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Abstract

Traditionally, fMRI data are analyzed using statistical parametric mapping

approaches. Regardless of the precise thresholding procedure, these approaches

ultimately divide the brain in regions that do or do not differ significantly across

experimental conditions. This binary classification scheme fosters the so-called

imager’s fallacy, where researchers prematurely conclude that region A is

selectively involved in a certain cognitive task because activity in that region

reaches statistical significance and activity in region B does not. For such a

conclusion to be statistically valid, however, a test on the differences in activation

across these two regions is required. Here we propose a simple GLM-based

method that defines an ‘‘in-between’’ category of brain regions that are neither

significantly active nor inactive, but rather ‘‘in limbo’’. For regions that are in limbo,

the activation pattern is inconclusive: it does not differ significantly from baseline,

but neither does it differ significantly from regions that do show significant changes

from baseline. This pattern indicates that measurement was insufficiently precise.

By directly testing differences in activation, our procedure helps reduce the impact

of the imager’s fallacy. The method is illustrated using concrete examples.

Introduction

The Imager’s Fallacy

In this paper, we introduce an approach to test and describe effects across

conditions and regions in functional Magnetic Resonance Imaging (fMRI) data.

This approach explicitly marks regions in which activation is in an in-between
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state of uncertainty, statistically differing neither from baseline nor from regions

that are themselves significantly active. We label such regions ‘‘in limbo’’.

Our approach facilitates a more cautious and honest interpretation of Statistical

Parametric Maps (SPMs), as these maps are prone to the so-called imager’s fallacy

[1, 3]. Due to the nature of fMRI contrasts, usually represented as color-coded

‘‘brain maps’’, it is tempting to draw explicit or implicit conclusions such as in the

following (fictional) statement: ‘‘The SPM shows that that activation in the

primary motor cortex (M1) was significantly increased, whereas activation in the

substantia nigra (SN) was not; hence, we conclude that M1 is selectively involved

in the task at hand.’’ Such conclusions, however, are premature: for instance, it

may be that due to higher levels of noise in the fMRI signal from subcortical areas

[4], the variance in the SN was considerably higher than that in the primary motor

cortex, preventing an effect that actually exists to reach statistical threshold. Such

Type II errors are far from unlikely in fMRI studies, which are usually

underpowered [5].

Statements about selective activation cannot be made without proper statistical

testing. To test for selective activation, it is required to consider the interaction

between region and condition. In other words, one needs to test whether the two

regions of interest show a different pattern of activation [2, 6]. Although some

neuroimaging studies with predefined regions of interest test for this region x

condition interaction (e.g. [7, 8]), studies with a whole-brain analysis almost

always omit this step, possibly drawing false inferences because of the imager’s

fallacy.

Fig. 1 illustrates the imager’s fallacy: in this example, one region shows

significantly more activation during a task than during rest and a second region

does not. However, the difference in activation between rest- and task-condition

in almost identical in these two regions and selective activation of the first region

cannot be concluded.

In this paper, we present a whole-brain analysis that explicitly identifies regions

which are at risk for the imager’s fallacy, because their experimental effect is not

significantly different from ‘‘significantly activated’’ regions: these regions are

therefore in limbo, and their true status awaits further investigation.

In almost all standard fMRI-analysis approaches, the brain is ultimately divided

in regions that show a significant difference in BOLD-response across conditions

and regions that do not, thereby inviting the imager’s fallacy. In contrast, our in

limbo approach further subdivides the non-significantly activated regions in two

categories: regions that differ from those that show significant activation and

regions that do not. The latter regions are ‘‘in limbo’’: they differ neither from

baseline nor from regions that do differ from baseline.

How to Identify Brain Areas That Are in Limbo
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Fig. 1. Illustration of the imager’s fallacy: during the task condition, region 1 shows significantly increased activation as compared to the rest
condition. Region 2 does not show significantly increased activation. One could be inclined to conclude that region 1 is selectively involved in the task.
However, when the sizes of these contrasts are tested against each other, the size of the contrast in region 1 does not significantly differ from the size of the
contrast in region 2.

