, which controls the expression of genes that are 
essential for cell proliferation, survival, differentiation, and migration via transcription factors49–51. 
The HBEGF gene was the strongest locus for total mean thickness, implicating mechanisms in 
early development. HBEGF expression is localized in the ventricular zone and cortical layers 
during development52, and has been implicated in regulating cell migration via chemoattractive 
mechanisms52. Significant enrichment of heritability of total mean thickness in various histone 
marks from chromatin data (ATAC-seq) of the fetal brain and cortex derived primary cultured 
neurospheres, significant tissue expression in the brain 19-weeks post conception, as well as 
enrichment of gene sets involving regulation of histone modification, suggests genetic variants 
in regions of open chromatin and transcriptional activity regulation in early development are key 
mechanisms underlying CC morphometry. When histones are acetylated, they become more 
negatively charged. This negative charge repels the negatively charged DNA, causing the DNA 
to be “pushed away” from the histones. This loosening of the DNA-histone complex makes it 
easier for transcription factors to access the DNA and initiate transcription53.  
 
Parcellation of the CC into the five regions defined by the Witelson scheme allowed for further 
refinement and genetic understanding of its morphometry in a rostral-caudal gradient. Our 
results provide insight as to which molecular mechanisms influence this functionally defined 
gradient (i.e. prefrontal, premotor/supplementary motor, primary motor, primary sensory, and 
parietal/temporal/occipital)24. An overlap of genetic loci along the most anterior (genu and 
anterior body, SHTN1) and most posterior (isthmus and splenium, IQCJ-SCHIP1) regions of the 
CC, along with splenium heritability enrichment of in histone chromatin marks of the fetal brain 
and dorsolateral prefrontal cortex, implicates regulation of neuron migration and action potential 
conduction. But the overlap of the FOXO3 along the area of the posterior body and isthmus 
implicates IL-9 signaling and FOXO-mediated transcription responsible for triggering 
apoptosis54. Only the posterior body and isthmus showed heritability enrichment in immune cells 
including myeloid cells and innate lymphocytes. The thinning of the CC (along the posterior 
body and isthmus) occurs in a functional gradient connecting the somatosensory and parietal 
association areas of the brain6,55,56. This follows activity dependent pruning by functional area6, 
where somatosensory circuits are pruned in early development in an experience dependent 
context57. As immune cells are increasingly being recognized as key players in brain maturation 
and neurodevelopment58, our results suggest IL-9 mediating a neuroprotective effect in the CC 
during the cell dieback phase58,59, and may play a significant role in posterior CC morphometry. 
LAVA-TWAS results showed another potential mechanism of isthmus pruning via expression of 
ATP13A2 in fibroblasts, and splicing of genes involved in NF-κB signaling60. ATP13A2 is 
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involved in lysosomal-mediated apoptosis61, suggesting such regulation of fibroblast mediated 
growth of callosal projections62. This is also supported by the current discovery of enrichment of 
genes related to isthmus area in the “regulation of chaperone mediated autophagy pathway”, 
which may influence isthmus morphometry. 
 
The topographic organization of the CC correlates with the homotopic bilateral regions of the 
cortex it is known to connect5. A variety of genetically regulated principal mechanisms influence 
CC neuronal and glial proliferation, neuronal migration and specification, midline patterning, 
axonal growth and guidance, and post-guidance refinement to homotopic analogs in the 
cortex63,64. Our results suggest potential genetic mechanisms contributing to callosal-cortical 
organization. We show an overall negative global genetic correlation of CC phenotypes with the 
cortical thickness of the cingulate and surface area of the posterior parietal cortices, including a 
unidirectional negative effect of genu area on rostral anterior cingulate thickness, and total area 
on precuneus surface area free of any non-genetic confounders. Positive global genetic 
correlations of total CC area and splenium thickness with cortical thickness in the occipital 
cortex were also observed. Local genetic correlations of the CC were observed throughout the 
cerebral cortex, most pronounced with total CC area and splenium thickness. Notable findings 
included numerous genes in the chr2p22 cytogenetic band showing negative correlations 
between total CC and posterior body area with precuneus surface area, including the significant 
STRN gene observed across all CC phenotypes, further implicating the Wnt signaling pathway 
and dendritic calcium signaling in the context of neurodevelopment65,66. Within this cytogenetic 
band, HEATR5B was also positively genetically associated with precentral gyrus surface area. 
Opposing genetic effects were observed between splenium thickness with isthmus cingulate 
thickness (i.e. positive) vs. superior parietal cortex thickness (i.e. negative) in genes in the 
chr10q26.13 cytogenetic band. Clinical phenotypes associated with the central nervous system 
due to copy number variations of chr10q26.13 include abnormal cranium development, global 
developmental delay and learning difficulties, and neuropsychiatric manifestations including 
ADHD, impulsivity or autistic behaviors67–69. This provides a novel testable hypothesis for 
functional follow up studies, as alterations in the isthmus cingulate and superior parietal cortex 
have been observed in large-scale studies of various neurodevelopmental disorders70. Positive 
genetic associations in the chr19p13.3 cytogenetic band were observed between the isthmus 
area and isthmus cingulate cortical thickness, which has been implicated with microcephaly, 
ventriculomegaly and developmental delay71,72.  
 
