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Fetal electrocardiogram (FECG) extraction is an important issue in biomedical signal processing. In this paper, we develop an
objective function for extraction of FECG. The objective function is based on the non-Gaussianity and the temporal structure of
source signals. Maximizing the objective function, we can extract the desired FECG. Combining with the solution vector obtained
by maximizing the objective function, we further improve the accuracy of the extracted FECG. In addition, the feasibility of the
innovativemethods is analyzed bymathematical derivation theoretically and the efficiency of the proposed approaches is illustrated
with the computer simulations experimentally.

1. Introduction

In biomedical signal processing, fetal electrocardiogram
(FECG) extraction is full of challenges. FECG provides
important information about the health of the fetus.However,
FECG is always buried in various interferences and noises.
Among these interferences and noises, maternal electrocar-
diogram (MECG) is the strongest one with high amplitude.
Besides, breathing artifact, electrode artifact, and other noises
also affect the desired FECG.Therefore, it is a difficult task to
extract accurate FECG.

Traditional methods cannot get satisfactory results, such
as multireference adaptive noise cancellation [1] and singular
value decomposition [2]. Recently, the blind source separa-
tion (BSS) model [3–6] is introduced to solve the extraction
problem of the desired FECG and shows satisfactory results.
BSS algorithms can separate all sources from mixtures with-
out any priori knowledge. In BSS algorithms, the ICA model
[7–9] utilizes the non-Gaussianity [10] of signals to separate
all source signals.This model is suitable for biomedical signal
processing [11] and non-Gaussianity becomes an important
tool to process these kinds of signals. In [12], traditional BSS
algorithms and joint BSS algorithmswere used to separate the
maternal signal and the fetal signal. Authors [13] proposed

twomethods based on hybrid BSS to get FECG signals.These
methods get better results than traditional BSS algorithms.
However, the extraction of the desired FECG with the BSS
algorithms is not the best choice. On one hand, separating
all sources is a waste of time and not necessary if only
the desired FECG is needed. On the other hand, the prior
knowledge about the desired FECG can be utilized by us.
According to this situation, blind source extraction (BSE)
rises in response to the proper time and conditions and
becomes a better choice than BSS. BSE only separates one
source signal every time, so it has higher efficiency when
it extracts the desired FECG. FECG is a special signal with
the temporal structure. As prior knowledge, this structure
can help us recover source signals. Barros and Cichocki [14]
proposed a BSE algorithm called BCBSE. This algorithm can
extract the desired FECG by utilizing the temporal structure.
However, the algorithm is very sensitive to the estimation
error of the optimal time delay. To overcome the drawback of
BCBSE, Shi and Zhang [15] developed another BSE algorithm
called SemiBSE based on the non-Gaussianity and the mean
squared error function that is described in [14]. This method
improves the performance of BCBSE. It is more robust for
the estimation error of the optimal time delay. However,
the performance of this algorithm is up to the choice of
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the parameters. If we initialize the parameters randomly,
the performance of the algorithm becomes weaker. A BSE
method called MACBSE [16] was proposed based on several
time-delay autocorrelations of primary sources. MACBSE
adopts a fixed-point learning algorithm for extraction of
the desired source signal without choosing the learning step
size. Authors [17] proposed a BSE algorithm called GABSE
based on the generalized linear or nonlinear autocorrelations
of the sources. This method has fast convergence speed
and good stability if any two sources are uncorrelated with
each other and have different temporal structures. A fast
and robust fixed-point algorithm based on the nonlinear
autocorrelation was proposed in [18]. Its convergence speed
is shown to be at least quadratic. Li and Liao [19] proposed
an algorithm based on the eigenvalue decomposition of the
cross-correlation of whitened source signals at a given time
tag. This algorithm functions without iterations. Wang et al.
[20] proposed a robust separation algorithm to recover orig-
inal sources through a joint diagonalizer of several average
delayed covariance matrices at positions of the optimal time
delay and its integers.

In order to settle the above problembetter, we put forward
the method based on the non-Gaussianity and the temporal
structure of source signals. This paper consists of two main
parts. First, we design an objective function to get the weight
vector for extraction of the desired FECG. Then, the weight
vector obtained by maximizing the objective function is
combined with the FastICA algorithm to further improve the
performance of the algorithm.

This paper is organized as follows. Section 2 introduces
the basic theory of our algorithms. As the principle part,
we highlight the algorithms and the analysis about the
algorithms in Section 3. Simulation results are presented in
Section 4, and conclusions are made in Section 5.

2. The Basic Model

The linear instantaneous mixed model of BSS problems can
be denoted as

x (𝑡) = As (𝑡) + n (𝑡) , (1)

where x(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇 is the 𝑛-dimension

mixture vector, A = [a
1
, . . . , a

𝑚
] is an unknown mixing

matrix, s(𝑡) = [𝑠
1
(𝑡), 𝑠
2
(𝑡), . . . , 𝑠

𝑚
(𝑡)]
𝑇 is the 𝑚-dimension

source vector, and n(𝑡) is the noise vector. If the noise
is ignored, the noiseless model of BSS problems can be
expressed as

x (𝑡) = As (𝑡) . (2)

Preprocessing for themixtures is usually necessary before the
BSS algorithms. First, the mixtures are made to own zero
mean through the following formula:

x̂ (𝑡) = x (𝑡) − 𝐸 [x (𝑡)] , (3)

where x̂(𝑡) is the new mixture vector. Then, the prewhitening
process makes any two variables of the newmixtures orthog-
onal and gets the whitened mixtures

x̃ (𝑡) = Vx̂ (𝑡) , (4)

where V is the prewhitening matrix. For a BSE algorithm,
only a source signal can be separated at a time. If the
unmixing matrix is w = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇, the estimated

source signal can be denoted as

𝑦 (𝑡) = w𝑇x̃ (𝑡) . (5)

Meanwhile, the delayed estimated source signal can be
expressed as

𝑦 (𝑡 − 𝜏) = w𝑇x̃ (𝑡 − 𝜏) , (6)

where 𝜏 is the time delay that is some lag constant. The
estimation error of the optimal time delay may have bad
effect on the performance of the algorithms, so the reasonable
estimation is important. The specific estimation method of
the optimal time delay refers to [14].