doi:10.1371/journal.pone.0115700.g001

Fig. 2. An example of the in limbo approach. Shown are hypothetical contrast sizes and confidence
intervals for 6 regions (these could be individual voxels). For region 1 and 6 there is no significant effect: zero
falls well within the confidence intervals of the contrast size of in these regions. For region 3 and 5, there is a
clear effect: the ‘‘task rest’’ contrast differs significantly from zero. For region 2 and 4 the situation is more
complicated: the confidence interval of the ‘‘task rest’’ contrast still contains 0, so one is unable to reject the
null hypothesis. However, the size of the contrast is not significantly different from that of the contrast in region
5. Regions 2 and 4 are ‘‘in limbo’’: they differ neither from baseline, nor from least-significantly activated
region. Legend: Orange areas are significantly activated, green areas are in limbo gray areas are significantly
less activated than significant regions.

doi:10.1371/journal.pone.0115700.g002
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Methods

The In Limbo Approach

The in limbo concept is illustrated in Fig. 2: the green regions do not differ

significantly from zero, but neither do they differ significantly from the least-

significantly activated region 5. Figs. 3 and 4 show examples of in limbo regions in

a simulated data SPM (for details see the section Simulation Studies).

Our in limbo idea can be implemented in several ways. For concreteness, we

focus here on an intuitive method that consists of four main steps:

1. For every voxel in the brain, the size of the contrast of interest and

corresponding variance is estimated using the General Linear Model and

sandwich variance estimators [9].

2. The resulting statistical parametric map is thresholded using cNote that, to be

able to choose a comparison voxel, of course there should be a significant

effect of the task to begin with. If there are no significantly activated areas,

there can be no regions that are in limbo.luster-based methods.

3. The voxel with the lowest t-value that is considered significantly different

across conditions is selected as a comparison voxel.

4. The size of the contrast in voxels that were found not to be significantly

different is compared to the size of the contrast in the comparison voxel.

Non-significant voxels of which the contrast cannot be considered statistically

different from the comparison voxel are considered in limbo. To test for this

difference efficiently, the covariance between the tested voxels and the

comparison voxel should be estimated and taken into account.

These steps will now be described in more detail. They have been implemented

as an automated pipeline using the NiPype-framework [10] and can be

downloaded from GitHub (https://github.com/Gilles86/in_limbo).

Step 1: Estimate Contrasts and Corresponding Variances Over The Conditions

By far the most popular method in fMRI-analysis is the so-called mass univariate

general linear model (GLM) approach. The GLM also forms the basis of the in

limbo approach outlined here. In the GLM approach, for every voxel i, a set of n
regressors bi is fitted against the voxel activation time course Yi over p time

points, using a p|n design matrix X. This design matrix is usually identical for all

voxels. Each regressor describes the expected change in the BOLD signal as a result

of one of the individual experimental conditions. Nuisance regressors such as

head movement or linear scanner drift can also be included to remove unwanted

noise and increase statistical power [11]. Given the estimators of the experimental

regressor and their variances, it is possible to use inferential statistics to answer,

for example, the question whether in a certain voxel the BOLD-response was

significantly larger during condition A than during condition B.

The expected hemodynamical responses for the different experimental

conditions are constructed by convolving a hemodynamic response function

(HRF) with a model of the expected neural responses. These neural responses are
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usually modeled as a boxcar function of a few seconds, starting at the onset of a

trial or stimulus. The columns of the design matrix X correspond to the

experimental conditions and contain the expected hemodynamical responses for

these conditions. This results in the following General Linear Model [12]:

Yi~XbizE with E*N(0,s2): ð1Þ

bi can now be estimated by minimizing the error term using Ordinary Least

Squares (OLS):

b̂i,OLS~(X’X){1X’Yi: ð2Þ

Fig. 3. Simulation results for an in limbo analysis of a single subject. In a standard fMRI analysis, some
region, region A, can be identified as significantly more activated during a specific condition. For another
region, region B, this effect is not significant. However, region B also does not differ significantly from region A.
Hence, it is incorrect to conclude that region A is selectively activated; instead, it is appropriate to conclude
that region A is activated, and region B is in limbo. See also section Simulation Studies.

doi:10.1371/journal.pone.0115700.g003

Fig. 4. Simulated fMRI-data of multiple subjects. In all subjects two regions are differentially activated
across conditions, but the precise shape, location, and effect size varies. The unthresholded z-map (a) shows
large rings of overlapping individual regions of activation. In the thresholded map (b) only a small subset of
these rings remains marked as significantly activated. The in limbo map (c) shows that these outer rings are
not significantly less activated than some of the least-significantly significantly activated voxel in the inner
regions.

doi:10.1371/journal.pone.0115700.g004
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The variance matrix V̂ can be estimated by using the sum of the squared

residuals, ŝ2
i :

V̂OLS~ŝ2
i (X’X){1: ð3Þ

This simple approach has two limitations: (1) the errors in the residuals cannot

be assumed to be independent, because there is autocorrelation in the signal [13],

and (2) the model for the hemodynamic response is misspecified, because it is

known to vary considerably across both individuals and brain areas [14]. As a

consequence, variance estimates often will be too low, increasing the risk of Type I

errors.