Our results demonstrate opposing genetic relationships between CC phenotypes and thickness 
of the cingulate cortex (negative) vs the neocortex (positive), which suggests a strong genetic 
component underlying the development of the CC via pioneer axons and chemotaxis. 
Developmentally, pioneer axons emerge in the cingulate and project their axons across the 
midline using guidance cues. A large portion of these callosal projections are pruned and 
myelinated in an activity dependent manner, such that axonal remodeling is highly dependent 
on correlated neural activity in the cortex6,73–75. The strongest local genetic correlation 
supporting this finding was observed between total mean thickness of the CC and rostral 
anterior cingulate thickness on TGIF1. As TGIF1 is implicated in holoprosencephaly (i.e. where 
the brain fails to develop two hemispheres), forebrain development via alterations in the Sonic 
Hedgehog (SHH) pathway, and disruption of axonal guidance via chemoattractive 
mechanisms76,77, these results provide a potential genetic localization for functional follow-up. 
The isthmus cingulate, in relation to the isthmus and splenium, was the only cingulate region 
showing positive local genetic correlations, providing further evidence of distinct molecular 
mechanisms (e.g. immune-mediated apoptosis and regulation of callosal projections) compared 
to the rest of the corpus callosum underlying its structure and development. 
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Abnormalities of the CC have also been associated with various neurological/neuropsychiatric 
disorders6. The negative global genetic correlations observed in CC area with ADHD and CC 
thickness with bipolar disorder, indicate that the allelic differences resulting in smaller CC area 
and thickness are partly shared with those resulting in a greater risk for ADHD and bipolar 
disorder, respectively. Positive local genetic correlations heavily implicated the 20q13.33 
cytogenetic band in the relationship between posterior body thickness and bipolar II disorder, 
providing a plausible neurobiological mechanism underlying an observed genetic risk at this 
locus78–80, and an observed morphological difference in the CC13,81,82. A negative genetic 
correlation at the C8orf89 locus, known to have biased expression in the testis83,84, was 
observed between total CC area and IQ. Strong evidence suggests the high similarity in gene 
expression and proteome between the brain and testes are due to involvement in the speciation 
process85. 
  
In summary, this work identifies genome-wide significant loci of morphometry of the overall 
corpus callosum and its sectors, convergence on biological functions, tissues and cell types, as 
well as the genetic overlap with the cerebral cortex and neuropsychiatric conditions.  

Methods 

Artificial intelligence corpus callosum extraction and segmentation with 
SMACC 
Data Preprocessing: 
 
All UKB participants completed a 31-minute neuroimaging protocol using a Siemens Skyra 3 
Tesla scanner and a 32-channel head coil in one of three MRI scanning locations. All 3D 
structural T1-weighted brain scans were acquired using the following parameters: 3D MPRAGE, 
sagittal orientation, in-plane acceleration factor = 2, TI/TR = 880/2000 ms, voxel resolution = 1 x 
1 x 1 mm, acquisition matrix = 208 x 256 x 256 mm. All scans were pre-scan normalized using 
an on-scanner bias correction filter. More details of the imaging protocols may be found in the 
following reference papers86,87. 
 