3. The Proposed Algorithms

3.1. The Proposed Algorithm 1

3.1.1. Objective Function. In order to avoid the blindness of
choosing parameters, we combine the non-Gaussianity and
the temporal structure to design the following constrained
maximization problem:

max
‖𝑤‖=1

𝜓 (w) = 𝐸 {𝐺 [𝑦 (𝑡)] 𝐺 [𝑦 (𝑡) 𝑦 (𝑡 − 𝜏)]}

= 𝐸 {𝐺 [w𝑇x̃ (𝑡)] 𝐺 [w𝑇x̃ (𝑡) x̃ (𝑡 − 𝜏)
𝑇w]} ,

(7)

where 𝐺 is a differentiable nonlinear function. This function
utilizes the non-Gaussianity, the temporal structure, and the
nonlinear correlation.

3.1.2. Learning Algorithm. With respect to w, the gradient of
𝐸{𝐺[𝑦(𝑡)]𝐺[𝑦(𝑡)𝑦(𝑡 − 𝜏)]} can be obtained as

𝜕𝐸 {𝐺 [𝑦 (𝑡)] 𝐺 [𝑦 (𝑡) 𝑦 (𝑡 − 𝜏)]}

𝜕w
= 𝐸 {x̃ (𝑡) 𝑔 [𝑦 (𝑡)] 𝐺 [𝑦 (𝑡) 𝑦 (𝑡 − 𝜏)]}

+ 𝐸 {x̃ (𝑡) 𝑦 (𝑡 − 𝜏) 𝑔 [𝑦 (𝑡) 𝑦 (𝑡 − 𝜏)] 𝐺 [𝑦 (𝑡)]}

+ 𝐸 {x̃ (𝑡 − 𝜏) 𝑦 (𝑡) 𝑔 [𝑦 (𝑡) 𝑦 (𝑡 − 𝜏)] 𝐺 [𝑦 (𝑡)]} ,

(8)

where 𝑔 is the derivative of 𝐺. According to the gradient
ascent learning rule, a gradient method can be derived as
follows:

w ← w + 𝜇
𝜕𝐸 {𝐺 [𝑦 (𝑡) 𝑦 (𝑡 − 𝜏)]}

𝜕w
= w

+ 𝜇 (𝐸 {x̃ (𝑡) 𝑔 [𝑦 (𝑡)] 𝐺 [𝑦 (𝑡) 𝑦 (𝑡 − 𝜏)]}

+ 𝐸 {x̃ (𝑡) 𝑦 (𝑡 − 𝜏) 𝑔 [𝑦 (𝑡) 𝑦 (𝑡 − 𝜏)] 𝐺 [𝑦 (𝑡)]}

+ 𝐸 {x̃ (𝑡 − 𝜏) 𝑦 (𝑡) 𝑔 [𝑦 (𝑡) 𝑦 (𝑡 − 𝜏)] 𝐺 [𝑦 (𝑡)]}) ,

w =
w
‖w‖

,

(9)
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where 𝜇 is a learning rate.The desired vector can be obtained
through this method, but the corresponding cost is that
the convergence speed of the algorithm is slow and the
performance of the algorithm is dependent on the proper
choice of the learning rate. If the learning rate is chosen
improperly, the convergence property will be destroyed.
Therefore, how to find a new approach to radically improve
the convergence speed and the reliability is an important
issue that needs to be solved. The fixed-point algorithm is a
choice to solve this issue. For getting a more efficient fixed-
point algorithm, we note that the gradient must point in the
direction of w at a stable point of the gradient algorithm. It
means the gradient must be equal to w multiplied by some
scalar constant. In such a case, adding the gradient to w does
not change its direction and the convergence can be obtained.
Through normalization to the unit norm, the value ofw is not
changed except by changing its sign.Therefore, the following
formula can be obtained:

w ∝ 𝐸 {x̃ (𝑡) 𝑔 [𝑦 (𝑡)] 𝐺 [𝑦 (𝑡) 𝑦 (𝑡 − 𝜏)]}

+ 𝐸 {x̃ (𝑡) 𝑦 (𝑡 − 𝜏) 𝑔 [𝑦 (𝑡) 𝑦 (𝑡 − 𝜏)] 𝐺 [𝑦 (𝑡)]}

+ 𝐸 {x̃ (𝑡 − 𝜏) 𝑦 (𝑡) 𝑔 [𝑦 (𝑡) 𝑦 (𝑡 − 𝜏)] 𝐺 [𝑦 (𝑡)]} .

(10)

Through the above formula, the fixed-point algorithm can be
updated as

w ← 𝐸 {x̃ (𝑡) 𝑔 [𝑦 (𝑡)] 𝐺 [𝑦 (𝑡) 𝑦 (𝑡 − 𝜏)]}

+ 𝐸 {x̃ (𝑡) 𝑦 (𝑡 − 𝜏) 𝑔 [𝑦 (𝑡) 𝑦 (𝑡 − 𝜏)] 𝐺 [𝑦 (𝑡)]}

+ 𝐸 {x̃ (𝑡 − 𝜏) 𝑦 (𝑡) 𝑔 [𝑦 (𝑡) 𝑦 (𝑡 − 𝜏)] 𝐺 [𝑦 (𝑡)]} ,

w =
w
‖w‖

.

(11)

Utilizing the above fixed-point algorithm, we can extract the
desired signal.