An often-used solution to these problems is to model and then remove the

autocorrelation of the signal (prewhitening). This can for example be done by

using an autoregressive model (AR). In that case the design matrix is first fitted to

the data using the OLS approach. Subsequently, an AR model is fitted to the

residuals. This procedure yields a model of the autocorrelation structure R̂. This

AR model is then used in a generalized least squares (GLS) fit, where the errors

that can be explained by the covariance structure R are removed, before the actual

b-parameters are estimated. b̂ can then be estimated using

b̂i, prewhitening~(X’R̂{1X){1X’R̂Yi: ð4Þ

The variance can be estimated using

V̂i, prewhitening~ŝ2
i (X’R̂{1X){1: ð5Þ

Unfortunately, it can be difficult to find an unbiased estimate of the

autocorrelation structure R and the models that are used are even known to be

incorrect [9, 14]. An alternative approach, one that we promote here, is to use the

sandwich variance estimator. First suggested for use in fMRI by [9], this estimator

is unbiased and robust against both autocorrelation and model misspecification.

The key difference with traditional approaches is that the data and design matrix

are divided up in q different blocks of replications Y1::q and X1:::q. Note that these

replications do not need to have identical design matrices X, but the replicatons

do have to be of the same length. The replications can represent individual runs or

trials, but this is not a requirement. In our implementation, every functional run

is divided up in q ‘‘subruns’’, where q equals the square root of the number of

time points in the run. Hence, there are q design matrices of q time points.

When using the sandwich estimator, the bi-parameters are estimated by

How to Identify Brain Areas That Are in Limbo
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b̂i, sandwich~
1
q

Xq

k~1

(Xk
’Xk){1Xk

’�Yi, ð6Þ

where Xk is the design matrix of the k-th replication and �Yi is the mean time

course of all replications in voxel i. The variance matrix is given by the sandwich

formula:

V̂i, sandwich~
1
q

Xq

k~1

(Xk
’Xk){1Xk

’WiXk(Xk
’Xk){1, ð7Þ

where Wi is an estimate of the covariance structure of the residuals in voxel i,
r̂ik:

Wi~
1

q{1

Xq

k~1

r̂ikr̂’ik: ð8Þ

Contrasts of the different regressors can now be used to test for any differences

in BOLD-signal between conditions, H0 : cbi~a versus H1 : cbi=a. The contrast

c~(1,{1,0,:::,0) represents, for example, the difference in BOLD-signal between

the first (e.g., task) and second (e.g., rest) experimental regressor, which can be

tested to differ from zero by using a~0.

Importantly, the sandwich estimator can also be used to estimate the amount of

covariance between two voxels i and j, within a single contrast Vij:

V̂ij, sandwich~
1
q

Xq

k~1

(Xk
’Xk){1Xk

’WijXk(Xk
’Xk){1: ð9Þ

Here Xk is the design matrix of replication k and

Wij~
1

q{1

Xq

k~1

r̂ikr̂’jk ð10Þ

describes the covariance structure of the residuals in voxel i and j. rik is the

residual of voxel i at replication k, rjk is the residual of voxel j at replication k. The

covariance estimator is important for the in limbo approach presented here,

because a test for a difference between two voxels ideally takes their covariance

into account.

How to Identify Brain Areas That Are in Limbo
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Step 2: Thresholding of Statistical Maps

After the regression parameters bi and their corresponding variances are fit, the

next step is to threshold the resulting z-map of the contrast of interest. This can be

done either at the level of an individual subject, or at the level of multiple subjects.

In the second case, the individual contrast maps first have to be registered to a

common space and combined in a second model to yield a level-2 z-map [11, 15].