All ABCD participants completed a neuroimaging protocol in one of three scanner types at 21 
different sites88. The Siemens Prisma had the following parameters for the T1-weighted scans: 
TI/TR = 1060/2500 ms, TE = 2.88 ms, voxel resolution = 1 x 1 x 1 mm, acquisition matrix = 176 
x 256 x 256, flip angle = 8 degrees. The Philips Achieva Ingenia had a TI/TR = 1060/6.31 ms, 
voxel resolution = 1 x 1 x 1 mm, acquisition matrix = 225 x 256 x 256 mm and a flip angle = 8 
degrees. The GE MR750 had a TI/TR = 1060/2500 ms, TE = 2 ms, voxel resolution = 1 x 1 x 1 
mm, acquisition matrix = 208 x 256 x 256, and a flip angle = 8 degrees. 
 

All T1w MRIs were registered to MNI15289–91 1mm space with 6 degrees of freedom using FSL’s 
flirt92 command. 
 
SMACC development and UNet training: 
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Mid-sagittal T1w, T2w, and FLAIR images from UK Biobank21, PING93, HCP94, and ADNI195 
were used for training the UNet model for CC segmentation. Individual study scanner 
parameters can be found in their respective references. The demographic information for the 
datasets used to create the UNet model is shown in Supplementary Table 31. Augmentation of 
image data is a common procedure in deep learning to prevent model overfitting and improve 
model accuracy96. All the images were downsampled by a factor of 2, 3, 4 and 5 along the 
sagittal axis and then upsampled back to original size using MRtrix’s mrgrid command to include 
low resolution images in the training97. To include lower resolution T1w images resembling older 
or clinical data in training, all the images were harmonized using a fully unsupervised deep-
learning framework based on a generative adversarial network (GAN)98 to a subject from the 
ICBM dataset90. Images were also rotated clockwise in increments of 15 degrees and then 
resized to 256*256. Black boxes were randomly added to the images to imitate partial agenesis 
cases. Supplementary Figure 1 shows some T1w augmented images that were the input 
training images for the UNet model. 
 
UNet Implementation: 
 
A Tensorflow implementation of UNet99 was trained on 80% of the images for 250 epochs until 
the difference between the intersection over union (IOU) after consecutive iterations was less 
than 1x10-4. The U-Net architecture is structured with a contracting pathway and an expansive 
pathway. The contracting pathway repeatedly performs two 3x3 convolutions (without padding), 
with each convolution followed by a rectified linear unit (ReLU) and a 2x2 max pooling 
operation. At each stage in the expansive pathway the feature map is upsampled followed by a 
2x2 convolution which reduces the feature channels by half. Then, the corresponding cropped 
feature map from the contracting pathway is concatenated, and two 3x3 convolutions are 
applied, with each one followed by a ReLU. We used the following training parameters: 1x10-4 
learning rate and an Adam optimizer100. The rest of the data was used for validation. The 
midsagittal CC (midCC) was initially segmented using image processing techniques101 on 
subjects from ADNI1 (N=1032, 54-91 years), PING (N=1178, 3-21 years), HCP (N=963, 22-37 
years) and UKB (N=190, 45-81 years). These masks were then visually verified and manually 
edited by neuroanatomical experts which served as the ground truth. To evaluate the model, the 
area of overlap between the predicted segmentation and the ground truth was calculated.  
 
CC shape metrics extracted with SMACC: 
SMACC provides outputs of global and regional shape metrics extracted from the corpus 
callosum segmentation, including area, thickness, length, perimeter and curvature. The regional 
shape metrics were based on a 5 compartment version of the Witelson atlas23,24. The Witelson 
atlas is composed of the (1) genu, (2) anterior midbody,  (3) posterior midbody, (4) isthmus, and 
(5) splenium. The metrics used for the GWAS analysis were area and mean thickness of the 
total CC and all of the parcellations of the Witelson atlas. The thickness is defined as the 
distance in the inferior-superior direction between the top and bottom of the contour and at 
every point along the length of the segment, then averaged across the region of interest. The 
total area is the summation of the number of voxels with intensity value greater than 0.5 in the 
segmentation. 
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Corpus callosum segmentation quality control (QC) with SMACC:  
 
To ensure that segmentations were of appropriate quality without having to manually assess all 
output images, which eventually may scale to hundreds of thousands of scans, we included an 
automated quality control (QC) assessment into SMACC. The regional and global metrics were 
used as inputs to the machine learning models detailed below for automatic binary classification 
of segmentations as Pass or Fail. CC segmentations from SMACC were manually assessed 
across multiple datasets by neuroanatomical experts. This included data from UKB (N=12,902, 
aged 45-81 years), ADNI1 (N=724, aged 54-91 years), PING (N=857, 3-21 years) and HCP 
(N=615, 22-37 years), all of which served as the ground truth for QC model building. All data 
was split 80/20 for training/testing.  