3.1.3. Stability Analysis. In this part, we analyze the stability
of the proposed algorithm.

Theorem 1. Assume that the input data meet the model as (2).
The data are prewhitened through equation x̃ = VAs and𝐺 is a
quite smooth even function. Furthermore, we assume that 𝛿𝑠

𝑖
=

𝑠
𝑖
(𝑡)𝑠
𝑖
(𝑡 − 𝜏) (𝑖 = 1, 2, . . . , 𝑛) are mutually independent. To

simplify it, 𝑠
𝑖
(𝑡)𝑠
𝑖
(𝑡−𝜏) is replaced by 𝑠

𝑖
𝑠
𝑖𝜏
. Under the constraint

‖w‖ = 1, the local maxima of 𝐸{𝐺[𝑦(𝑡)]𝐺[𝑦(𝑡 − 𝜏)]} include
one row of the inverse of the matrix VA if the corresponding
desired signal 𝑠

𝑖
satisfies

𝐸 [𝑔

(𝑠
𝑖
) 𝐺 (𝑠
𝑖
𝑠
𝑖𝜏
) + 𝑠
𝑖𝜏
𝑔 (𝑠
𝑖
) 𝑔 (𝑠
𝑖
𝑠
𝑖𝜏
)

+ 2𝑠
𝑖

2
𝑔

(𝑠
𝑖
𝑠
𝑖𝜏
) 𝐺 (𝑠
𝑖
) + 2𝑠

𝑖
𝑠
𝑖𝜏
𝑠
𝑗
𝑠
𝑗𝜏
𝑔

(𝑠
𝑖
𝑠
𝑖𝜏
) 𝐺 (𝑠
𝑖
)

+ 3𝑠
𝑖
𝑠
𝑗
𝑠
𝑗𝜏
𝑔 (𝑠
𝑖
) 𝑔 (𝑠
𝑖
𝑠
𝑖𝜏
) − 𝑠
𝑖
𝑔 (𝑠
𝑖
) 𝐺 (𝑠
𝑖
𝑠
𝑖𝜏
)

− 2𝑠
𝑖
𝑠
𝑖𝜏
𝑔 (𝑠
𝑖
𝑠
𝑖𝜏
) 𝐺 (𝑠
𝑖
)] < 0 (∀𝑖 ̸= 𝑗) ,

(12)

where 𝑔 is the derivative of 𝑔.

Proof. According to the above conditions, we make the
orthogonal transform of coordinates p = A𝑇V𝑇w and obtain

𝐻(p) = 𝐸 {𝐺 (p𝑇ss
𝜏

𝑇p)} . (13)

We analyze the stability at the point p = e
1
= (1, 0, 0, 0, . . . )

𝑇.
The independency assumptions are utilized to evaluate the
gradient and the Hessian matrix of𝐻(p) at the point p = e1.
Then, through making a small perturbation 𝜀 = (𝜀

1
, 𝜀
2
, . . .),

where 𝜀
1
and 𝜀
2
are the elements of 𝜀, we get

𝐻(e
1
+ 𝜀) = 𝐻 (e

1
) + 𝜀
𝑇
𝜕𝐻 (e

1
)

𝜕p
+
1

2
𝜀
𝑇
𝜕𝐻 (e

1
)

𝜕p
𝜀

+ 𝑜 (‖𝜀‖
2
) ,

(14)

where 𝜕𝐻(e
1
)/𝜕p and 𝜕2𝐻(e

1
)/𝜕p2 are expressed as

𝜕𝐻 (e
1
)

𝜕p
= e
1
𝐸 {𝑠
1
𝑔 (𝑠
1
) 𝐺 (𝑠
1
𝑠
1𝜏
) + 2𝑠

1
𝑠
1𝜏
𝑔 (𝑠
1
𝑠
1𝜏
)

⋅ 𝐺 (𝑠
1
)} ,

𝜕𝐻2 (e
1
)

𝜕p2
= diag (𝐸 {𝑠

1

2
𝑔

(𝑠
1
) 𝐺 (𝑠
1
𝑠
1𝜏
)

+ 4𝑠
1

2
𝑠
1𝜏
𝑔 (𝑠
1
) 𝑔 (𝑠
1
𝑠
1𝜏
)

+ 4𝑠
1

2
𝑠
1𝜏

2
𝑔

(𝑠
1
𝑠
1𝜏
) 𝐺 (𝑠
1
)} , 𝐸 {𝑔


(𝑠
1
) 𝐺 (𝑠
1
𝑠
1𝜏
)

+ 𝑠
1𝜏
𝑔 (𝑠
1
) 𝑔 (𝑠
1
𝑠
1𝜏
) + 2𝑠

1

2
𝑔

(𝑠
1
𝑠
1𝜏
) 𝐺 (𝑠
1
)

+ 2𝑠
1
𝑠
1𝜏
𝑠
2
𝑠
2𝜏
𝑔

(𝑠
1
𝑠
1𝜏
) 𝐺 (𝑠
1
)

+ 3𝑠
1
𝑠
2
𝑠
2𝜏
𝑔 (𝑠
1
) 𝑔 (𝑠
1
𝑠
1𝜏
)} , . . . , 𝐸 {𝑔


(𝑠
1
) 𝐺 (𝑠
1
𝑠
1𝜏
)

+ 𝑠
1𝜏
𝑔 (𝑠
1
) 𝑔 (𝑠
1
𝑠
1𝜏
) + 2𝑠

1

2
𝑔

(𝑠
1
𝑠
1𝜏
) 𝐺 (𝑠
1
)

+ 2𝑠
1
𝑠
1𝜏
𝑠
𝑗
𝑠
𝑗𝜏
𝑔

(𝑠
1
𝑠
1𝜏
) 𝐺 (𝑠
1
)

+ 3𝑠
1
𝑠
𝑗
𝑠
𝑗𝜏
𝑔 (𝑠
1
) 𝑔 (𝑠
1
𝑠
1𝜏
)}) .