For statistical inference on a very high number of correlated test statistics, such

as in an fMRI z-map, a balance must be found between power and sensitivity in

the multiple comparison problem. A standard Bonferroni correction, where the a-

value is simply divided by the number of comparisons, is inappropriately

conservative, because the test statistics are correlated. Many alternative

approaches to the Bonferroni approach have been proposed [16]. Here we use the

standard clustering algorithm implemented in the FSL suite (Functional MRI of

the Brain Software Library; www.fmrib.ox.ac.ukfsl), which first thresholds the

entire image at some z-value (for example z 5 2.3, corresponding to an

uncorrected p ,0:01 threshold) and then the probability of clusters of above-

threshold voxels to occur under the null hypothesis is estimated using Gaussian

random field theory (GRF). This correction takes into account both the total

number of tested voxels (comparisons), the number of above-threshold clusters,

as well as the correlations amongst neighboring voxels (i.e., the smoothness of the

statistical map; [17]).

Step 3: Determine The Comparison Voxel

After the z-map has been thresholded, a comparison voxel v can be selected. Here

we select the voxel with the lowest test statistic z that still survived the

thresholding procedure. This voxel v can be described colloquially as ‘‘the least

significantly activated voxel’’ of that particular contrast. Other selection criteria

for the comparison voxel are possible. For example, one could take the average

contrast size in the least-significant cluster. We chose these particular criteria for

selecting the comparison voxel, because they are easy to implement and interpret.

Note that, to be able to choose a comparison voxel, of course there should be a

significant effect of the task to begin with. If there are no significantly activated

areas, there can be no regions that are in limbo.

Step 4: Determine In Limbo Regions

For this step we distinguish between analyses for single subjects and for multiple

subjects.

Single Subject

For every voxel i that was not significantly activated in the contrast of interest, a

test is performed on whether the size of this contrast is significantly smaller than

the size of the same contrast in the comparison voxel v.

This is done by taking the difference between the size of the contrast in the two

voxels and dividing it by a pooled variance term, including the variance of both

How to Identify Brain Areas That Are in Limbo
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voxel contrasts, as well as the covariance between these two. Comparing voxel i
and to voxel v the following t-statistic is used:

t(cbi{cbv)~
cbi{cbvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cV̂ ic’zcV̂vc’{2cV̂ivc’
p

:
ð11Þ

This t-statistic can be used for regular inference testing. The null hypothesis is

that there is no difference between the size of the contrast in the non-activated

voxel i and the same contrast in the least-significantly activated comparison voxel

v.

If this null hypothesis cannot be rejected, voxel i is not activated less than the

compariso voxel v, in addition to not being significantly activated in the first

place: in other words, voxel i is in limbo. In contrast, if the null hypothesis can be

rejected, the voxel is significantly activated less than the significantly activated

areas, and claims about selective activation are warranted.

Multiple Subjects

In the case of multiple subjects, the number of data points in the analysis

corresponds to the number of subjects, m. Again, for all non-significantly

activated voxels, the hypothesis to test is whether the size of their contrast differs

significantly from that of the least significantly activated comparison voxel.

To carry out this analysis, we use a weighted least squares (WLS) approach. We

do this to increase power by weighting the individual subject by the precision (i.e.,

the inverse of the variance) of the estimate of the difference between the size of the

contrast in the voxel of interest i and the comparison voxel v.

For every non-significantly activated voxel i, a m|1 vector Zi is set up, where

every element represents one of the m subjects. The lth element of this vector

contains the difference between the size of the contrast in that specific voxel in

subject l (i.e., cbil) and the size of the same contrast in the comparison voxel v
(cbvl):

Zil~cbvl{cbil: ð12Þ

In addition, for every non-significantly activated voxel, we set up an identical

n|1 design matrix G, filled with only ones and a n|n diagonal weight matrix

Wi. The diagonal of Wi contains the inverse of the standard deviations (i.e.,

square root of the variance) of the estimate of the difference between the

comparison voxel and that particular voxel, 1=sin limbo,j:

Will~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cV̂ilc’zcV̂vlc’{2cV̂ivlc’
p , ð13Þ

How to Identify Brain Areas That Are in Limbo
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where V̂il is the variance of voxel i in subject l and V̂ivl is the covariance between

voxel i and comparison voxel v in subject l as given in Equations 7 and 9.