 
Figure 7 gives the overview and the flow of SMACC. Several architectures including a 3-layer 
sequential neural network with 42 neurons, 22 in the second layer, and 11 in the third layer; a 
wide & deep neural network with 80 neurons in the first 3 layers and 40 in the last 3 layers, 
XGBoost classifier and an ensemble model were tested to classify the segmentations from the 
UNet as pass or fail. The ensemble model consisted of XGBoost, k-nearest neighbors (KNN), 
support vector classifier (SVC), logistic regression, and a random forest classifier. The results 
from all the classifiers in the ensemble model were combined using a majority voting classifier. 
All the models were compared using metrics including precision, recall, F1 score and Area 
Under the Curve (AUC). Supplementary Table 34 shows the performance of different models 
based on the shape metrics extracted from the CC segmentations.  
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Figure 7: Segment, Measure, and AutoQC the midsagittal CC (SMACC) pipeline - The midsagittal slice from a
participant registered to MNI space with 6 degrees of freedom serves as an input to the UNet architecture used for
the midsagittal corpus callosum segmentation. The Witelson atlas was used for segmenting the CC into five different
regions. Global and subregion metrics (thickness and area-shown in green) were extracted from the segmentation.
The thickness (black arrow) is defined as the distance in the inferior-superior direction between the top and bottom of
the contour, after reorientation to standard space, at every point along the length of the segment, then averaged
across the region of interest. These metrics serve as input for the ensemble machine learning model used for labeling
CC segmentations as having passed or failed quality control (QC). Abbreviations: Montreal Neurological Institute -
MNI, CC - corpus callosum, ML - Machine Learning,  KNN - K Nearest Neighbors, SVC - Support Vector Classifier 
 
 
SMACC vs FreeSurfer: 
Comparing SMACC and FreeSurfer via Dice scores with respect to manual masks: 
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For assessing the accuracy of the SMACC compared to the ground truth and compared to the 
commonly used tool FreeSurfer102, we ran the SMACC pipeline on 30 subjects from the 
Hangzhou Normal University (HNU) test-retest dataset103,104. Each subject in this dataset was 
scanned with a full brain T1w MRI 10 times within a period of 40 days, for a total of 300 scans. 
All 300 scans had also been manually segmented by a neuroanatomical expert to serve as the 
ground truth. Segmentations from SMACC and FreeSurfer v7.1 were compared to manual 
segmentations using the Dice overlap coefficient. The average Dice coefficient between 
automated CC masks from SMACC and ground truth segmentations was 0.94 across all scans. 
The average Dice score between FreeSurfer CC segmentations and manual masks was 0.82. 
The Dice score was consistently higher for all the subjects using SMACC. Supplementary 
Figure 2 and Supplementary Table 35, show a few midCC segmentations obtained from 
SMACC compared to FreeSurfer. 
 
ICC for SMACC: 
 
To assess test-retest reliability of SMACC the intraclass correlation (ICC) scores were 
calculated. Average ICC values for thickness and area of the Witelson parcellations and the 
total CC were greater than 0.9 and are shown in Supplementary Figure 3.  

Study cohorts 
 
U.K. Biobank:  
 
The UK Biobank (UKB) is a large population level cohort study conducting longitudinal deep 
phenotyping of around 500,000 participants in the United Kingdom (UK) aged between 40-69 at 
recruitment. All participants provided informed consent to participate. The North West Centre for 
Research Ethics Committee (11/NW/0382) granted ethics approval for the UK Biobank study21. 
We used genotype data from UKB released in May 2018. The data was collected from 489,212 
individuals, and 488,377 of those individuals passed quality control checks by UKB. The 
genotypes were then imputed using two reference panels: the Haplotype Reference Consortium 
(HRC) reference panel and a combined reference panel of the UK10K and 1000 Genomes 
projects Phase 3 (1000G) panels21. There were 8,422,770 SNPs following quality control (QC) 
of the data which included having a genotyping call rate (SNPs missing in individuals) of greater 
than 95%, removing variants with a minor allele frequency less than 0.01 (1%), removing 
variants with Hardy-Weinberg equilibrium p-values less than 1e-6, and removing individuals with 
greater than three standard deviations away from the mean heterozygosity rate. To determine 
European ancestry in UKB, the ENIGMA MDS protocol 
(https://enigma.ini.usc.edu/protocols/genetics-protocols/) was completed using 10 components. 
The mean and standard deviations of the first and second genetic components of individuals 
who were classified as Utah residents with Northern and Western European ancestry from the 
CEPH collection (CEU) from the HapMap 3 release were then calculated. Individuals in UKB 
who were within a distance of 0.0101 on components 1 and 2 were classified as of European 
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ancestry (N = 41,979). The MDS plot of individuals included in the analysis overlaid over the 
HapMap 3 population is available in Supplementary Figure 4. 
 