(15)

Because of the constraint ‖w‖ = 1, we can know 𝜀
1

=

√1 − 𝜀2
2
− ⋅ ⋅ ⋅ − 1. Meanwhile, √1 − 𝛾 = 1 − 𝛾/2 + 𝑜(𝛾) is

known. The order of 𝜀2
1
is 𝑜(‖𝜀‖2), so the higher order terms

can be neglected.Through the first-order approximation of 𝜀
1

that is described above, we know 𝜀
1
= −∑

𝑖>1
𝜀2
𝑖
/2 + 𝑜(‖𝜀‖2)

and obtain

𝐻(e
1
+ 𝜀) = 𝐻 (e

1
) +

1

2
𝐸 {𝑔

(𝑠
1
) 𝐺 (𝑠
1
𝑠
1𝜏
)

+ 𝑠
1𝜏
𝑔 (𝑠
1
) 𝑔 (𝑠
1
𝑠
1𝜏
) + 2𝑠

1

2
𝑔

(𝑠
1
𝑠
1𝜏
) 𝐺 (𝑠
1
)

+ 2𝑠
1
𝑠
1𝜏
𝑠
𝑗
𝑠
𝑗𝜏
𝑔

(𝑠
1
𝑠
1𝜏
) 𝐺 (𝑠
1
)

+ 3𝑠
1
𝑠
𝑗
𝑠
𝑗𝜏
𝑔 (𝑠
1
) 𝑔 (𝑠
1
𝑠
1𝜏
) − 𝑠
1
𝑔 (𝑠
1
) 𝐺 (𝑠
1
𝑠
1𝜏
)

− 2𝑠
1
𝑠
1𝜏
𝑔 (𝑠
1
𝑠
1𝜏
) 𝐺 (𝑠
1
)}∑
𝑗>1

𝜀
𝑗

2
+ 𝑜 (‖𝜀‖

2
) .

(16)
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p = e
1
is an extremum that is implied in the condition of

Theorem 1 if the following condition is satisfied:

𝐸 [𝑔

(𝑠
1
) 𝐺 (𝑠
1
𝑠
1𝜏
) + 𝑠
1𝜏
𝑔 (𝑠
1
) 𝑔 (𝑠
1
𝑠
1𝜏
)

+ 2𝑠
1

2
𝑔

(𝑠
1
𝑠
1𝜏
) 𝐺 (𝑠
1
)

+ 2𝑠
1
𝑠
1𝜏
𝑠
𝑗
𝑠
𝑗𝜏
𝑔

(𝑠
1
𝑠
1𝜏
) 𝐺 (𝑠
1
)

+ 3𝑠
1
𝑠
𝑗
𝑠
𝑗𝜏
𝑔 (𝑠
1
) 𝑔 (𝑠
1
𝑠
1𝜏
) − 𝑠
1
𝑔 (𝑠
1
) 𝐺 (𝑠
1
𝑠
1𝜏
)

− 2𝑠
1
𝑠
1𝜏
𝑔 (𝑠
1
𝑠
1𝜏
) 𝐺 (𝑠
1
)] < 0.

(17)

Based on the above descriptions, this condition can be
expanded as

𝐸 [𝑔

(𝑠
𝑖
) 𝐺 (𝑠
𝑖
𝑠
𝑖𝜏
) + 𝑠
𝑖𝜏
𝑔 (𝑠
𝑖
) 𝑔 (𝑠
𝑖
𝑠
𝑖𝜏
)

+ 2𝑠
𝑖

2
𝑔

(𝑠
𝑖
𝑠
𝑖𝜏
) 𝐺 (𝑠
𝑖
) + 2𝑠

𝑖
𝑠
𝑖𝜏
𝑠
𝑗
𝑠
𝑗𝜏
𝑔

(𝑠
𝑖
𝑠
𝑖𝜏
) 𝐺 (𝑠
𝑖
)

+ 3𝑠
𝑖
𝑠
𝑗
𝑠
𝑗𝜏
𝑔 (𝑠
𝑖
) 𝑔 (𝑠
𝑖
𝑠
𝑖𝜏
) − 𝑠
𝑖
𝑔 (𝑠
𝑖
) 𝐺 (𝑠
𝑖
𝑠
𝑖𝜏
)

− 2𝑠
𝑖
𝑠
𝑖𝜏
𝑔 (𝑠
𝑖
𝑠
𝑖𝜏
) 𝐺 (𝑠
𝑖
)] < 0 (∀𝑖 ̸= 𝑗) .

(18)

3.1.4. Convergence Analysis. Convergence is also important
like stability. In this part, we analyze the convergence of the
algorithm.

Theorem 2. If the following two conditions are satisfied, the
algorithm described in formula (11) can reach convergence:

(1) {𝑠
𝑖
, 𝑠
𝑖𝜏
} and {𝑠

𝑗
, 𝑠
𝑗𝜏
} are mutually independent.

(2) 𝐸{𝑠
𝑖
𝑔(𝑠
𝑖
)𝐺(𝑠
𝑖
𝑠
𝑖𝜏
) + 2𝑠
𝑖
𝑠
𝑖𝜏
𝑔(𝑠
𝑖
𝑠
𝑖𝜏
)𝐺(𝑠
𝑖
)} ̸= 0.

Proof. Based on the orthogonal coordinate transformation
p = A𝑇V𝑇w, formula (11) is changed to

p̂ (𝑘) = 𝐸 {s𝑔 [p𝑇 (𝑘) s] 𝐺 [p𝑇 (𝑘) ss
𝜏

𝑇p (𝑘)]}

+ 𝐸 {s [p𝑇 (𝑘) s
𝜏
] 𝑔 [p𝑇 (𝑘) ss

𝜏

𝑇p (𝑘)] 𝐺 [p𝑇 (𝑘) s]}

+ 𝐸 {s
𝜏
[p𝑇 (𝑘) s] 𝑔 [p𝑇 (𝑘) ss

𝜏

𝑇p (𝑘)] 𝐺 [p𝑇 (𝑘) s]} ,

p (𝑘 + 1) =
p̂ (𝑘)
‖p̂ (𝑘)‖

,

(19)

where 𝑘 is the number of iterations. Using a Taylor approxi-
mation for 𝐺 and 𝑔, we have