Finally, we solve the following system of equations:

WiZi~WiGbi ð14Þ

using

b̂i,wls~(G’WiG){1G’WiZi ð15Þ

and

V̂i,wls~ŝ2
i (G’WiG){1, ð16Þ

where ŝ2
i are the summed squared residuals in voxel i. Solving these systems

yields both an estimator of the difference in the size of the contrast in this voxel i

and the comparison voxel v at the level of the group of subjects, b̂i, wls , as well as

an estimator of the variance of this difference, V̂i, wls . These estimates can be used

to calculate a t-value to test the hypothesis that there is no difference between the

sizes of the contrast in the two voxels, similar to Equation 11. If this hypothesis

cannot be rejected at some significance threshold (here we use a~0:05), the size

of the contrast in voxel i is not significantly different from the same contrast in the

comparison voxel v and we conclude that voxel i is in limbo.

Multiple Comparisons Correction

Similar to the standard multiple comparisons corrections on the original contrast,

a multiple comparisons correction procedure could also be used for the final t-test

that compares the contrast size in all non-significantly activated voxels against the

same contrast in the comparison voxel. Procedures such as false discovery rate

(FDR) or Gaussian random field theory are both feasible. An FDR approach might

be more appropriate than a GRF approach, because it is unlikely that the in limbo

landscape of t-values behaves like a Gaussian random field. Here we opted not to

apply any multiple comparisons correction to the in limbo t-values at all.

Application of a multiple comparisons procedure will increase the number of

voxels that are in limbo. The current procedure, without any multiple

comparisons correction thus results in a minimum number of voxels that are in

limbo.

Results

Simulation Studies

Here we present results from two simulation studies that show the effect and

usefulness of the in limbo approach. The simulation studies in this section

How to Identify Brain Areas That Are in Limbo

PLOS ONE | DOI:10.1371/journal.pone.0115700 December 29, 2014 10 / 16



illustrate potential scenarios in which an in limbo approach offers additional

information over and above conventional approaches. The data in these studies

were simulated using the neuRosim package from [18] and analyzed using

custom-built Python scripts.

A Single Subject

In this scenario, a single synthetic subject with a square, 2D-brain employs two

brain regions that are differentially activated compared to the rest of the brain:

region A and B.

As shown in Fig. 3a, Region A is most strongly activated and, consequently, its

task-induced activation survives the cluster-based thresholding. However, the

weaker task-induced activation in region 2 does not survive the thresholding (see

Fig. 3b).

From the original SPM, one might be inclined to draw the conclusion that

region A is selectively activated in the task, in the sense that its activation is

substantially larger than that in other regions (such as region B).

However, this conclusion is based on the imager’s fallacy: to test the hypothesis

of selective activation, one needs to test the difference between regions directly.

After applying the limbo approach it is evident from Fig. 3c why the above

conclusion was fallacious: for the main part of brain region B, the increase in

activation during the task is not significantly less than the least significant increase

in activation in region A.

Multiple Subjects

In a second simulation study we generated data from an fMRI experiment with

multiple subjects. In the ground truth of this simulation, two regions show

increased activation in the experimental condition in all subjects. However, the

effects sizes and the precise location and size of these regions slightly differed

across subjects. When applying the in limbo approach to these data (see Fig. 4),

one can see that both regions are clearly visible in the thresholded level-2 z-map,

but the in limbo map shows that the precise location of these regions is, on a

group-level, more uncertain and less focused than the thresholded map might

suggest.

Real-world Example

The in limbo approach was also applied to real-world fMRI data, taken from [19]

(this dataset is fully available upon request. Please email the original study’s first

author, Birte Forstmann (e-mail: buforstmann@gmail.com), or the first author of

this study (e-mail: gilles.de.hollander@gmail.com)). In this study, subjects

performed a forced-choice two-alternative random dot motion (RDM) task and

were cued to stress either the speed or accuracy of their decision. The main

finding of the study was that both the right striatum and presupplementary motor

area (preSMA) show higher activation when subjects were instructed to stress the
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speed of their decision as compared to when they stressed the accuracy of their

decission.

Re-analysis of the data using a contrast of ‘‘speed condition – accuracy

condition" and a general linear model using a sandwich estimator showed similar

activation patterns as reported in the original study. Right striatum and preSMA

were increasingly activated in the speed-stressed condition as compared to the

accuracy-stressed condition. A similar speed stress-related increase was found in

the bilateral insula and dorsolateral prefrontal cortex. The latter brain regions

were not found in the original study; this is probably due to higher thresholds and

the lack of a conjunction-analysis here.