ABCD:  
 
The Adolescent Behavioral Cognitive Development (ABCD) study is the largest study in the 
United States (USA) following adolescent children starting from 9 years of age through 
adolescence with deep phenotyping including neuroimaging and genotyping using the 
Smokescreen™ Genotyping array consisting over over 300,000 SNPs88,105,106. Only 
neuroimaging from baseline (ages 9-10) were used. Following imputation using the ENIGMA 
protocol107 with the European 1000 Genomes Phase 3 Version 5 reference panel, phased using 
Eagle version 2.3108, and the QC process as described in the UKB cohort, a total of 4,706 
European ancestry children, and 5,683,360 SNPs were included. To determine European 
ancestry in ABCD, the methods described for the UKB were completed. The MDS plot of 
individuals included in the analysis overlaid over the HapMap 3 population is available in 
Supplementary Figure 5. 
 
We also analyzed non-European ancestry individuals to examine the generalization of the 
observed effects across ancestries. Using the aforementioned methods, we included 1504 
individuals from the UKB and 5536 individuals from ABCD. 

GWAS meta-analysis of corpus callosum morphometry 
Genome-wide association analysis (GWAS) for UKB and ABCD separately for all CC 
phenotypes were completed via a linear whole-genome ridge regression model using 
REGENIE, allowing for the control of genetic relatedness109. Covariates included age, sex, 
age*sex interaction, and the first 10 genetic principal components. A two-step REGENIE 
analysis was completed with the following parameters. For step 1, the entire dataset was used 
with a block size of 1000 and leave-one-out-chromosome validation109. Step 2 was completed 
with a threshold for minor allele count of 5, a block size of 1000, and otherwise default 
parameters. 
 
A meta-analysis of GWAS summary statistics of all CC derived metrics in UKB and ABCD were 
conducted using METAL software and the random-metal extension29,30, based on the random-
effects model. A random-effects model was chosen since the effect sizes of SNPs on the corpus 
callosum has the potential to be different between the UKB and ABCD cohorts due to age. 
White matter volume is known to increase through childhood and start decreasing in middle 
adulthood110, which may result in different genetic effect sizes being observed. We opted to 
conduct a meta-analysis instead of using a two-stage discovery-replication approach because 
Skol et al. have shown that this method is more powerful, despite using more stringent 
significance levels for multiple correction111, and is common practice in the literature112–114. 
Percent variance (R2) explained by each significant SNP was calculated using the approach 
described in Rietvield et al115. The R2 of each variant j was calculated via: 
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where pj and qj are the minor and major allele frequencies, �� is the estimated effect of the 
variant within the meta-analysis and ��2 is the estimated variance of the trait (for which we 
used the pooled variance of the trait across UKB and ABCD. In order to determine the number 
of independent traits, matrix spectral decomposition was computed using matSpD in R on the 
phenotypic correlations between CC traits using the method proposed by Li and Ji116,117. This 
resulted in 8.16 effective independent variables, and a significance threshold of p = 5 x 10-8/8.16 
= 6.13 x 10-9. Meta-analyses were also completed for non-European individuals. 

Heritability and genetic correlations within and between cohorts 
To determine SNP heritability (h2

SNP) tagged from SNPs used in the analysis, we used the 
GREML approach implemented in GCTA38,39, while adjusting for the same covariates as in the 
GWAS. The SNP heritability (h2

SNP) from LDSC,27 was also computed, which estimates 
heritability casually explained by common reference SNPs. Genetic correlations between the 
UKB and ABCD cohorts for area and thickness of each parcellation of the CC defined by the 
Witelson scheme, and total CC were completed using LDSC27. Between cohort heterogeneity of 
h2

SNP should not be considered unusual, as the genetic influence observed on the corpus 
callosum has the potential to be different between the UKB and ABCD cohorts due to age - 
white matter volume is known to increase through childhood and start decreasing in middle 
adulthood110, as well as the smaller sample size in ABCD making it harder for LDSC to detect 
polygenic effects118. 