𝐺(p𝑇 (𝑘) s) = 𝐺 (𝑝
𝑖
𝑠
𝑖
) + 𝑔 (𝑝

𝑖
𝑠
𝑖
) p𝑇
−𝑖
s
−𝑖

+ 𝑜 (
p−𝑖


2

) ,

𝑔 (p𝑇 (𝑘) s) = 𝑔 (𝑝
𝑖
𝑠
𝑖
) + 𝑔

(𝑝
𝑖
𝑠
𝑖
) p𝑇
−𝑖
s
−𝑖

+ 𝑜 (
p−𝑖


2

) ,

𝐺 [p𝑇 (𝑘) ss
𝜏

𝑇p (𝑘)] = 𝐺 (𝑝
𝑖
𝑠
𝑖
𝑝
𝑖
𝑠
𝑖𝜏
)

+ 𝑔 (𝑝
𝑖
𝑠
𝑖
𝑝
𝑖
𝑠
𝑖𝜏
) p𝑇
−𝑖
s
−𝑖
s𝑇
−𝑖𝜏

p
−𝑖

+ 𝑜 (
p−𝑖


2

) ,

𝑔 [p𝑇 (𝑘) ss
𝜏

𝑇p (𝑘)] = 𝑔 (𝑝
𝑖
𝑠
𝑖
𝑝
𝑖
𝑠
𝑖𝜏
)

+ 𝑔

(𝑝
𝑖
𝑠
𝑖
𝑝
𝑖
𝑠
𝑖𝜏
) p𝑇
−𝑖
s
−𝑖
s𝑇
−𝑖𝜏

p
−𝑖

+ 𝑜 (
p−𝑖


2

) ,

(20)

where p
−𝑖
is the vector p without its 𝑖th component, s

−𝑖
is the

vector s without its 𝑖th component, and s
−𝑖𝜏

is the vector s
𝜏

without its 𝑖th component.
Similarly, we analyze the convergence at the point p =

e, where 𝑒
𝑖
is 1 and 𝑒

𝑗
is 0 (∀𝑗 ̸= 𝑖). Based on the above

conditions, we get

�̂�
𝑖
= 𝐸 {𝑠

𝑖
𝑔 (𝑠
𝑖
) 𝐺 (𝑠
𝑖
𝑠
𝑖𝜏
) + 2𝑠

𝑖
𝑠
𝑖𝜏
𝑔 (𝑠
𝑖
𝑠
𝑖𝜏
) 𝐺 (𝑠
𝑖
)}

+ 𝑜 (
p−𝑖


2

) ,

�̂�
𝑗
= 𝐸 {𝑔


(𝑠
𝑖
) 𝐺 (𝑠
𝑖
𝑠
𝑖𝜏
) + 𝑠
𝑖𝜏
𝑔 (𝑠
𝑖
) 𝑔 (𝑠
𝑖
𝑠
𝑖𝜏
)

+ 𝑠
𝑖
𝑠
𝑗
𝑠
𝑗𝜏
𝑔 (𝑠
𝑖
) 𝑔 (𝑠
𝑖
𝑠
𝑖𝜏
)} 𝑝
𝑗
+ 𝑜 (

p−𝑖

2

) .

(21)

The above equations clearly show that the algorithm con-
verges to such a vector e in which 𝑒

𝑖
is 1 and 𝑒

𝑗
is 0 if condition

(2) is satisfied. It means that 𝑤 = ((VA)𝑇)−1q can converge
without computing the sign. This shows that w converges as
Theorem 2.

3.2.The ProposedAlgorithm 2. On the basis of the above algo-
rithm, we propose another improved algorithm by utilizing
the FastICA algorithm. The FastICA algorithm is a typical
ICA algorithm. The source signal can be estimated through
maximizing the non-Gaussianity function of signals. One of
the representative non-Gaussianity functions is negentropy.
However, this algorithm is based on the theory of projection
pursuit, so any signalmay be first extracted. According to this
problem, we propose an improved algorithm by presetting
the weight vector. The method of projection pursuit searches
for a projection output to maximize the objective function.
Based on the theory of ICA, a local extremum in the solution
space of the projection direction is obtained if the negentropy
is the objective function. The output of the corresponding
data for this local extremum is an independent component. If
the mixtures consist of𝑚 source signals, the parameter space
formed by ICA will have 2𝑚 local extrema that correspond
to signed solutions of all source signals. Meanwhile, a local
optimal solution owns its attraction region for a greedy
optimization algorithm that is based on projection pursuit.
In other words, the initial point in this region converges to
this local optimal solution with this algorithm. The FastICA
algorithm may not extract the desired signal if the initial
weight matrix is arbitrary. However, if the initial weight
matrix is near the local optimal solution that corresponds to
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the desired signal, the desired source signal can be extracted.
The solution vector of the proposed algorithm 1 can be the
initial weight matrix of the FastICA algorithm and help the
algorithm extract the desired source signal. The solution
vector of the proposed algorithm 1 is denoted as

w0 = [𝑤
1
, . . . , 𝑤

𝑖
, . . . , 𝑤

𝑗
, . . . , 𝑤

𝑛
]
𝑇

. (22)

It is the initial weight matrix of the proposed algorithm 2.
Then, we can extract the desired signal with the FastICA algo-
rithm based on the negentropy. The approximate negentropy
in literatures can be denoted as

𝐽 (𝑦) ∝ {𝐸 [𝐺 (𝑦)] − 𝐸 [𝐺 (V)]}2 . (23)

The gradient of 𝐽(𝑦) is written as

∇𝐽 (𝑦) ∝ 𝛾𝐸 {x̃ (𝑡) 𝑔 [𝑦 (𝑡)]} , (24)

where 𝛾 = 𝐸[𝐺(𝑦)] − 𝐸[𝐺(V)]; the learning algorithm is
obtained as follows:

Δw = {𝐸 [𝐺 (𝑦)] − 𝐸 [𝐺 (V)]} 𝐸 {x̃ (𝑡) 𝑔 [𝑦 (𝑡)]} ,

w ←
w
‖w‖

.
(25)