Fig. 5. Results of the in limbo approach on actual fMRI-data from Forstmann et al. [19], using different
z-thresholds of 2.3, 3.1 and 3.7, corresponding to uncorrected single-sided a-values of p ,0.01, p
,0.001 and p ,0.0001. After this initial thresholding procedure, these surviving areas were corrected at the
cluster-level using Gaussian random field theory. The in limbo areas are not significantly different from the
least-significantly activated brain area, according to a t-test with an alpha-level of p,0.05, uncorrected for
multiple comparisons. Legend: Yellow-red areas are significantly activated, green areas are in limbo. Note
how with a rather liberal threshold of 2.3 almost the entire brain is in limbo and increasing the z-threshold from
3.1 to 3.7 does not change much in volume of brain that is in limbo. Brains are in MNI-152 space with slices at
X542, Y565, Z565.

doi:10.1371/journal.pone.0115700.g005

Table 1. Size of areas in limbo for different thresholds.

z-threshold Volume above threshold (cm3) Volume in limbo (cm3)

2.3 60 813

3.1 14 61

3.7 5 93

4.1 1 188

The amount of area that is labeled in limbo for different z-thresholds applied to the dataset of Forstmann et al., [19].

doi:10.1371/journal.pone.0115700.t001
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When applying the in limbo approach to these data, it becomes apparent that

experimental effects are less specific than the original SPM may suggest. Especially

at a liberal, but common z-threshold of 2.3, a large part of the brain is in limbo, as

can be seen in the large green areas in Fig. 5 and Table 1. At a slightly higher z-

threshold (3.1, corresponding to p ,0.001 uncorrected), both the volume of

activated (orange) areas as the volume of in limbo (green) areas decreases.

Increasing the z-threshold further does not reduce the size of areas in limbo. At a

z-threshold of 4.1, the size of areas of in limbo area even increases slightly. Further

analyses revealed that when the threshold was set at this value of 4.1, a very

different comparison voxel was chosen than those in the other threshold settings.

This voxel has, consequently, a different covariance pattern which resulted in

lower t-values in the in limbo tests, increasing the area that was labeled in limbo.

The regions that are marked in limbo are sensible, as they encompass both (1)

distinct networks that are known to have relatively high variance (e.g., regions in

the midbrain), as well as (2) regions that are significantly activated at lower z-

thresholds or surround regions that are significantly activated. In sum, the in

limbo approach seems to produce sensible results for real fMRI-data,

complementing traditional SPMs with important additional information.

Discussion

The in limbo approach presented here can be useful in different stages of a

neuroimaging analysis. First and foremost, the in limbo approach can be used to

warrant theoretically meaningful claims such as ‘‘region A was selectively involved

in this task’’. Secondly, the approach can be used to choose appropriate z-

thresholds that are strict enough to ascertain that the effects in significantly

activated regions are not similar in effect size to many other brain regions that are

not significantly activated. Third, the approach can serve as a qualitative test to

assess the extent to which a study is underpowered. When a large part of the brain

is in limbo, one might be careful in drawing strong conclusions and consider

conducting a follow-up experiment with more participants and/or trials.

The principle of the in limbo approach could also be applied to other

neuroimaging analysis techniques such as the multivariate pattern searchlight

approach [20]. This increasingly popular approach does not measure mean BOLD

activity but instead quantifies classifier decoding accuracy for different regions in

the brain. For this technique as well as for the more standard analysis techniques,

substantive research questions may center on the specificity of task involvement

across different brain regions – hence, the in limbo style of analysis is just as useful

for the multivariate pattern searchlight approach as in univariate studies.

One could, in a similar vein, also apply the in limbo approach to statistical

parametric mappings of other (structural) imaging modalities, such as diffusion

weighted imaging (DWI) and voxel-based morphometry (VBM). These imaging

techniques are also susceptible to the imager’s fallacy. To give an example: a DWI

study could show, at a first glance, that the white matter integrity of the tracts
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between two specific brain regions is reduced in a patient group as compared to a

control group. However, analysis of a larger cohort may show that white matter

integrity in this patient group is actually reduced in the entire brain, but the

smaller study does not have enough power to pick up this global effect. An in

limbo-like approach could protect against the premature conclusion as it may

show, also in the underpowered study, that the reduction is not specific to only

one white matter tract.