Gene-mapping and gene enrichment analyses 
Genetic variants (SNPs) were mapped to genes using information about genomic position, 
expression quantitative trait loci (eQTL) information, and 3D chromatin interaction mapping as 
implemented in FUMA v1.5.2 with the experiment-wide significance threshold (p = 6.13 x 10-

9)119. Pathway enrichment analyses using the results from the full meta-analyses with no pre-
selection of genes via MAGMA v1.0840 gene-set analysis in FUMA. Genes located in the MHC 
region were excluded (hg19: chromosome 6: 26Mb - 34Mb). There were 19,021 gene sets from 
MSigDB v7.0120 (Curated gene sets: 5500, GO terms: 9996), and 9 other data resources 
including KEGG, Reactome and Biocarta (https://www.gsea-
msigdb.org/gsea/msigdb/collection_details.jsp#C2). MAGMA uses gene-based P-values to 
identify genes that are more strongly associated with a phenotype than would be expected by 
chance. MAGMA then applies a competitive test to compare the association of genes in a gene 
set to the association of genes outside of the gene set. This allows MAGMA to identify gene 
sets that are enriched for association signals. MAGMA corrects for a number of confounding 
factors, such as gene length and size of the gene set, to ensure that the results are not due to 
chance. A gene-based association analysis (GWGAS) in MAGMA was completed using the full 
summary statistics for each trait from METAL. Corrections for multiple comparisons were 
completed using the Bonferroni approach. 
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To determine whether genes associated with CC morphometry cluster into biological functions, 
tissue types, or specific cell types, we used the full results of the meta-analyzed genome-wide 
association studies (GWAS) rather than prioritizing genes. Pathway analysis as described 
above was completed. 
 
We performed gene-property and gene-set analysis using the MAGMA software on 54 tissue 
types from the GTEx v8 database and BrainSpan42,43, which includes 29 samples from 
individuals representing 29 different ages of brains, as well as 11 general developmental 
stages. 
 
Single cell RNA-sequencing data sets used in the cell-type specific analyses included the 
human developmental and adult brain samples from the PsychENCODE consortium121, human 
brain samples of the middle temporal gyrus and lateral geniculate nucleus from the Allen Brain 
Atlas122, human brain samples using DroNc-seq123, two datasets of human prefrontal cortex 
brain samples across developmental stages which show per cell type average across different 
ages, and per cell type per age average expression124, two datasets of human brain samples 
with and without fetal tissue125, human brain samples from the temporal cortex126, and human 
samples from the ventral midbrain from 6-11 week old embryos127. A 3-step workflow is 
implemented in FUMA to determine association between cell-type specific expression and CC 
morphometry-gene association supported by multiple independent datasets, which has been 
extensively described45. All tests were corrected using the Bonferroni approach. 