The corresponding fixed-point algorithm is denoted as

w ← 𝐸 {x̃ (𝑡) 𝑔 [𝑦 (𝑡)]} ,

w ←
w
‖w‖

.
(26)

However, the convergence property of the FastICA algorithm
based on the negentropy is unsatisfactory because the non-
polynomial moment does not own good algebra property.
Therefore, the Newton iteration algorithm is usually utilized
to improve the process. If the maximization of 𝐸{𝐺[w𝑇x(𝑡)]}
under the constraint ‖w‖ = 1 is considered, the optimization
problem with the Lagrangian multiplier method can be
changed to

𝐹 (w) = 𝐸 {𝐺 [w𝑇x̃ (𝑡)]} + 𝛽w𝑇w. (27)

Thefirst-order derivative and the second-order derivative can
be denoted as

𝜕𝐹 (w)
𝜕w

= 𝐸 {x̃ (𝑡) 𝑔 [w𝑇x̃ (𝑡)]} + 2𝛽w,

𝜕2𝐹 (w)
𝜕w2

= 𝐸 {x̃ (𝑡) x̃ (𝑡)𝑇 𝑔 [w𝑇x̃ (𝑡)]} + 2𝛽I

≈ 𝐸 [x̃ (𝑡) x̃ (𝑡)𝑇] 𝐸 {𝑔

[w𝑇x̃ (𝑡)]} + 2𝛽I

= 𝐸 {𝑔

[w𝑇x̃ (𝑡)]} I + 2𝛽I.

(28)

In order to avoid calculating the inverse of the matrix, the
simple approximation is made to get the following Newton
iteration algorithm:

w ← w −
𝜕𝐹 (w) /𝜕w
𝜕2𝐹 (w) /𝜕w2

= w − 𝐸 {x̃ (𝑡) 𝑔 [w𝑇x̃ (𝑡)]}

+
2𝛽w

(𝐸 {𝑔 [w𝑇x̃ (𝑡)]} + 2𝛽)
.

(29)

Both sides of the above equation are multiplied by
𝐸{𝑔[w𝑇x̃(𝑡)]} + 2𝛽 and then the learning algorithm
after the algebraic simplification is denoted as

w ← 𝐸{x̃ (𝑡) 𝑔 [w𝑇x̃ (𝑡)]} − 𝐸 {𝑔

[w𝑇x̃ (𝑡)]}w,

w ←
w
‖w‖

.
(30)

Formula (30) is the basic formula of the fixed-point FastICA
algorithm.

Here, we analyze the condition that the initial weight
vectormustmeet in order to get the desired signal. According
to formula (30), we get

ŵ (𝑘) ← 𝐸 {x̃ (𝑡) 𝑔 [w (𝑘)
𝑇 x̃ (𝑡)]}

− 𝐸 {𝑔

[w (𝑘)

𝑇 x̃ (𝑡)]}w (𝑘) ,

w (𝑘 + 1) =
ŵ (𝑘)

‖ŵ (𝑘)‖
.

(31)

Based on formula (31) andq = A𝑇V𝑇w, the following formula
is obtained:

q̂ (𝑘) ← 𝐸 {s (𝑡) 𝑔 [q (𝑘)𝑇 s (𝑡)]}

− 𝐸 {𝑔

[q (𝑘)𝑇 s (𝑡)]} q (𝑘) ,

q (𝑘 + 1) =
q̂ (𝑘)
‖q̂ (𝑘)‖

.

(32)

Assuming 𝑎
𝑘
= 1/‖q̂(𝑘)‖, we obtain

q (𝑘 + 1) = 𝑎
𝑘
𝐸 {s (𝑡) 𝑔 [q (𝑘)𝑇 s (𝑡)]}

− 𝑎
𝑘
𝐸 {𝑔

[q (𝑘)𝑇 s (𝑡)]} q (𝑘) .

(33)
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To analyze conveniently, we choose 𝐺 = 𝑦4/4 to illustrate.
Therefore, 𝑔 = 𝑦3 and 𝑔 = 3𝑦2 can be obtained. Formula
(33) can be simplified as

q (𝑘 + 1) = 𝑎
𝑘
[

[

𝐸
{

{

{

𝑠
1
(

𝑀

∑
𝑚=1

𝑞
𝑚
(𝑘) 𝑠
𝑚
)

3

}

}

}

− 3𝑞
1
(𝑘)

⋅ 𝐸
{

{

{

(

𝑀

∑
𝑚=1

𝑞
𝑚
(𝑘) 𝑠
𝑚
)

2

}

}

}

, . . . ,

𝐸
{

{

{

𝑠
𝑖
(

𝑀

∑
𝑚=1

𝑞
𝑚
(𝑘) 𝑠
𝑚
)

3

}

}

}

− 3𝑞
𝑖
(𝑘)

⋅ 𝐸
{

{

{

(

𝑀

∑
𝑚=1

𝑞
𝑚
(𝑘) 𝑠
𝑚
)

2

}

}

}

, . . . ,

𝐸
{

{

{

𝑠
𝑀
(

𝑀

∑
𝑚=1

𝑞
𝑚
(𝑘) 𝑠
𝑚
)

3

}

}

}

− 3𝑞
𝑀
(𝑘)

⋅ 𝐸
{

{

{

(

𝑀

∑
𝑚=1

𝑞
𝑚
(𝑘) 𝑠
𝑚
)

2

}

}

}

]

]

𝑇

.