One may rally against the in limbo approach and argue that it is problematic to

compare BOLD responses between brain regions that differ considerably in

neurovascular coupling. However, this argument holds for neuroimaging analyses

in general: most approaches compare the activation of different brain regions,

albeit implicitly, as the occurrence of activity in a given brain region is only

interesting in the absence of activation elsewhere. Our approach makes this

comparison process explicit. Inference remains valid in our approach because we

used the sandwich estimator which accounts for misspecification in the HRF.

However, future work could further improve inference by explicitly accounting

for neurovascular differences between regions. Work on this topic features in the

literature on connectivity measures such as psychophysiological interaction

analysis (PPI, [21]) and dynamic causal modelling (DCM, [22]).

It is important to stress that the proposed approach is not a way to find

marginal or trending regions that might be involved in the task. The in limbo

approach informs researchers about the specificity of the significant activation

patterns by identifying the areas whose activation patterns are not significantly

different. One should refrain from drawing any strong conclusions about the areas

that are found to be in limbo.

Researchers should be cautious in how to visualize areas that are in limbo. Here

we adopted a color scheme where the in limbo areas are labeled green, to

emphasize that a large volume in the brain can be in limbo when liberal

significance thresholds are used. Alternatively, one may color code not the in

limbo areas, but the areas that are not significantly activated, nor in limbo.

However, this color code may tempt researchers to falsely conclude that the

colored areas are ‘‘significantly inactivated’’. This conclusion is invalid in the

frequentist framework employed here.

In the approach presented here, we chose to pick the least-significantly

activated voxel as the comparison voxel for all not significantly activated regions.

One could argue that this approach is conservative and one could instead select, as

a comparison standard, for example, the median z-value of the significantly

activated regions. Doing so will lead to a smaller volume of regions that are judged

to be in limbo. However, the interpretation of the areas that are not in limbo then

becomes less straightforward: they are significantly different from the median-z

value, but not necessarily different from less-significantly activated areas. When

one uses the least-significantly activated voxel as the comparison voxel, one knows

for sure that the effect sizes in areas that are not in limbo are all significantly

different from those in all significantly activated areas. Therefore, we favor the use

of the least-significantly activated voxel as a comparison voxel.
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In our approach we chose to use the sandwich variance estimator, because the

in limbo test should take into account both the within-voxel variance and the

across-voxel variance. Both variances are underestimated by OLS estimators, even

when the data are prewhitened with an AR(1)-model, as this autocorrelation

model is known to be incorrect [9, 14]. The sandwich approach is, however, rather

uncommon and computationally intensive. A simpler and computationally less

intensive approach is to conduct a standard level–2 analysis, find the least-

significantly activated voxel, subtract its effect size from the individual contrasts

(separately for each participant) and conduct the level 2-analysis again. We

implemented such an analysis and found in limbo areas that were similar but

slightly smaller than those identified by the current approach, especially at lower

z-thresholds (See http://nbviewer.ipython.org/github/Gilles86/in_limbo/blob/

master/notebooks/level2_simple.ipynb for code and more details). When one

trusts the AR(1)-whitening procedure, a similar approach could be implemented

that takes into account the covariance between voxels. The practical importance of

any differences between the various methods remains an empirical question and

awaits further research.

The attentive reader that takes a closer look at the in limbo areas at different

thresholds in Fig. 5, will note that at higher thresholds, the areas that are in limbo

highly overlap with significantly activated areas at slightly less-stringent thresh-

olds, albeit they are not the same. One could ask why one should apply the in

limbo approach and not just ‘‘lower the threshold’’. The answer to this question

lies in the interpretability of the results: when lowering the threshold, this will

most likely done choosing an arbitrary amount. In contrast, the in limbo

approach offers a theoretically founded, meaningful map of areas that are not

significantly different from areas that differ from baseline.

To conclude: we presented a new statistical method to aid researchers in their

fMRI analyses, by highlighting regions in which the experimental effect size is in

limbo. Regions that are in limbo differ neither from baseline nor from regions that

are significantly different from baseline. The in limbo approach helps reduce the

impact of the imager’s fallacy, allows researchers to choose sensible statistical

thresholds, and promotes sound inferences.
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