Partitioned heritability of meta-analysis results by cell and tissue type with 
LDSC 
Partitioned heritability analysis was completed to estimate the amount of heritability explained 
by annotated regions of the genome41,44. We tested for enrichment of CC h2 of variants located 
in multiple tissues and cell types using the LDSC-SEG approach, with all analyses being 
corrected for the FDR44. Annotations indicating specific gene expression in multiple tissues/cell 
types from the Genotype-Tissue Expression (GTEx) project and Franke lab were downloaded 
from https://alkesgroup.broadinstitute.org/LDSCORE/LDSC_SEG_ldscores/. We also 
downloaded 489 tissue-specific chromatin-based annotations from narrow peaks for six 
epigenetic marks from the Roadmap Epigenomics and ENCODE projects128,129. These 
annotations were downloaded from the URL mentioned above. This would allow us to either 
verify or identify new findings from the gene expression analysis from an independent source 
using a different type of data. Finding new patterns of chromatin enrichment can help us to 
understand how genes are regulated. For example, if we find that a particular epigenetic mark is 
enriched in a region of the genome that is associated with a specific gene in a specific tissue 
type, this could suggest that the gene is regulated by that epigenetic mark in that specific tissue 
type. Gene expression data from the Immunological Genome (ImmGen) project130, which 
contains microarray data on 292 immune cell types from mice, was used to test immune cell-
type-specific enrichments. Data was downloaded from the aforementioned link. 
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LAVA - TWAS 
We used the LAVA-TWAS framework to investigate the relationship between CC traits and gene 
expression in brain tissues, fibroblasts, lymphocytes, and whole blood from the GTEx 
consortium (v8)83 in all protein coding genes, as it has ability to model the uncertainty of eQTL 
effects compared to other commonly used TWAS approaches, which have been shown to be 
prone to high type-I errors (false positives), and provides a directly interpretable effect size in 
the rG estimate46. Analyses were performed on all protein coding genes (N = 18,380) between 
all CC phenotypes and eQTLs/sQTLs for each tissue. Genotype data from the European 
sample of the 1000 Genomes (phase 3) project131 was used to estimate SNP LD for LAVA. For 
each eQTL/sQTL that had a significant genetic signal for both the CC phenotype and cortical 
phenotype (univariate p-values less than 1 x 10-4), the local bivariate genetic correlation 
between the two was estimated and tested. All LAVA-TWAS results were corrected using the 
Bonferroni approach. Following TWAS, trait specific enrichment analysis via a Fisher’s exact 
test of the top 1% of genes, to evaluate overrepresentation in 7,246 MSigDB v6.2132 gene sets 
and gain insight into biological pathways, was conducted. Gene sets were subset such that they 
must have consisted of at least one of the top 1% of genes, to avoid testing gene-sets with no 
significantly associated genes. All enrichment testing for eQTLs and sQTLs was performed with 
Bonferroni correction. 

Global and local genetic correlations with cortical morphometry and 
mendelian randomization  
The CC develops in such a manner that callosal projections are over-produced then refined 
during development. The majority of cortical projections are refined during postnatal stages and 
are under the influence of guidance cues6. As many genes are responsible for callosal axon 
guidance, we sought to investigate the genetic relationship between our derived CC traits and 
the genetic architecture of the human cerebral cortex6. We used LDSC to determine the global 
genetic correlation between area and thickness of the total and parcellated regions of the 
corpus callosum, and the GWAS summary statistics of each globally corrected region-of-interest 
of the cerebral cortex from the ENIGMA-3 GWAS133. We performed bi-directional Mendelian 
Randomization analyses to investigate if significant genetic correlations observed could be 
driven by genetic causal relationships between an exposure (e.g., area and thickness of 
different regions of the CC) and outcome (e.g., regional surface area & cortical thickness). 
Analyses were performed with summary statistics using GSMR47. All analyses were corrected 
using the Bonferroni approach. To capture potential local shared genetic effects across the 
genome, we ran LAVA28 for all protein coding genes (N = 18,380) between all CC phenotypes 
and surface area and cortical thickness of regions in the ENIGMA3 GWAS. Genotype data from 
the European sample of the 1000 Genomes (phase 3) project131 was used to estimate SNP LD 
for LAVA. For each gene that had a significant genetic signal for both the CC phenotype and 
cortical phenotype (univariate p-values less than 1 x 10-4), the local bivariate genetic correlation 
between the two was estimated and tested. All results were corrected using the Bonferroni 
approach. 
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Global and local genetic correlations with neuropsychiatric conditions and 
mendelian randomization 

Abnormalities of the corpus callosum have also been heavily implicated in several neurological 
and neuropsychiatric conditions such as autism spectrum disorders (ASDs), ADHD, bipolar 

disorder, schizophrenia, visual impairments and epilepsy9,56,134–141. We used LDSC to determine 
the global genetic correlation between area and thickness of the total and parcellated regions of 
the corpus callosum, and 15 neuropsychiatric traits. Mendelian randomization analysis, and 
local genetic correlations were run as done for the brain cortical phenotypes.  
 
Data Availability 
 
This work is a meta-analysis. Upon publication, the full meta-analytic summary statistics will be 
made available in ENIGMA-Vis142. 
 