(34)

Next, the following formula can be obtained:

𝑞
𝑖
(𝑘 + 1)

= 𝑎
𝑘
𝐸
{

{

{

𝑠
𝑖
(

𝑀

∑
𝑚=1

𝑞
𝑚
(𝑘) 𝑠
𝑚
)

3

}

}

}

− 3𝑎
𝑘
𝑞
𝑖
(𝑘) 𝐸

{

{

{

(

𝑀

∑
𝑚=1

𝑞
𝑚
(𝑘) 𝑠
𝑚
)

2

}

}

}

= 𝑎
𝑘
𝐸
{

{

{

𝑠
𝑖
[𝑞
𝑖
(𝑘) 𝑠
𝑖
+

𝑀

∑
𝑚=1,𝑚 ̸=𝑖

𝑞
𝑚
(𝑘) 𝑠
𝑚
]

3

}

}

}

− 3𝑎
𝑘
𝑞
𝑖
(𝑘) 𝐸

{

{

{

[𝑞
𝑖
(𝑘) 𝑠
𝑖
+

𝑀

∑
𝑚=1,𝑚 ̸=𝑖

𝑞
𝑚
(𝑘) 𝑠
𝑚
]

2

}

}

}

= 𝑎
𝑘
𝐸
{

{

{

𝑞
𝑖

3
(𝑘) 𝑠
𝑖

4
+ 3𝑞
𝑖
(𝑘) 𝑠
𝑖

2
[

𝑀

∑
𝑚=1,𝑚 ̸=𝑖

𝑞
𝑚
(𝑘) 𝑠
𝑚
]

2

}

}

}

− 3𝑎
𝑘
𝑞
𝑖
(𝑘) 𝐸

{

{

{

𝑞
𝑖

2
(𝑘) 𝑠
𝑖

2
+ [

𝑀

∑
𝑚=1,𝑚 ̸=𝑖

𝑞
𝑚
(𝑘) 𝑠
𝑚
]

2

}

}

}

= 𝑎
𝑘
𝑞
𝑖

3
(𝑘) 𝐸 {𝑠

𝑖

4
} − 3𝑎

𝑘
𝑞
𝑖

3
(𝑘) 𝐸 {𝑠

𝑖

2
}

= 𝑎
𝑘
𝑞
𝑖

3
(𝑘) (𝐸 {𝑠

𝑖

4
} − 3𝐸 {𝑠

𝑖

2
}) = 𝑎

𝑘
𝑞
𝑖

3
(𝑘) 𝑘
4
(𝑠
𝑖
) ,

(35)

where 𝑘
4
(⋅) denotes the kurtosis of the signal. Similarly, we

obtain

𝑞
𝑗
(𝑘 + 1) = 𝑎

𝑘
𝑞
𝑗

3
(𝑘) 𝑘
4
(𝑠
𝑗
) . (36)

The following formula is assumed:

𝑏 (𝑘 + 1) =
𝑞
𝑗
(𝑘 + 1)

𝑞
𝑖
(𝑘 + 1)

=
𝑞3
𝑗
(𝑘) 𝑘
4
(𝑠
𝑗
)

𝑞3
𝑖
(𝑘) 𝑘
4
(𝑠
𝑖
)

= 𝑏
3
(𝑘)

𝑘
4
(𝑠
𝑗
)

𝑘
4
(𝑠
𝑖
)
.

(37)

Then, 𝑏(𝑘) can be denoted as

𝑏 (𝑘) =
𝑞
𝑗
(𝑘)

𝑞
𝑖
(𝑘)

= (√



𝑘
4
(𝑠
𝑗
)

𝑘
4
(𝑠
𝑖
)



)

−1

[

[

𝑞
𝑗
(1)

𝑞
𝑖
(1)

√



𝑘
4
(𝑠
𝑗
)

𝑘
4
(𝑠
𝑖
)



]

]

3
𝑘−1

.

(38)

If we want to get the desired signal, 𝑞
𝑗
(𝑘) must be close to 0

and 𝑞
𝑖
(𝑘)must be close to 1. Therefore, the following formula

must be met:


𝑞
𝑗
(1)

𝑞
𝑖
(1)

√



𝑘
4
(𝑠
𝑗
)

𝑘
4
(𝑠
𝑖
)





< 1. (39)

The above formula (39) can be simplified as

𝑞
𝑖

2
(1) > 𝑞

𝑗

2
(1)



𝑘
4
(𝑠
𝑗
)

𝑘
4
(𝑠
𝑖
)



. (40)

Combining the solution vector w
0
described in formula (22),

we get

q
0
= A𝑇V𝑇w

0
= [𝑞
01
, . . . , 𝑞

0𝑖
, . . . , 𝑞

0𝑗
, . . . , 𝑞

0𝑛
]
𝑇

. (41)

In conclusion, the desired signal can be obtained if the
following condition is satisfied:

𝑞
0𝑖

2
> 𝑞
0𝑗

2



𝑘
4
(𝑠
𝑗
)

𝑘
4
(𝑠
𝑖
)



. (42)

Similarly, if another function 𝐺 is chosen, there will be
another condition that is similar to formula (42) helping us
get the desired source signal.

4. Simulation Results and Analysis

4.1. Experiments on Artificial Data. In order to verify the per-
formance of the above algorithms, simulation experiments
are performed with the data that are shown in Figure 1.
Source signals include maternal electrocardiogram (MECG),
fetal electrocardiogram (FECG), breathing artifact, electrode
artifact, and two kinds of noises.The above source signals are
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Figure 1: Source signals data.

mixed with a matrix to get the mixtures that are shown in
Figure 2. The mixing matrix in this paper is written as

[
[
[
[
[
[
[
[
[
[
[

[

0.8246 0.9469 0.7384 0.1109 0.5211 0.5746

0.4530 0.5101 0.9764 0.3752 0.7743 0.8639

0.3806 0.7919 0.5233 0.3299 0.1203 0.1986

0.9259 0.4522 0.4299 0.3421 0.6255 0.6725

0.7408 0.8492 0.2072 0.8171 0.3466 0.9018

0.7376 0.3904 0.3234 0.5317 0.3346 0.1992

]
]
]
]
]
]
]
]
]
]
]

]

. (43)

Corresponding simulations are needed to compare the per-
formance of the proposed algorithms and other algorithms.
The performance of algorithms can be measured with the
performance index (PI) that is denoted as

PI =
𝑛

∑
𝑗=1


𝑝
𝑗



max
𝑘

𝑝𝑘

− 1, 𝑘 = 1, . . . , 𝑛, (44)

where 𝑝
𝑗
denotes the element of the global vector p = w𝑇VA.