Code Availability 
The code and model used to extract the corpus callosum and its metrics is available at 
https://github.com/USC-LoBeS/smacc/. 
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Figure Legends 
Figure 1: Regions of the midsagittal corpus callosum and associated genomic loci. An ideogram representing 
loci that influence total corpus callosum area, its mean thickness, and area and thickness of individual parcellations 
determined by the Witelson parcellation scheme in a rostral-caudal gradient (1-5). All loci are significant at the 
Bonferroni corrected, experiment-wide threshold of p < 6.13 x 10-9. 

 
Figure 2: GWAS meta-analysis of midsagittal corpus callosum area and thickness (A) Miami plot for SNPs (top) 
and genes (bottom) based on MAGMA gene analysis for total area and total mean thickness. (B) Miami plot for SNPs 
(top) and genes (bottom) based on MAGMA gene analysis for area of thickness of the CC split by the Witelson 
parcellation scheme. Significant SNPs and genes are color coded by corpus callosum traits. 

 
Figure 3: Partitioned heritability, functional annotation and enrichment of gene-sets of CC morphology 
associated genetic variants (A) Significant enrichment of SNP heritability across 53 functional categories computed 
by LD Score regression for area (left) and mean thickness (right). Error bars indicate 9% confidence intervals. (B) 
Proportion of GWAS SNPs in each functional category from ANNOVAR across each CC phenotype. (C) Significant 
gene-sets across CC phenotypes computed via MAGMA gene-set analysis at the Bonferroni corrected threshold of 
3.23 x 10-6. GOBP: Gene-ontology biological processes, GOCC: Gene-Ontology Cellular Components. 
 
Figure 4: LAVA-TWAS analyses of corpus callosum traits with gene-expression (eQTLs) and splicing 
(sQTLs). Results of local genetic correlations between CC traits and eQTLs and sQTLs from GTEx v8 using the 
LAVA-TWAS framework. Associations between (A) CC area and eQTLs, (B) CC thickness and eQTLs, (C) CC area 
and sQTLs, and (D) CC thickness and sQTLs are shown via -log10p values scaled by the direction of association (y-
axis) and chromosomal location (x-axis). All significant points are colored by tissue type and labeled by CC trait. 
Significance thresholds for eQTLs (p < 2.01 x10-6) and sQTLs (p < 5.45 x 10-7) were determined by Bonferroni 
correction. 
 
Figure 5: The genetic overlap of the corpus callosum and cerebral cortex. (A) Global genetic correlations (LDSC 
- rG) between CC phenotypes and cerebral cortex phenotypes. The Bonferroni significance threshold was set at p = 
6.1 x 10-5. Surface area and cortical thickness of significant cortical regions with each CC phenotype are displayed on 
brain plots. (B) Of the significant global genetic correlations, significant Mendelian randomization (GSMR) results are 
displayed, representing the effect of CC phenotypes on cortical phenotypes free of non-genetic confounders. (C) 
Chord plot displaying the number of significant bivariate local genetic correlations (LAVA) between CC and cortical 
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phenotypes. Underlined numbers represent the total number of genes shared with that phenotype. (D) Volcano plots 
showing degree (-log10 p-values) and direction (rG) of local genetic correlations (LAVA) between cortical and CC 
phenotypes. Colors represent cortical regions labeled on the chord plot in section C. Significant genes (Bonferroni 
significance threshold was set at p = 2.18 x 10-6) across all phenotypes are labeled. 
 
Figure 6: The genetic overlap of the corpus callosum and neuropsychiatric phenotypes. (A) Global genetic 
correlations between CC traits and neuropsychiatric phenotypes. The Bonferroni significance threshold was set at p = 
0.0019. Of the significant global genetic correlations, significant Mendelian randomization (GSMR) results are 
displayed, representing the effect of CC phenotypes on neuropsychiatric phenotypes free of non-genetic 
confounders. (B) Volcano plots showing degree (-log10 p-values) and direction (rG) of local genetic correlations 
(LAVA) between neuropsychiatric and CC phenotypes. Phenotypes with significant associations are colored (IQ and 
bipolar II disorder). Significant genes (Bonferroni significance threshold was set at p = 2.23 x 10-6) across all 
neuropsychiatric phenotypes. AD: alzheimer’s disease, ADHD: attention deficit hyperactivity disorder, ASD: autism 
spectrum disorder, BD: bipolar disorder, BD-I: bipolar I disorder, BD-II: bipolar II disorder, IQ: intelligence quotient, 
OCD: obsessive-compulsive disorder, PTSD: post-traumatic stress disorder, SCZ: schizophrenia. 
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