If the desired signal is extracted perfectly, the value of PI is 0.
In other words, the value of PI is lower if the performance is
better. PI is always used to be the measurement index for the
artificial data.

In the comparison algorithms, the MACBSE algorithm,
the GABSE algorithm, the SemiBSE algorithm, and the
FastNA algorithm are the algorithms that need iterations.
Therefore, we compare these algorithms with the proposed
algorithm through the relationship of the average perfor-
mance index and the iterations. In this paper, the function
𝐺(𝑢) = log(cosh(𝑢)) is chosen. The parameters of other
algorithms are selected based on the references. In theGABSE
algorithm and the FastNA algorithm, 𝐺(𝑢) = log(cosh(𝑢))
is also chosen. In the SemiBSE algorithm, the nonlinearity is
chosen as 𝑔(𝑢) = sign(𝑢) and the constant coefficient is ini-
tialized to 0.3. The learning rates are set to 0.1 and 0.0001. All
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Figure 2: Mixed signals data.
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Figure 3:The performance indexes against iteration numbers by the
six algorithms.

the algorithms described above adopt the same initial weight
vector [−0.3331, 0.3768, 0.2715, 0.6498, 0.3576, 0.3510]𝑇 and
the optimal time delay 112. The average performance indexes
over 100 independent trials against iteration numbers by the
six algorithms are shown in Figure 3.

It is obviously verified in Figure 3 that our algorithms
have better performance than other algorithms when the
algorithms achieve the convergence.

Meanwhile, we compare our algorithms with two nonit-
erative algorithmswhich include Li’s algorithm and the LAJD
algorithm. In the LAJD algorithm, 𝐿 and𝐾 are set to 3 and 2,
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Table 1: The PI values of the algorithms.

Li’s algorithm The LAJD
algorithm

Our
algorithm 1

Our
algorithm 2

0.2405 0.195 0.0673 0.033
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Figure 4: The average performance indexes in 100 independent
trials against iteration numbers by the six algorithms when the
mixing matrix is random.

respectively.The performance indexes of the algorithms after
the convergence are shown in Table 1.

From Table 1, it is easy to know that our algorithms have
lower performance indexes than Li’s algorithm and the LAJD
algorithm.

The above comparison is done with the same mixing
matrix. However, the mixing matrix is unknown and chang-
ing in practice.Therefore,MonteCarlo simulations need to be
carried outwith different randommixingmatrices.We set the
initial weight vector as [0, 0, 0, 0, 0, 1]𝑇 and compare different
algorithms. The average performance indexes over 100 inde-
pendent trials against iteration numbers by the six iterative
algorithms are shown in Figure 4. In 100 independent trials,
the mixing matrices are different and random.

When the mixing matrix is random, the average per-
formance indexes of our algorithms and two noniterative
algorithms in 100 independent trials are shown in Table 2.

As shown in Figure 4 andTable 2, our algorithms still own
better performance when the mixing matrix is random.

Based on the comparisons of the proposed algorithms
and all other algorithms, we can know that our algorithms
own good performance for processing the artificial data.

4.2. Experiments on Real-World Data. In order to further
demonstrate the practicability of our algorithm, the simula-
tions of real-world EEG data which are shown in Figure 5

Table 2: The average PI values of the algorithms when the mixing
matrix is random.

Li’s algorithm The LAJD
algorithm

Our
algorithm 1

Our
algorithm 2

0.2405 0.195 0.0672 0.033
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Figure 5: The real-world EEG data.

need to be performed. The well-known ECG data are mea-
sured from a pregnant woman and shared by De Moor [21].
The ECG data are mixed with maternal electrocardiogram
(MECG), fetal electrocardiogram (FECG), breathing artifact,
electrode artifact, and some other noises. When extracting
FECG from the real-world ECG signals with various kinds
of algorithms, we cannot measure the performance of the
algorithms with PI because the mixing matrix is unknown.
However, the robustness of the algorithms is also an impor-
tant index. It is always used to be the measurement index
for the real-world data. Because there may be estimation
error of the optimal time delay in practice, the robustness of
the algorithms becomes more important. The FECG signals
extracted by all algorithms at the optimal delay 112 are shown
in Figure 6. The FECG signals extracted by all algorithms
at delays 106 and 120 are shown in Figures 7 and 8. From
Figure 6, we can find that all algorithms can extract the FECG
signal at the optimal delay 112. However, if the estimation
error of the delay is too large, the FECGmay not be extracted
by the algorithms. According to Figures 7 and 8, we can
know that only the proposed algorithms can extract the
FECG signal. Our algorithms function when the delay ranges
from 106 to 120, which directly illustrates that our algorithms
are more robust than other algorithms. In conclusion, our
algorithm is applicable to real-world data and owns better
robustness than other algorithms.

5. Conclusion

We have proposed novel BSE algorithms for extraction of
FECG. First, we design an objective function based on
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Figure 6: The FECG signals extracted by all algorithms at the
optimal delay 112.
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Figure 7: The FECG signals extracted by all algorithms at the
optimal delay 106.
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Figure 8: The FECG signals extracted by all algorithms at the
optimal delay 120.

the non-Gaussianity and the temporal structure of the desired
FECG. Secondly, a clearer FECG can be obtained by the
learning algorithm. Furthermore, the proposed algorithm is
further improved through combining the vector obtained
by the objective function with the FastICA algorithm. The
algorithms of this paper are effective and robust. They can
save more time and get more satisfactory results than tradi-
tional BSS methods through utilizing the prior information.
Experimental results certify the effectiveness of the proposed
algorithms. Due to the generality of the presented BSE
algorithms, we believe that they can also be extended to
other signal processing applications. With our algorithms, it
is easy to design suitable functions to solve various kinds of
problems.
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